
The management and organization of
large scale software development
projects •

by RONALD H. KAY

IBM Research Laboratory
San Jose, California

INTRODUCTION

Two consecutive papers on the subject, "Managing the
Economics of Computer Programming" presented at
the 1968 National Conference of the Association of
Computing Machinery conclude respectively:

."First, one must understand computer program­
ming well enough to know what is possible, what
is probable, and what is impossible or unlikely.

.Second, one must make commitments based on
the technology used, not on the needs of the
world—and not on the unreasonable hopes of
the starry-eyed experts.

.Third, one must insist upon schedules based on
physical events, and on numerical descriptions
of the products that are being produced, to the
greatest extent that ingenuity will permit.

• Fourth, one must objectively assess the status
of the project against a well-developed plan.

.Finally, of course, one must do something about
the trouble one finds.

Thus, given these prerequisites, I conclude that
computer programming can in many respects be
managed just like any other process."1

"We do not really know how to select program­
mers, and we tend to select those with some unde­
sirable characteristics. . . . Typically, they work for
a manager who is ineffective because he has been
given neither proper management training nor basic
tools and disciplines with which to work; whose
functions have not been defined, and whose process

* Based on a seminar series attended by the author while a
Fellow at the MIT Center for Advanced Engineering Studies,
Fall, 1968.

of communication with the system analyst or user
is generally confused. Finally, all this takes place
within a technology which changes so rapidly that
it is almost impossible to get a fix on the functions
and the method by which the work is supposed to
take place, before it changes."2

An equally wide range of views emerged from a
series of seminars organized by Professor Maison Hare
of the Sloan School of Management and Professor
Malcom Jones, Assistant Director of Project MAC
during the fall of 1968 at MIT.

Insofar as the seminar speakers represent indepen­
dent organizations with widely varying objectives,
divergent views on many issues are hardly surprising.
Management objectives will be viewed differently by
a software firm working on a contract, a computer
manufacturer developing an operating system for his
hardware, or a university attempting to develop new
concepts in time sharing systems.

Thus, the basic contention that the management of
large programming efforts does or does not present a
unique problem, suggested in the above quotations,
may reflect the relevant management experience which
an organization has been able to bring to bear upon a
problem, rather than conflicting conclusions drawn
from a given set of premises. Each of the invited speak­
ers* had extensive experience in the management of
large programming efforts and is, or had been, asso­
ciated with an organization presently involved in such
efforts. Most of the organizations represented have
won recognition both, for leadership in technical in­
novation as well as success in the large scale applica-

* The names and affiliations of the participating speakers are
appended.

425

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1476793.1476857&domain=pdf&date_stamp=1969-05-14

426 Spring Joint Computer Conference, 1969

tion of new technology. Unfortunately, some of the
organizations active in the advancement of this field
of management and whose work was referred to by
several speakers, were not represented.3

It must also be pointed out that most of the speakers
were executives with direct responsibility for large
programming efforts or for all programming activity
in their organization rather than specialists in manage­
ment science concerned with the advancement of
this field.

I t would be presumptuous to attempt a condensa­
tion of these seminars representing the experience and
wisdom of the 21 speakers and the reactions of the
other participants. Rather, this paper endeavors to
find common threads and possibly resolve conflicting
views on specific issues. It is based entirely upon the
content of the seminars, and represents the author's
interpretation for which he assumes full responsibility.

This interpretation reflects the relative weight given
by the speakers to various aspects of the subject, with
some additional emphasis where there was significant
disagreement among the contributors.

Since the more visible sources of management diffi­
culties are often the derivatives of unclear or changing
objectives, this issue is identified at the outset. Next,
the need for accurate assessment of the state of the
art, the difficulties of making such an assessment and
its relevance to the project organization are considered.
Arguments are advanced for two kinds of organiza­
tions based upon the objectives and the required de­
gree of innovation.

The scope of this paper permits only the most gen­
eral observations regarding techniques for project plan­
ning. The significance of the project plan as the principal
means for rendering a programming effort visible is
pointed out. The discussion of specifying and eval­
uating a complex programming system and measuring
the performance of the people responsible for its devel­
opment serves to illustrate the magnitude of the prob­
lem faced by management at this point in time. The
lack of a common set of tools and standards are pointed
out as some of the specific causes of difficulty.

The issue of higher level languages is still an attrac­
tive topic for debate; those in favor appear to be pulling
ahead. This analysis of presently held views concludes
with the observation that recent advances in the shared
use of computers through interactive terminals prom­
ises to provide programming development management
with more effective means for the control of the im­
plementation phase by putting documentation on­
line.

The basic assumption underlying the seminar series,
i.e., the existence of significant unresolved problems

was confirmed. There is little contention that frequent
underestimation of the risk, possibly more than in other
areas of innovative development, is due to the dispro­
portionate responsibilities placed upon programming
management relative to their experience and the ma­
turity of the field.

The term "programming" is here used in its broadest
meaning to include all phases of software development.
In emphasizing "Large Scale Software Development
Projects" the seminars focussed principally on complex
operating systems, command and control systems and
large simulation efforts, in each case involving groups
large enough to require several levels of management.
The systems referred to typically involved 100,000
to several million instructions.

Objectives

The statement of definitive and time-invariant func­
tional objectives at the outset of a large programming
effort has proven to be one of the requirements most
difficult to satisfy. For example, the compatibility of
an operating system relative to a family of hardware
or the extendability of a storage/management approach
to a multi-processor system are objectives difficult to
formulate at the outset of an effort intended to break
new ground in these areas. In spite of this, management
has frequently accepted vague or unrealistic objectives
in the expectation that the project itself will produce
the required clarification or advances.

Inadequate objectives at the outset, more than any
other single factor, are held responsible for subsequent
modification and consequent overrun of initial schedules
and budgets. It is felt that this situation will continue
as long as management or the sponsoring agency feel
the risk to be commensurate with the potential benefit.

Why are objectives held to be more vague and sub­
ject to change in the case of large programming efforts
than in the case of hardware development? Certainly,
the relative experience accumulated in the two areas
favors definition of hardware. Even when objectives
are dictated by non-technical considerations, those
charged with the responsibility for setting these objec­
tives are more familiar with hardware development.
They may avail themselves of advice from programming
experts but their judgment of possible alternatives is
still influenced by their experience.

From the views expressed by several of the seminar
speakers, one is led to conclude that as long as the
economic motivation associated with hardware is
greater or thought to be greater than that associated
with software, the latter will be adapted and modi­
fied.

Management and Organization of JLarge Scale Software Development Projects 427

Although only a few of the speakers explicitly re­
ferred to the influence of the organization's long term
objectives such as profitability, personnel policy and
the organization's image, it is evident that they can
have a significant bearing upon the management ap­
proach. The shortage of experienced programming
development managers who can effectively implement
such objectives and in some cases, the apparent re­
luctance to face or discuss the issue of objectives tends
to intensify potential difficulties.

The matter of objectives has been emphasized since
the more visible sources of management difficulties
are often the derivatives of unclear or changing ob­
jectives.

A ssessment of the possible

While objectives are elusive, the outcome is pre­
determined by the state of the art. A particularly
useful definition of the state of the art differentiates
between three levels: (1) what is possible for the ex­
perts; (2) what is generally known; and, (3) what has
been done by a development organization. This defi-
nitiou implies that expert knowledge must be relied
upon to assess the degree to which the objectives de­
pend upon contributions by expert personnel.

The first thing insisted upon by the experts is that
there is no substitute for a basic conceptual frame­
work which stands the test of time. That is to say,
if the basic concepts and philosophy of implementation
do not stand up, no amount of administrative tech­
nique can be successfully brought to the rescue. The
lack of scientific discipline in the field, i.e., the absence
of first principles upon which to base first principle
calculation, so successfully applied in the physical
sciences and engineering, produces the dilemma of
conflicting expert opinions. The field has as yet not
produced an adequate number of people who can match
their managerial skills with this sort of expertise (or
vice versa) to be able to resolve such conflicts with
confidence.

Experts can be relied upon more readily for an as­
sessment of what is generally known, or more precisely,
of the advances required in what is generally known
in order to meet the objectives. Frequently, the need
for this implied precision is inadequately appreciated
iD the assessment by expert and manager alike.

I t is only natural that the current literature on the
management of prograinming efforts is more fruitful
in the realm of what has been done by a development
organization. There is persuasive evidence that many
organizations have the competence to manage even
complex tasks which require only minor advances in
the state of the art.

Organization

The assessment of the possible in terms of three
levels of the state of the art suggests that the organi­
zation of the project should reflect the objectives as
well as the required degree of innovation. Management
problems and compromised objectives have been traced
repeatedly to situations where the resulting program­
ming system reflects the a priori organization chosen
for its development.4

Accepting the need for tailoring the organization
to the objectives, the case has been made for two very
different approaches.

1. A relatively small group of experts and selected
support personnel charged with carrying the
project from inception to completion.

2. A small group of experts in an advisory and
monitoring function to the management of a
large development organization where distinct
groups of people are responsible for various
phases of the effort such as analysis, design,
implementation, integration, testing and main­
tenance.

Although these two approaches are frequently argued
on their absolute merits, more often than not they are
born of necessity.

A one-time commitment on the part of a university
to a large programming system effort is often justified
on the basis of an available small group of experts and
their ability to muster a temporary support group with
better than average qualifications.

An industrial organization committed to continuing
development activities requiring varying numbers of
people for a variety of tasks on a continuing basis,
finds it necessary and effective to develop specialized
centers of competence so that a number of projects
can draw upon this resource.

I t appears that the larger the relative need for inno­
vation at the expert level, the stronger the preference
for the small group. Given these two types of organi­
zation, the management techniques which find favor
differ greatly. The large contract software organiza­
tion may respond to the first sign of a problem by
getting machinery in motion to hire or transfer an
additional 100 programmers to the project. The ra­
tionale for this approach is that it may take six months
to really understand the nature of the problem. At
that time you probably have between 10 and 100 peo­
ple with up to six months hands-on experience from
whom you can select a few who can now be identified
as being able to correct the problem.

The small group of experts, developing a complex
system would react differently. Having less of a com-

428 Spring Joint Computer Conference, 1969

munication problem, they would identify the cause
and come up with a potential solution in a shorter pe­
riod of time. But by definition they would expect to
make use of the same small number of people to cor­
rect the situation accepting the unavoidable post­
ponement of other planned activity. Depending on
the magnitude of the fix required, this could be an
appreciable fraction of the original estimate. It can also
be concluded that the small group is less able to absorb
some of the influences beyond its control, such as,
turnover of personnel, limited machine access, etc.

Although some of the speakers attempted to address
the organizational issues in reference to the classical
distinction between project and functional organiza­
tion, it became evident that the definition of the vari­
ous functions of software development in the repre­
sented organizations are not sufficiently precise or
uniform to allow for meaningful generalization.

Depending upon the priorities of management ob­
jectives, such as minimum cost, fixed deadline or op­
timum performance, there is some basis for choosing
an appropriate organization: ability to muster resources,
degree of innovation required and long term objectives
such as developing skills vs. hiring experienced people.

The wide divergence of views on this subject re­
flected the difference in management objectives and
philosophy of the organizations represented.

The project plan

A significant amount of attention was given by a
number of seminar speakers to the subject of a project
plan. Such a plan identifies various phases of the proj­
ect such as Analysis, Specification, Design, Imple­
mentation, Integration, Testing, Publication and
Maintenance.

We shall here confine ourselves to some general
observations regarding such a plan.

. The plan is not an end in itself, but a management
tool which helps define responsibilities and check­
points. It is the principal means for achieving
visibility of the project.

.There is considerable overlapping of the various
phases of the plan in the case of programming
development; e.g., testing is initiated with the
specification phase, where component-, integra-
tion-and acceptance-tests must be defined.

• Such plans point up a basic difference between
hardware and software development. Hardware
development, culminating in a tested prototype,
leads to the subsequent manufacturing phase
which generally requires much greater resources

and thus becomes a major factor in the ultimate
success of the project.

. Programming development culminates in the end-
product and in this sense resembles the develop­
ment of one-of-a-kind hardware.

.The use of PERT charts is generally held to be
ineffective as a means of planning and control of
large programming development tasks.

.Project control against a plan is not unique to
programming projects.

Problems frequently are not due to a poor plan but
to the fact that the plan is not being carried out for a
variety of reasons, some of which are being considered
in this paper. Above all, a good plan is no substitute
for poorly defined objectives.

Specifications

One of the most difficult aspects of programming
development is the process by which the results of
analysis are translated into a set of specifications. What
is wanted is a set of blueprints which uniquely specify
what is to be implemented. The first problem arises
with the decision as to what should go onto which blue­
print. The need to break the job down into separate
modules forces early decisions regarding the interaction
between the modules. An attempt to expaiinthe concept
of "Functional Modularity" may help to clarify this
issue. In the case of hardware, modularity is derived
from considerations such as physical dimension (what
one can get through a door, tolerable delay, etc.) com­
ponents which can be shared (e.g., power supplies)
ease of access and replacement, standardization of
modules, etc. Once a hardware module is defined, its
relation to other modules is fixed by virtue of a finite
number of interconnections. Every physically accessible
connection is a potential test point permitting isola­
tion of modules. In a complex programming system
modularity is sought in terms of frequently used sec­
tions of the program and elements which are common
to several functions. There is a desire to minimize
interaction between modules and to achieve clean
separation of function to facilitate division of the de­
velopment effort and module testing. This concept of
modularity as yet does not take account of the fact that
not all parts of a complex program can be equally ac­
cessible at all times, i.e., sections of the program must
be moved to provide the desired access. It is fairly
obvious that the larger the "module" which is moved
the fewer the required moves. Yet, a large module
occupies more prime space and takes longer to move.

This suggests that the various considerations which
influence modularity in a large programming system

Manacrprnent. and OrcmrnV.a'tfnn nf Laro-o Sca1« Snf+waro "Dovplnnm pr»t "!>*•«-J pf*+o JOQ

are functionally interrelated in a much more complex
way than the parameters which influence hardware
modularity. Thus, to achieve "Functional Modularity"
at the specification stage, implies the need for past
experience which proves relevant to the problem at
hand or a methodical approach to reduce the inherent
complexity. Neither appears to exist in the case of large
programming development tasks, particularly where
new ground is to be broken. This most abstract aspect
of programming development remains the intellectually
most challenging.

Another problem relating to programming speci­
fications involves the degree of detail necessary. I t is
argued that to assure equivalent results from two pro­
grammers given the same specification, a level of detail
(and effort) nearly equal to the program itself is re­
quired.

Reliance upon experience which may or may not
prove relevant and the lack of a methodical approach
hardly ease the problem of evaluating the end-product
against a set of specifications.

Evaluation of the end-product

The end product of the development is a program­
ming system, i.e., a collection of programs designed to
perform a specified function in conjunction with speci­
fied hardware.

For example, a large systems program must, among
other things, provide the scheduling and allocation
of system resources as called for by a particular set
of instructions, i.e., by the application program. What
constitutes a "typical" application program or set of
programs which would provide a realistic measure of
performance?

Another aspect of evaluation is the data dependence
of the program. To illustrate this point, consider the
logical combination of two data elements whose com­
bined value exceeds the capacity of some hardware
facility. The programming system must be designed to
cope with this problem in terms of all possible logical
combinations of all possible data elements with regard
to all possible combinations of affected hardware com­
ponents. How can this be done? Only the most careful
design of test programs and the most extensive test
cases can hope to provide a satisfactory approximation
to "all possible combinations."

Given this level of evaluation, what can we say about
the quality of the programming system in its ability to
cope with a given job stream which has a unique se­
quence of programs? How representative is this given
job stream of the types of applications a variety of users
are likely to encounter? How do the answers to these

questions relate to a multi-processing or multi-user
environment? What is more, how can we evaluate such
objectives as compatibility and useful generality which
are related to past and future hardware and applica­
tions?

To date, there simply are no generally satisfactory
answers to these questions. Even when satisfactory
answers are obtainable for a specific subset of the
desired range of parameters, the evaluations upon
which these answers are based can only be attempted
after successful integration, i.e., when the job is presum­
ably done.

While techniques have been developed which pro­
vide a basis for predicting the mean time between fail­
ures of hardware components, the asymptotic nature
of program debugging and the effect of transient causes
of error upon program behavior introduce elements
of uncertainty which are difficult to quantify.

Evaluation of a programming system, probably
better than any other aspect of the development cycle,
illustrates the level of complexity and the relative lack
of proven techniques in this field.

Evaluation of the programmer

The difference in approach to organization and the
difficulty of evaluating the end-product highlights one
of the unique problems of programming management:
The measurement or evaluation of a programmer's
effort.* There is conclusive evidence that there are
order of magnitude differences in individual perfor­
mance by almost every criteria, such as time required
to complete an assignment, tightness of code, quality
of documentation, running time, storage requirements,
and computer time required for debugging. These
criteria serve as indicators, but realistic measures of
performance based upon these indicators are qualita­
tive, not quantitative. These indicators would not
necessarily point up interfacing problems before inte­
gration, or provide a measure of ultimate performance
but would serve only as a warning in the case of extreme
departure from the norm.

Two principal reasons for the large variation in
performance among programmers and the difficulties
of measuring this performance are considered in some
detail:

. The craft-like nature of programming.

. The personality traits of programmers.

* "Programmer" is here defined to include all personnel engaged
in the analysis, design, implementation and testing of computer
programs.

430 Spring Joint Computer Conference, 1969

Programming—Its craft-like nature

Non-programmers find it difficult to understand how
a task, at once requiring the utmost in logical consisten­
cy, at the same time can provide so much choice in the
approach to a given problem.

Hardware engineering experienced the same problems
in its evolution from the skills of the craftsman to the
mature technologies based on various branches of
science. Today, two hardware engineers given a task
to perform generally can agree on what constitutes a
precise definition of the problem and what constitutes
an adequately tested and documented solution. Even
though their end products may look different, there
will be considerable resemblance in their approach.
They will go through clearly-identifiable prodecures
such as analysis based on a set of equations, circuit
diagrams, breadboard models, tested models, proto­
types, etc.

In programming, on the other hand, the situation is
different. There is generally no way to relate the work
of two programmers or even the same programmer's
work on two different jobs. Unlike engineering, the
road from gross program design to a detailed design
is a function of a set of highly unpredictable human
events. As the job progresses, its nature tends to be
redefined as the programmer becomes more familiar
with the problem. The way he reacts to this increasing
awareness and translates his reaction to the program
is highly idiosyncratic to the individual and to the
individual project.

Programmers are different

In listing the personality traits of programmers as
a source of difficulty in the measurement of their per­
formance, it must be understood that the difficulties
referred to are those perceived by management. Many
programmers probably accept the fact that they are
not easily measured.

What is the basis for the assertion that programmers
are different?

First of all, most managers who are led to this con­
clusion compare programmers to engineers.

Second, many programmers are recruited from the
ranks of liberal arts graduates, while the managers
were trained in engineering or business administration.

Third, in many organizations the programmers are
the most homogeneous age group. They are thought
to represent a readily-identifiable group of young
people, bringing the new look from high school or college
into certain segments of industry and government.
This new kok is sometimes equated with appearance
and attitudes designed to set themselves apart from
the existing majority.

Finally, many aspects of programming require a
high degree of concentration over an extended period
of time which tends to make programming a solitary
occupation; those drawn and devoted to it may be or
become more introverted than the majority of their
nonprogramming colleagues.

Although management training in the liberal arts
has long been advocated, few present day managers
are prepared to cope with the generation gap or the
culture gap. Until enough managers can be drawn
from the ranks of programmers, the problem is likely
to persist.

The tools of the trade

Most eraft-like processes which have been carried
on for some time evolve a set of tools which are avail­
able to the community of craftsmen. Their skill level
may vary, but their tool kit is generally the same. In
the case of large programming systems, and particu­
larly when major advances in the state of the art are
to be incorporated into the system, adequate tools
may not exist. In fact, the evaluation of the adequacy
of available tools or the creation of such tools can
constitute a significant aspect of the project. The
adequacy of the computer and the operating system
available to the development effort is a case in point.
Higher level languages and the adequacy of the avail­
able implementation (compilers, etc.) fall into this
category also.

Another unique problem of programming develop­
ment is pointed up by the lack of a programmer's
equivalent to an oscilloscope, this most useful of electri­
cal engineering tools. The core dump which reflects
the contents of storage locations at a given program
step is the nearest equivalent. I t roughly corresponds
to a simultaneous presentation of the wave form of
every possible test point in a circuit ordered according
to the geometric location of solder joints rather than
points on a diagram.

It takes a great deal of experience for a programmer
to make effective use of more sophisticated techniques
such as the "snapshot" or its equivalent. He must
learn to structure his program to permit meaningful
tests to be performed without affecting the desired
operation of the program.

Higher level languages

An issue certain to provoke heated discussion among
the experts seems to be resolving itself in favor of the
use of higher level languages for system programming.

The arguments for higher level languages include:

Management and Organization of Large Scale Software Development Projects 431

• Better communication where interaction of pro­
grammers is essential.

. More compact documentation—a significant factor
in systems of several hundred thousand instruc­
tions.

• Facilitation of debugging.
• Closer relation to the conception of the algorithm.
• The ease of transferring the resulting programs,
i.e., less machine dependence.

• The potential savings in programming cost re­
sulting from the above.

Meaningful arguments against higher level languages
can be made in some special cases

.Real time systems where running time efficiency
is paramount.

. Inner loops in large scale computation where com­
puter capability is taxed..

•An adequate compiler for the proposed higher
level language is not available.

• Retraining time of experienced assembly language
programmers is not commensurate with the sched­
ule.

Only the most sophisticated specialists will claim
an advantage for a special system programming lan­
guage. In time, they may be proven right. (They usually
are.)

It should be mentioned that there is considerable
exploration of special higher level languages aimed at
providing better production tools: specification lan­
guages, simulation and modelling languages as well as
systems languages.

Never trust the computer manufacturer

This cry is heard with sufficient frequency that it
cannot be ignored. At its most vehement, it comes
from inexperienced academicians, semi-annually re­
assured of their omniscience by a sea of bewildered
undergraduate faces. Trained in an atmosphere of
distrust of their own institutions' administration,
they assume contractual responsibility for computer
related projects and point with pride to the efficacy of
informal arrangements, "cutting through the red
tape."

The manufacturer of hardware does not help this
situation by responding with a salesman admonished
to preserve good relations, but with little or no per­
tinent technical experience. Properly impressed by the
technical knowledge of the young professor who has
assured him that only a minor modification is needed,
he will make commitments based on his conviction
that if it can be done, his company surely will do it.

These commitments all too frequently lack the degree
of precision required to assess the magnitude of the
requested modification and are often made with little
or no knowledge of the available resources which would
permit a timely response.

Numerous businesses, educational and govern­
ment organizations succeed in consummating con­
tractual arrangements involving computer software.
They do so by availing themselves of the services of
personnel experienced in the negotiation of contracts
who will ascertain the required detail and level of
authorization needed to make a commitment. This
suggests that recognition of this problem on the part
of responsible members on both sides should be suffi­
cient to remedy this situation.

Documentation—Asset or liability

The importance of documentation in the manage­
ment of large programming developments is generally
accepted. A number of groups have found a formal
system of documentation the most effective manage­
ment tool at their disposal. In its most advanced imple­
mentation, such a system of documentation is on-line
to a time sharing system available to all participating
members of the system programming project.

Difficulties often are related to the programmer's
resistance to documentation which may be due to
several reasons:

• Lack of tangible evidence of benefit to his own
activity.

• The inaccessibility of his colleagues' documenta­
tion because of sheer quantity, lack of organi­
zation and common format and out of date status.

• Rejection of standards, imposed for reasons he
does not appreciate.

• Belief (often confirmed) that he can get along
without, and in fact feel at his creative "best"
when free to improvise.

Putting a documentation system on-line appears
to have overcome this resistance in a manner acceptable
to the programmer.

• The system itself can help him by rejecting certain
types of inconsistencies.

• He has instant access to the latest version of his
colleagues' work.

• Standards have been translated into formatting
conventions with which he is familiar.

• He understands that the system must safeguard
itself and his programs from unauthorized change.
Thus, he more readily accepts the need for authori­
zation to change and implement.

432 Spring Joint Computer Conference, 1969

Given such a documentation system, management
can institute necessary controls such as a senior pro­
grammer's or analyst's approval of a proposed ap­
proach prior to implementation. Communication^
which is universally identified as a major problem in
the development of large programming systems, is
facilitated and documentation becomes incidental and
concurrent to the development effort. It is conceivable
that the management of large programming efforts
in the future will be structured in keeping with a well
proven system of documentation.

SUMMARY

An attempt has been made to define some of the prob­
lems of large scale software developments as seen by
managers experienced in this field. This definition has
taken the form of identifying generally agreed upon
solutions, where they exist, providing the rationale
for opposing points of view, and by exploring issues
which are largely unresolved.

Among the unresolved issues one finds:

.There is a relative lack of experience at the level
of management responsible for setting objectives.

.This is aggravated by the shortage of experts
capable of assessing the relevant state of the art.

. In more mature fields of endeavor, managers have
been drawn largely from the ranks. Today's pro­
gramming managers often have a different educa­
tional background from the programmers, and are
not trained to overcome this difference.

. Complexity, rather than the size of large program­
ming systems has introduced a level of uncertainty
by forcing the evaluation of success potential well
beyond the design or implementation phase.

• The craft-like nature of programming, i.e., the
lack of scientific discipline has proven a real source
of problems, such as the difficulty of evolving
standards which in turn has made it difficult to
specify the task to be performed or to evaluate
the end-product.

Issues which have been resolved satisfactorily by
at least some organization include:

• Where the advice of experts is available at the
outset, it is possible to identify the objectives
which should dictate the project organization.

.A project plan can be structured to provide the
management tools which allow the measurement
of progress against a plan, i.e., means of rendering
the development of programming systems visible
can be provided.

.Methods of documentation can be developed as
an integral part of the effort which aid management
in both evaluation and control of the project.

CONCLUSIONS

By committing the time of key executives to this sem­
inar series, organizations large and small have shown
their interest in, and support of cooperative efforts to
better our understanding of the issues and to share
experience.

Some of the organizations represented which have
developed effective management techniques in areas
other than programming and whose activities span
the range from research to production have been able
to apply much of their management know-how to
programming efforts. The success based upon these
techniques has not been unqualified. One reason is the
difficulty of relating the visibility of "progress" during
a programming effort to ultimate performance. The
fact that schedules are being met does not insure success
during integration or anticipated performance.

Where management techniques have not evolved and
their lack is first felt in the pursuit of a large program­
ming effort, the problems tend to be thought of as
unique to programming. Extrapolation and scaling up
from past programming experience has proven hazard­
ous. Complexity turns out to be a non-linear attribute.

The management of large programming systems
presents some unique challenges. Those most intimately
involved recognize the problems. To date, they have had
limited success in conveying the full significance of the
problem to policy-making management.

To the extent that unresolved problems in the man­
agement of large scale software development have
been recognized, one can now turn to examining the
appropriateness of efforts proposed or under way, as
to their potential of providing desired solutions.

REFERENCES

1 C H REYNOLDS
Proc ACM National Conf 1968 334-337

2 D H BRANDON
ibid 332-334

3 E A NELSON
ibid 346-349

4 M E CONWAY
Datamation Vol 14 No 4 April 1968 28-32

APPENDIX I

Participating Seminar Speakers

Mr. Joel Aron
Manager, Boston Programining

Management and Organization of Large Scale Software Development Projects 433

IBM
Cambridge, Mass.

Mr. Thomas E. Cheatham
Computer Associates, Inc.
Wakefield, Mass.

Mr. Ted Climis
Director of Programmmg
IBM
Armonk, New York

Mr. Larry Constantine
Information and Systems Institute, Inc.
Cambridge, Mass.

Professor Fernando J. Corbato
Project MAC
MIT

Mr. Ted Crowley
Bell Telephone Laboratories
Whippany, New Jersey

Dr. Ruth Davis
National Library of Medicine
Bethesda, Maryland

Mr. A. Dean
Manager, Information Laboratory
General Electric
Cambridge, Mass.

Dr. Donald L. Durkey, Vice President
Computing and Software, Inc.
Panorama City, California

Mr. Robert Everett
The MITRE Corporation
Bedford, Mass. and
Baileys Crossroads, Virginia

Professor Jay W. Forrester
Sloan School of Management
MIT

Professor Edward L. Glaser
Director of the Computing Center
Case Western Reserve University
Cleveland, Ohio

Mr. Neil Gorchow
Vice President, Systems Programming
UNIVAC
Philadelphia, Pennsylvania

Mr. William 0. Harden
Manager, Data Processing
Union Carbide Corporation
New York, New York

Mr. Alexander S. Lett
Time Sharing Systems Development
IBM
Yorktown Heights, New York

Professor Donald Marquis
Sloan School of Management
MIT

Mr. George A. Mealy
Computer Consultant
Boston, Mass.

Mr. Donald Ream
U.S. Naval Ship Engineering Center
Washington, D.C.

Mr. Carl H. Reynolds, President
Computer Usage Development Corporation
Mount Kisco, New York

Professor Daniel Roos
Director, Systems Lab
Department of Civil Engineering
MIT

Mr. Charles Zraket
The MITRE Corporation
Bedford, Mass. and
Baileys Crossroads, Virginia

