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INTRODUCTION

A great amount of research for the solution of linear
inequalities has been undertaken in the past ten years.
One of the reasons for this research is the development
of linear separation approaches to pattern recogni-
tiont=5:8-1 and threshold logic problems.5%9 Both of
these problems require the determination of a decision
function or decision funections which, in the case of
linear separation, involve a system of lincar inecualities.

*Presently with Clulf RNesearch & Development, Company, Pitts-
burgh, Pa.

In this paper, an improved iterative algorithm will
be developed for the solution of the set of linear in-
equalities which is writter in the following equation:

dw > 0. (1)

This algorithm is an improvement of the ITo-Kashyap
algorithm by choosing a eriterion function

N
J(y) =4 3 (cosh 1y)? (2)

=1



to be minimized where y; is the ith component of the A’
by 1 veetor y defined below

y=Aw—->0,b0>0. (3)

The improvement lies in an aceeleration of the Ho-
Kashyap algorithm caused by a steeper gradient of
J(y) as can be seen when a comparison is made be-
tween the two criterion functions. Let Jy () designate

the criterion function used in the Io-Kashyap
algorithm,
N
July) =yl = 2 v (4)

=1

Since J (y) and J .. (y) reach their respective minimum
when each (cosh 1y:)? and cach y? are respectively
minimized, one can simply compare J (y;) and Ju(y:),
the convex functions of one variable only. Taking the
gradients of J(y;) and Ju:(y:) with respect to y;, one
obtains

6-](?/,) 2 2 5 .
ayi—:2yi+5yi3'{’5yi + e (5)
and.-.
OJ 1. (y;
"%}/(ji)‘ = 2y.. (6)

It is clear that the absolute value of aJ(y;)/dy; is
greater than the absolute value of 8., (y;)/0y: every-
where except at y; = 0 where they are equal. In gen-
eral, the gradient aJ (y) /dy is greater than the gradient
0J 1 (y) /3y everywhere exeept at the origin y = 0.
Since the gradient descent procedure is used in both
algorithms, and since ¥ and b, or y and w, are linearly
related, it is conceivable that the proposed algorithm
may have a higher convergence rate for a solution w.
As mentioned previously, J(y) reaches a minimum
when each term (eosh 3y:)%, (2 = 1, ..., N), is mini-
mized. For each (cosh 3y;)? to be a minimum, each
¥i, (0 = 1,...,N), must equal zero and y = 0 gives a
desired solution. Since the b/s are only constrained to
be positive, J (y) ean be minimized with respect to both
w and b subject to the condition that b > 0. Note that
it is not neccessary to attain the minimum value of
J(y); in fact, a solution w* is obtained whenever
¥ 2 0 with b > 0 from which follows dw* > b > 0.

DEVELOPMENT OTF THE TWO-CLASS
ALGORITHM
Let the matrix A, whose transpose is

At = [:11‘1, ooy 172 . . 1.2272] 8

he represented as

A =1 a3 ax s oy ’ (7)

......

vy Qy2  *** Qyn

where yr; is an » by 1 augmented pattern vector,
n =171+ 1, and N = n 4+ my, then the gradient of

J(y) with respect to w is given by

oJ (y)

. 24'(y) (8)

where

st(y) = [sinh g3, - -, sinh yx ],

and the gradient of J(y) with respect to b is given by

J
20 %), ©

where the derivative of a scalar with respect to a
.eolumn vector is a column veetor. Since w is not con-
strained in any way a8J(y)/dw = 0 implies s(y) = 0
which, in turn, implies y; = O foralldi = 1,2, ... A
Therefore, for a fixed b > 0, minimizing J(y) with
respect to w gives

y=Aw—>b=0.
Solving the above equation for 2, one obtains
w= A’ (10)

where Af is the generalized inverse of 4.

‘On the other hand, for a fixed w, 8J(y) /b = 0 with
b > 0 dictates a descent procedure of the following
form, with k denoting the iteration number:

b(k -+ 1) = b(k) 4 Ab(K) (11)

where the components of Ab;(k),7=1,2, «--, N, of

Ab(k) are governed by

— (?J(yfik))) = 2 sinh Yi if yi > O)
Abi(k) a i (12)
0 if y: 0.

Introduce a positive sealar p(») as the proportionality
constant and rewrite equation (12) in the veetor form,

Ab(k) = p(R)h(k), (13)
where

h(ky = [h:(B)] = [sinhy: (1) + | sinh () | ] (14)
(7‘ =1,2, "')Ay)



As can be shown later, p(k) may be chosen as equal to

1
) = —cmm—— 15
p(k) cosh Yoax (k) (15)
where
Ymax (k) = Max | y:(k) | - (16)

Substituting (13) into (11) and, from (10), writing
wk + 1) = wk) + p(k)Ath(k), (17)
one obtains the following algorithm:

w(0) = A7b(0), b(0) > 0 but otherwise arbitrary
y(k) = Aw(k) — b(k)
bk + 1) = b(k) + p(k)h(k) (18)
w(k + 1) = w(k) + p(k)YAh(k)

where h(k) and p(%k) are given by cquations (14) and
(15) respectively. Note that in this algorithm p(k)
varies at each step and is a nonlinear function of y(k).
A reeursive relation in y(k) can also be obtained from
(18), '

y(k+1) = y(k) + p(k) (A4* — Dh(k). (19)

Just like the Ho-Kashyap algorithm, it ean be shown
that the above algorithm (18) converges to a solution
w* of the system of linear inequalities in a finite number
of steps provided that a solution exists, and simultane-
ously acts as a test for the inconsistency of the linear
inequalities. These properties are formally stated in
Theorem I given in the next section.

THEOREM I

Before discussing the main theorem, a lemma to be
used in the proof of the theorem will be given first.

Lemma 1: Let one consider the set of linear inequalities
(1) and the algorithm (18) to solve this set. Then

1 y(&k) 2‘2 0 for any k;
and
2) if the set of linear inequalities is consistent,

then

y(k) §0
This lemma is the same as the one given by Ho and
Iashyap® except that the iterative algorithm is differ-
ent. The proof of the lemma is not given here since it is
similar to the proof of Ho-Kashyap lemma. Reecall
again the notation used in the lemma: y(k) < 0 means
that y;(k) < 0 for all ¢ but y possesses at least one
negative component. This lemma is a rigorous state-
ment that with a consistent set of linear inequalities
Aw > 0, the elements of the vector y(k) cannot be all
non-positive.

for any k.

Theorem I: Consider the set of linear inequalities (1)

and the algorithm (18) to solve these inequalities,
and let V[y (k)] = || y(k) |12

1) If the set of linear inequalities is consistent then

a) AVIy(hJ1a VIy(e+ 1)1 - VIy(k)]1<0

and lim V[y (k)] = 0 implying convergénce

k>
to a solution in an infinite number of steps;
and
b) actually, a solution is obtained in a finite
number of steps,

2) If the set of linear inequalities is inconsistent,
then there existsa positive integer k* such that

AVIy(k)1< 0  for k< k*
AV[y(k)]=0  for k> k*
and
y(k) 0 for k< k*
yk) =y(*) <0 for k> k*
and

w(k) = w(k*) for k2> k*
b(k) = b(k*) for &k > k*.

In other words, the occurrence of a nonpositive
vector y(k) at any step terminates the algo-
rithm and indicates the inconsistency of the
given set of linear inequalities.

Proof:

"Part 1: Since the algorithm (18) can be rewritten as a

recursive relation in y(k) given by (19), and
ViyE)I=lly®) [2>0  forall y(k) =0 (20)

VIy(k)] can be considered as a Liapunov function
for the nonlinear difference equation (19). Thus

AVIy()] & VIy(k + 1)1 — VIy(h) ]
= ly(k+ 1) 2= g |
= yk+ Dy + 1) — y(k)y(k)
= p(k)ht(k) (AA* — I)ty(k)
+ p(k)yt (k) (AA* — I)h(k)
+ pr(kYht (k) (AAF — I)t(AA?F — I)h(k).

Since (AA? — I) is hermitian idempotent, and

‘AAty(k) = 0, AV[y(k)] reduces to

AVIy(k)] = —2p(R)h(k)y (k)
+ p*(R)RH(R) (I — AAfR(K). (21)

Further simplification leads to



AVIy(k)] = —[y(k) + |y &) | Lo (k)R (k)
+ (R R(k) (A4 — DRF) Iy (k) + | y(&) | ]

i ?P’(k)R(k)AAFR(k)
+ p(k)R(K) — pr(k)R* (k) }.
(22)
where R = diag [S"‘;‘_T'-'/_‘ . s_lgg}}:—vl&] .

For AV[y (k)] to be negative semidefinite, AV[y(k)] =
0 only if y(k) = 0 or y(k) < 0, the matrix

[p* ()R (F) AA'R(E) + p(k)R(k) — p*(k)R* (k) ]

must be positive definite. A4 is positive semidefinite
because AAf is hermitian idempotent, z'4AAfx > 0 for
any z; it follows that 2!’RAA*Rz > 0 for any z; hence
RAA'R is also positive semidefinite. Now one can
choose a p(k) such that [p(k)R(k) — p*(k)Ri(k)]
is positive definite. [p(k)R(k) — p2(k)R%*(k)] is
positive definite if

[p (k) rss(k) — p2(k)r:2(k)] > 0
for all 1=1,2+-+,N. (23)

Since r(k) = sinh yi/y; > 0 for all 7 and p(k) is re-
stricted to be positive, the above condition reduces to.
the condition, .

1 — p(k)ru(k) >0
For p(k) chosen in equation (15),

forall ©=1,2 -4+, N. (24)

1
pk) = o5& Yo (B)
1 sinh y;(k)

R s e R0

_ sinh y; (k)
h ¥:i(k) cosh Ymax (k)

_ysn(k)
f}: (2n 4 1)!
= ——— < L.
N Ymax (k)
,Z:o (2n)!

Thus the condition (24) is satisfied and [p(k)R(k) —
p*(k)R2(k)] is positive definite for

1

k) = ——
p(k) cosh Ymax (k)

Then AV[y(k)] has the desired property of negative
semidefinite for p(k) = 1/cosh ymax(k) and for any
finite y(k).

" must converge to the region V[y(k)] =

From equation (22) one notes that AV[y(k)] equals
zero if and only if y(k) = 0 or y(k) < 0. Since it is
assumed that the set of linear inequalities (1) is con-
sistent, and from the lemma y (k) $ 0, therefore

AV[y(k)1<0  forall y(k) %0  (25)
=0 if y(k) = 0.

By Liapunov’s stability criterion, the equilibrium
state y = 0 of the discrete system (19) can be reached
asymptotically, i.e., lim || y(k) ||2 = 0, which corre-
k-»oo

sponds to a solution w** with Aw** = b > 0. This
completes the proof of Part 1(a).

To prove the convergeuce of the algorithm (18) in a
finite number of steps, one notes that b(k) is a non-
decreasing vector. Let b°(0) = [1, 1, «+1], then

be(k) > b1(0) > [1,1,+--,1] forany k > 0.

Sinece Aw(k) = b(k) + y(k), | y'(k) | < [1,1, +-+, 1]
implies Aw*(k) > 0 when a solution w* is reached.

But V[y(k)] < 1 implies | y*(k) | < [1, 1, -+, 1]
Since V[y(k)] converges to zero in infinite time, it
1 in finite
time, hence | y*(k) | < [1, 1, +++, 1], Aw(k) > 0, and
a solution w* = w(k) is obtained in a finite number of
steps. This completes the proof of Part 1(b).

Part 2: Tt has been proved in Part 1 that V[y(k)] is
negative semidefinite independent of the consistency
of the linear inequalities. Now, if the set of linear in-
equalities (1) is inconsistent, one notes that y(k)
cannot be 0 and hence V[y (k)] cannot become zero
for any k > 0. There must exist a value of k, called
k*, such that

AV[y(k)]1< 0 for 0Lk <k*
=0 for k= k¥
y(k) X0  for 0<k <k~

But V[y(k*)] = 0 if either y(k*) = 0 or y(&*) < 0.
Since y(k*) # 0, this implies y(k*) < 0 and hence,
from (14), h(k*) = 0. Equation (19) indicates that

yk) = y&*) <0 forall k> k*



As a consequence, one obtains

AV[y(k)]=0 forall &> k*

h(k) =0 forall k= k*
w(k) = w(k*) forall k> k*
b(k) = b(k*) forall k> k*
This completes the proof of the theorem.
The Scalar

An Optimum Choice ofyp (k)

The choice of p(k) = 1/cosh Yuax (k) in the previous
section is only one of many possible choices of p(k)
for the convergence of the algorithm (18). The con-
vergence rate may be further improved by choosing a
p(k) such that the decrease in the Lyapunov function
Viy(k)] is maximized at every step, that is,
—AV[y(k)]is maximized with respect to p(k). Taking
the partial derivative of AV[y(k)] in equation (22)
with respect to p(k) leads to an optimum value of
p(k) given by

(k) = Ly(®) + [y [ JRE) yk) + yk) | ]
PR aly(k) + 1y (o) [ IR ()
- [I — AATIR(B) [y (k) + y(R) | ]
(26)
provided that I — AAf > 0. For this value of p(k),
AV[y(k)] is negative definite in [y(k) + | w(k) |]
which is required in the convergence proof of the
algorithm (18). A flow chart summarizing the above
procedure is shown in Figure 1.

EXAMPLES

The algorithm (18) has been applied to pattern
recognition and switching theory problems. For switch-
ing theory problems the gencralized inverse of the N
by n pattern matrix A is simplified to

AF = 2-D A,

Two example problems will be presented, one in switch-
ing theory and the other in pattern recognition.

Ezample 1: Consider a Boolean function of eight binary
variables which corresponds to the separation of the
two classes:

Class €y = (127, 191, 215, 217 to 255)
Class C; = (0 to 126, 128 to 190, 192 to 214, 216).

Herem = 2r = 256 and n = r + 1 == 9, where r is the
number of binary variables. For

b'(O) = [0-1’0-17 0-1: t0ty 0-1: 0~1: 0-1]

and p(k) given in equation (26), the algorithm termi-
nates after the tenth iteration and gives a solution
weight vector w for the switching function,

~

wt = [0.3732, 0.2278, 0.2278, 0.1654, 0.0769, 0.0569,
' 0.0247, 0.0247, 0.0247],

The same example was solved using the Ho-Kashyap
algorithm.® It required 229 iterations with the same
initial 5(0). The solution weight veector w for the Ho-
Kashyap algorithm is

wt = [0.5741, 0.3447, 0.3447, 0.2425, 0.1155, 0.1080,
0.0436, 0.0436, 0.0436].

The computing time for the proposed algorithm was
50 seconds on IBM 7090 with a cost of $1.50, while
the Ho-Kashyap algorithm required 80 minutes with a
cost of $23.50. Thus the proposed algorithm not only
reduced the number of required iterations but also
the computing time and cost to solve the problem. It
was observed, that for 0.5 > b;(0) > 0.001 and p(k)
given by equation (26), for all examples tried by the
authors that the number of iterations was less than or
equal to the number of iterations required by the Ho-
Kashyap algorithm. In some cases the number of
iterations was reduced by a factor of 25.7

Ezample 2: The proposed algorithm was also applied
to a preliminary study of a biomedical pattern recog-
nition problem. The problem is to investigate whether
or not a change exists in the diurnal cycle of an in-
dividual person upon a change in his environmental
condition or physiological state and if such a change
may be used to diagnose physical ailments under
strictly controlled conditions hy measuring tlic amounts
of electrolytes present in urine samples evéry three
hours.”® The data used in thisexample consisted of
thirteen sample patterns under two different conditions.
Each pattern has eight components which represent
the mean excretion rates of an clectrolyte for each
three-hour period of the twenty-four hour eycle. Thus
N=13andn =7+ 1=8+4 1= 9; the size of the
pattern matrix 4 is 13 by 9. The pattern matrix A is
shown in Table 1. Let '(0) = [0.1, 0.1, --0.1]. For

this problem the Ho-Kashyap algorithm with p = 1
required 7 iterations to determine the scparability.
However, the proposed algorithm with p(k) given by
equation (26) required only two iterations, where
p(1) = 5.270684 and p(2) = 3.197152. The problem
is linearly separable and a solution weight veetor w
obtained by the proposed algorithm is

wt(2) = [—13.6089, 2.5915, 1.6847, 2.2314, 0.3414,
3.0077, 1.8428, 1.6559, 0.0006]
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TABLE 1—The Pattern Matrix 4 for Example 2

Zo k2 Iy ] Ty 23 X Z7 Zs
1,00 .96 1.19 1.35 .75 1.12 .94 .73 07
1.00 .75 1.19 1.35 . 1.06 1.07 .97 .81 .81
1.00 .80 1.13 .85 .90 1.14 1.27 1.01 .88
1.00 .66 1.40 1.25 1.09 1.54 .79 .27 .00
1.00 2.04 1.14 1.10 BT .62 .66 .47 1.39
1.00 1,02 1.32 1.06 1.03 1.07 1.16 97 .57
~1.00 — .48 -1.01 - .68 | -~.72 -1.76 —~1.25 -~ .62 —1.47
-1.00 — .55 -~.55 ~1.04 -~.91 ~1.40 -1.17 —1.28 -1.09
~1.00 - .87 -.79 ~1.34 -~ .86 — .44 ~2.15 —.82 —.74
—1,00 —.09 -~.70 - .67 - .80 -~1.93 -1.28 ~-1.14 -~1.39
-1,00 -1.12 —1.75 - .51 -.72 -1.25 -~ 46 - .89 - =1.29
—1.00 ~-1.20 ~1.47 - .60 ~.96 -1.13 -.89 —.74 -1.00
—-1.00 ~1.43 -1.79 - .68 ~.75 - .82 - .56 - .04 -1.04




EXTENSION TO THE MULTICLASS
ALGORITHM

The problem of multiclass patterns classification is
that it must be determined to which of the R different
classes, ¢y, Cy, -+, Cg, & given pattern vector, r, be-
longs. If the R-class patterns are linearly separable,
there exist B weight veetors w; to construct R dis-
criminant functions ¢;(2), (7 = 1, 2, -+, R), such
that

9:(@) = ztw; > rtw; = gi(x) foralli#j, = € C;. (27)

Chaplin and Levadi® have formulated another set of
inequalities which can be considered as a representa-
tion of linear separation of R-class patterns. This set
of inequalities is

[[#tU — et || < || 2*U — et || foralli % j, x € C; (28)
forallj=1,2.++« R

where U is an n X (R — 1) weight matrix and the
vectors e;'s are the vertex vectors of a B — 1 dimen-
sional equilateral simplex with its centroid at the
origin. If each e; is associated with one class, x is classi-
fied according to the nearest neighborhood of the
mapping ztU to the vertices. Inequalities (28) are,
in fact, equivalent to inequalities (27) with

(j=12-+K) (29)

Let the N X n pattern matrix A be defined in the
following manner,

w; = Ue;,

- -y

12t

Al n, M

- *

I R R (30)

[ Az :

1R

zl
_hRR

o

8

where 4; is an n; X n.submatrix having as its rows n;
transposed pattern vectors of class Cy,

it (Z =1, 2; "';ni))

where the right subseript denotes the pattern class and
the left subscript denotes the lth pattern in that class,
and N = n; 4+ np + -+- + ngp. Designate the n X
(R — 1) weight matrix U as composed of (R — 1)
column vectors u,, (g = 1,2, -+, R — 1),

U="[w---ug - upy]. (31)
Also define an N X (R — 1) matrix B as
byt ]
_ _ nlblt
B, .-
-1 a | b
B=|B;|=1] - (32)
. aibt
| Bz .
1bt
—ﬂRbRt~

whose row veetors b, (7 = 1,2, ¢« , R;1 = 1,2, +0e, °
n;), correspond to the class groupings in the A matrix
and satisfy the following inequalities

bit(e;—e) >0  forall 735 (33)

forall j=1,2 .-, R.

Bjisann; X (R — 1) submatrixof B,j = 1,2, «++, R.
Ietan N X (R - 1) matrix Y be defined as

A
Y = AU - B. (34)

The representation of ¥ may be in the form of either
an array of (R — 1) column veetors, y,, (¢ = 1,2, oo
R - 1):

?

Y = [y ye e yral (35)



7 - ;
or an array of N row vectors ;Y;, (j =1, 2, «++, R;

b
l=1,2, ..., nj), corresponding to the class groupings
in the A matrix,

P.ly'l ]
. _ nlyl
Yy -
- A 1Yj
Y=1Y;|=] - (36)
nj’rj
1Ye
L "RYR .
where Y;is an n; X (R - 1) submatrix of Y,
Yi=A;U — B; (37)

or
Y= wtU — it J=12 R
1=1,2, v, m,

The set of linear inequalities which will be discussed
in this paper is

AU(e;—e) >0  forall is=j (38)
forall j=1,2 4. R
Associated with it is another set of linear inequalities
Yi(e; —e:) = (A;U — Bj)(e;— &) >0 (39)
T

forall j=1,2 +..,R

for all

or
iYi(e; — er) = (12U — bj*) (e, — &) > 0

forall ¢sj

forall j=1,2, R

forall I =1,2,-n;
Since, by (33), B;(e; — e:) is constrained to have posi-

9

tive components for all ¢ # j, inequalities (39) implies
the inequalities (38) and hence (27) or (28). When
incqualities (38) are satisfied for all 7 > j and for all
j=1,2 .-+, R, asolution weight matrix U is reached
which will give linear classification of R-class patterns;

" that is, if

otU(e; —e;) >0 forall 77

then z is classified as of class C;.

DEVELOPMENT OF THE MULTI-CLASS
ALGORITHM

For the notational simplicity in the derivation of
the gradient function to be developed below, let the
matrices A, U, B, and Y in equations (30), (31), (32),
and/b_e\represented respectively as

(35) -
. G G2 Oga
: A=) } (40)
ax1 Qanz QOnn
—Qtu U2 U1,R-
U=!|..00c00 (41)
_unl U2 Un,R1
—bn b bpa ]
B=1|+vteveee. ] (42)
(bv1 by2 by.ra]
and
-Zlu Yiz YR
N (43)
| Yn1 Yn2 UN,R1

Substituting these into equation (34); one obtains

Yii = 2, Gl — bij. (44)
k=1
Let C(Y) be an N X (R — 1) matrix defined by
C(Y) = [ei;] & [eosh 3y:;] (45)

(=1, N;j=1,-, B ~1).
The eriterion funetion J(Y) to be minimized is chosen
as the trace of 4CY(Y)C(Y),
N R
J(Y) o Tr (4C1C) = 3° 2 J5(Y)  (48)
=1 =l
where
Jii(Y) = 4 (cosh 3y;)%
Determine the gradients of J(Y) with respect to both
U and B,

ay
=5 = 248(Y) (47)
W) _ogery (48)

aR



where S(Y) isan ¥V X (R ~ 1) matrix with the follow-
ing representation

S(Y) & [sinh y;;]
(=12 N;j=1,---,R~1)
[180(Y) ]

------

_____

- . N . (49)

_____

------

18x(Y)

i ,.RSR(Y) |
and ;S;(Y) is a row vector of the following form
Si(Y) = [8a(Y), iSn(Y), -++, iSiz-n(¥)]

= [Sillh Ymjbd,ay * 0%y sinh ?/(nj_,-}-l).k-—l]- (50)
Since U is not constrained in any manner, 8/ (¥)/3U =
0 implies that S(Y) = 0, which, in turn, implies that
sinh y;; = 0 and hence y;; = Oforalli = 1, ..+, N and

J =12+, R — 1. Therefore, for 8J(Y)/oU = 0
and a fixed B,

Y=AU~-B=0
- which gives a least square fit of
U = A'B. (51)

On the other hand, for a fixed U and the constraint
B;(e; — e;) > 0 for all 7 # j as given in (33), one
might attempt to inerement B according to the follow-
ing gradient descent procedure to reduce J(Y) at each
step,

B(k 1) = B(k) + 6B(k) (52)

where the qth element, 8[ibj(k)], of 8[ibt(k)] in
8B;(k) is given by

10

4

o [ (YD ()
~7mk%[ = ]M

= 2p(k) 185, (Y (F)),

lf IYJ‘(IF) (Bi -— 6q) > 0

forany g # j

0 iV (e — €) <0
for any g 5% J.

mmwn=ﬁ

However, Y;(k)(e; —e,) >0 does not imply
18 (Y (k) (e; — eg) > 0. In order to make 6[b;' (k)] -
(e, — e) = 0 so that (33) can be sutisfied at each
step, & modified gradient descent procedure, similar to
the onc adopted in Teng and Li's generalization of the
Ho-Kashyap algorithm %is to be used. Leta (B — 1) X
(R - 1) non-singular matrix ; be defined as'®

€ — Ck].

(53)

E;=1[ej— e, -+, 6; — 1,0 — €jyay **

Also define
Z; = Y;E; forall j=1,2---,R (54)
The inerement 8[ibj, (k)] is then given in terms of
2p (k) 18w (% (k)
= p(K)[185(Z(8)) + 1As(k)]

if lZiq(k) =

8Labs* (W) s, = 4 Y5(k) (e; = 0) >0 (55)

0 if 1Z,(k) =
Y5(k) (¢ — ¢) <0

whcre
(k) = 185(Z(F)) Sgn (1Z5,(k)) (56)
and, following (50),
18;0(Z (k) = Sinh 1Z;o(k). (57)
Putting into vectoi- ro;n-mont:xtidn,
SLbi (kY B;] = p(R)CuSi(Z (k) + 14;(%)]  (58)

or
sLbi (k)] = p(R (iS5 (Z(R)) + 1A;(k) JE;

= p(k) JI;(Y (k) (59)
where

(Y (R) & 0S;(Z(R) + 4:(R) JE;. - (60)
H;(Y (k) = [8:(Z(%)) + A;(k) ]E;



CH(Y(E)) ] T H(Y (k)
HY®) = | L,x®) | = | H(Y &)
| He(Y (k) | -nRsz(Y(k)) i
= [V (k) e cho(Y (k) hea(Y(K))].

(61)
It follows from (58) and (56) that

8Lib; (k) 1(e; —e) >0
Then, from (59),
SLB(R)] = p(MH(Y()).

Substituting the above equation into (52), one has

forall 23  andforallj.

Bk + 1) = B(k) + phYH(Y(K)) (62)
Using the above equation in (51), one has
U(k+1) = A'B(k + 1)
= AHB(k) + p(OH[Y (k) ]}
= U(k) + p(E)ATH[Y (k)] (63)

Therefore, an iterative algorithm to solve for U can be
proposed in the following:

U(0) = A’B(0)

Y(k) = AU(k) — B(k),  Zj(k) = Y;(k)E;
B(k + 1) = B(k) + p(k)HLY (k) ],
H;(Y(K) = [8;(k) + A;(k)JE;
Uk +1) = Uk) + p(k)A?H[Y (k)]

where p(k) may be chosen as equal to

(64)

R
2o 20 (k) 4+ Hi (Y (B)) (B TR

=1 I=1
o (:2Z;(R))EtH; (Y (k
p(k) = - (:Z;(k) ) EsH, (Y ()
2 3 k(I — AARR,

(65)
provided that

R n;
352 k) + H (Y () (B R(Z; (k) ES

F=1 l=1

- H;(Y(k))} >0 (66)

1

where!?

R(:Z;) & diag [ru(iZ)), « -+, rr1,r-1(:Z;) ]
(j=172:"'rR; l=1:2;""'ni)

(67)

Sinh ,Z;
__;_1221’ (g=1,++, B —1).(68)
14 jq

i€; & [1Z,R(Z;5) + A J(ESE) TR (1Z))
¢ DZJ'R(ZZi) - 1Aj:|' =0 and all [
(69)

The initial B matrix, B(0), may be chosen from

qu(le) 7AY

forall j

1

B‘(O) = B[:el; "'61:' e E@j, ...,ejE ceeleg, v, gRJ’
B>0 (70)

A recursive relation in Y (k) is also obtained as follows:
Y(k+1) = Y(k) + p(k) (AAF — DALY (K)] (71)
This algorithm is a convergent algorithm for the
solution U of the set of linear inequalities (38). The

nonlinear separability of the multiclass patterns can
also be detected by observing at a certain step k*

Y;(k*)(e; —e) <0  forall ¢s]
forall 7=1,2, -+, R.

CONVERGENCE PROOF OF THE
MULTI-CLASS ALGORITHM

The convergence of the proposed multi-class algo-
rithm can be proved in the following steps.

Lemma 2. Consider the set of inequalities (38) and the
algorithm (64) to solve it. Then’

1) Yi(k)(e; —e) 2 0 forall i 5
forall j = 1,2, -, R
for any k&
2) If (38) is consistent, then
Yi(k)(e;—e) $0 forall i
forall j=1,2,++-, R
for any k

This lemma can be proved by contradiction.!-1¢



Theorem II: Consider the set of linear inequalities (38)
and the algorithm (64) to solve it, and let

VIY(B)]=1{Y(k) (| & Tr[Y«(k) Y (R)]
Znqu |2 = Z En Yik) 2 (72)

q=1 J=1 di=l

1) Tf the set of linear inequalities is consistent, then

a) AV[Y (i) ]2 VIY(k+ 1] - VY (k)]

<0
and
lim V[ Y (k)] = O implying convergence to
k>0

a solution in an infinite number of iterations;
and
b) a solution is obtained in a finite number of
steps.
2) If the set of linear inequalities is inconsistent,
then there exists a positive integer k* such that

V{Yk)]<0 for k<Fk*
VIY(k)]=0 for k > k*

1Yi(k) (e; — e) $0 for kb < k*
forall 7547

forall j=1,2,+--, R
1Yi(k) (e; — &) = Y;(k*)(e; —e:) <0
forall k > k*
for all 4  j

forall j = 1,2, .-+, R
and
Uk) = U*) for k> k*
B(k) = B(k*) for k > k*,

That is, the occurrence of a matrix ¥ (k) with all non-
positive elements of Y (k)(e; — e;) for all ¢ j and
all j at any step terminates the algorithm and indicates
the nonlinear separability of the R-class patterns.

Proof: Making substitution of the recurrence relation
of Y(k) in (71) and simplification, it can be shown
that

AV[Y (k)] = Tr [Y{E+ DY (& + 1) = YH®R)Y (k)]
R ny
= —2p(k) X0 2 H; (Y (k) Yi(k)

=1 I=1

R—1

+ 7 (E) X (Y (D) — A4 R (Y (8))

(73)
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From (57), (50) and (67),

18;(2) = Z,R(:Z;) (74)
Substituting (74) into (60) gives
Hi(Y(®)) = LZ;(RRGZ;(k)) + 0i(k) JET. (75)
Substitute (75) and (54) info the following expression,

R nj
—2p X5 22 H; Y}

=1 l=1

= —p 2, 2 H(Y (k) (BRI (:Z;) Byt Hy (Y (k))
i 1
- 2 2 LZRGZ) + AJ(EAENTR(iZ;)
£ 1

*LZ;R(Z;) — A (76)

It has been shown that the off-diagonal elements in
(E#E;)~! are negative,”® and, from (67) and (68),
R1(:Z;) is a diagonal matrix with all positive diagonal
elements. It follows that the off diagonal elements of
(E;E;)7R7(,Z;) are also negative. From (56), (60),
and (74), the elements of [,Z;R(iZ;) + :A;] are either
positive or zero, and the corresponding elements of
[iZ;R(:Z;) — 1A;] are either zero or ncgative. Hence,
the last term in (76), which is equal to —; as defined
in (69), is shown to be non-positive. Substituting (69)
into (76), which, in turn, is substituted into (73), one
obtains

R =
AVIY ()] = —p(k) 32 3% HA(Y (k)| (B

F=1 =1

« [R1GZ) — p(IIE} HH (Y (k)

R =nj
—p(k) 25 2 (k)

J=1 I=1

R-1
— p*(k) 2; hat (Y (1) )AA?R, (Y (K)),  (77)
-
AV (Y (k)) is negative definite if the right hand side
of the above equation is negative definite in JH,;(¥ (k))
or in [,Z;R(:Z;) + 1A;]. The last two terms on the
right hand side are negative semi-definite. If a value
of p(k) can be found such that

R n;
2 2 Y (D)) {(BHTLR(Z) — p(k)IE,)

o=l el
- H(¥®) >0

then AV (Y (k)) is negative definite in [zA,R(IZ) 4+
1A;]. Note that if

p(k) = YmaX(k) = Max l 1Y (k) l:

J.l.a

1
cosh Yiux(k) ’



[R(:Z;) — p(k)I] is positive definite and has real
cigenvalues as ean be shown by following (67) and
(68); but it is not certain that (E;)7[R™'(:Z;) —
p(k)I]E;* can be positive definite for all 7 and all I. Let
p (k) be so chosen as to maximize —AV[Y (k)] at each
step, one obtains a choice of p(k) as given in (65),
provided the condition (66) is satisfied to make sure
that p(k) > 0. For this value of p(k),

R nj
[Z 2. Lies(k) 4 H; (Y (k) ) (B9

F=1 l=1

- R(Z;(k) ) Byt ij(Y(k))}]

AV(Y(R) = —~
R
4 3 1(Y(R)) (I — A4 (Y (R))
=1
<0 for 11{,(Y(1\)) # Qor [1Z,-R(1Z,-) -+ 1A5] # 0
for all  and j.

Hence, AV Y (k)] is negative definite in [,Z;R(:Z;) -+
lAj_-J. Note that szR(sz) + A = 0 for all j and all {
only if .Z; < 0, that is, only if Y (k) = 0 or ;Y;(k) -
(e; — €;) < 0 for all ¢ # j and for all j. Since it is as-
sumed that the set of the inequalities (38) is consistent,
from the lemma Y;(k) (e; — ;) ¥ 0 for all ¢ ¢ 7 and
for all 7; therefore,

AVIY(E)]1<0 forall Y(k) 0
=0 if Y(k) =0

and the solution ¥ = 0 of the equation (71) can be
reached asymptotically, that is,

lim || Y (%) ||* =0

ko

which corresponds to a solution U** with AU** = B
such that 4;U**(e; — ¢;) = Bj(e; — ¢;) > Oforalli < j
and for all 7. This is the proof of Part 1(a).

Note that for B(0) given in (70), and § > 0,

btk + V) By = b () E; + p (k) [18;(Z (k) + 1A:(k) ]
> [3(1 -+ 5)6;,"E,' >0

For a sufficiently large but finite k, V[Y (k)] < 1 such
that {| .Y;(k) |2 < 1 and

1Y (B)YE; > —fBetE; forall 1#j
It follows then

A;UR)E; = Bi(k)E; + Y;(k)E;

> (1 + 8)B;(0)E; — B;(0)E; > 3B;(0)E; > 0

forall I and 4.

and all j.

13

which indicates a solution [™ = U(k) is obtained in a
finite number of iteration steps. This is the proof of
part 1(b).

Part 2 can be proved in the same way as that in the
Ho-Kashyap theorem.V

CONCLUSION

A new generalized inverse algorithm for R-class pattern
classification is proposed which ix parallel to the one
given by Teng and Li. In the case of R = 2, the algo-
rithm is reduced to the improved dichotomization
algorithm developed in the beginning; except here A,
is composed of transposes of augmented pattern vectors
without change of sign and B, is a column vector con-
sisting of elements all equal to e, = —1. This corre-
sponds to the reformulation of the Ho-Iashyap algo-
rithm as mentioned by Wee and Fu.'* The proposed 2-
class algorithm has a higher rate of convergence than
previous methods for a certain range of initial b vector
or vectors. A comparison has been made between this
improved algorithm with p(k) given by equation (26)
and the Ho-Kashyap algorithm with p = I, the con-
vergence rate may be greatly increased for .001 <
b:(0) <05 (1 = 1, 2, ---, N), as verified by the
computer results of several switching theory and
pattern classification problems. For problems where a
large number of iterations, for example, greater than
twenty, were required for the Ho-IKashyap algorithm,
the proposed algorithm reduced this number of itera-
tions by a factor of 20 or more. Even though the cost
per iteration for the proposed algorithm is 10 to 20
per cent greater than the Ho-Kashyap algorithm, the
total cost is reduced. For problems where a small num-
ber of iterations were required by the Ho-Kashyap
algorithm, less than twenty, the proposed algorithm
reduced the number of iterations by as much as 30
percent. Experimental results suggest that the proposed
algorithm is advantageous for problems requiring a
large number of iterations by the Ho-Kashyap
algorithm,
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ON AN IMPROVED GENERALIZED INVERSE ALGORITHM FOR LINEAR INEQUALITIES

by

* *%x
L. C. Geary and C. C. Li
bepartment of Electrical Engineering, University of Pittsburgh
Pittsburgh, Pennsylvania 15213

INTRODUCTION. Both pattern recognition and threshold logic problems

require the deterﬁinétion of a decision function or decision functions
which, in the case of linear separation, involve a set of linear in-
equalities(l-a). An improved generalized inverse algorithm has been
developed for a solution v of a set of linear inequalities Aw > 0. The
algorithm is an improvement of the Ho-Kashyap algorithm by choosing a

different criterion function, Iy = 4 g (cosh l-y )2 (1)
271" °?
i=1

to be minimized where Yy ig the ith component of the Nxl vector
y=Aw-b, b >0. The improvement lies in the acceleration of the Ho-

Kasbyab algorithm caused by a steeper gradient of J(y).
THE PROPOSED TWO-CLASS ALGORITHM. Let the matrix A, whose transpose is

t
A [151,..., n X1 “1%p0c e g 52], be an Nxn matrix of augmented
sample pattern vEctors o %y of diménsion nxl where the subscript on the
right denotes the pattern class and the subscript on the left denotes the
fth sample pattern in that class. Note that N = n, + n,. The gradients

of J(y) with respect to w and b are

3J(y) N 3J(y)
=2 A" s(y), = 2 s (2)

o

where §F(z) = [sinh yl,...,sinh yN]. Since w is not constrained in any
3J(y)
way, —o— = 0 implies s(y) = 0, which, in turn, implies v; = 0 for all

1=1,2,...,N. Solving Yy=Aw-Db =0, one obtains w = éfg) where é# is

the generalized inverse of A. On the other hand, for a fixed w,
3J(y)
35 = 0 with b > 0 dictates a descent procedure of the following form,

with k denoting the iteration number: b(k+1) = b(k) + p(k) h(k), where

*

Presently at Gulf Research Center, Pittsburgh, Pennsylvania 15230.
&%
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h(k) = [h (k)] = [sinh y, (k) + | sinh yi(k)]],' (1=1,2,...,N).  (3)

It can be shown that p(k) may be chosen to equal

= 4
p(k) cosh y x(k) (4)
vhere ymax(k) = Max !yi(k)l. An optimum value of p(k) is

y®) + |y 1R [y + [y@)|]

p(k) = (5)

20y(®) + |y 15 (I - A ATIROO [y + |30
provided that I - ég&_# > 0. '
Combining the above relationship one obtains the following algo-

rithm:

w(©) = AT (0), b(0) > 05 ¥ = AW - b);

bk + 1) = bk) + p(k) h(); wlk + 1) = w() + p) Alnao. @
Note that in this algorithm p(k) varies at each step and is a non-linear
function of y(k). Just like thé Ho~Kashyap algorithm, it can be shown
that the above algorithm (6) converges to a solution gf of the system
of linear inequalities in a finite number of steps provided that a
solution exists, and simultaneously acts as a test for the inconsistency
of the linear inequalities(6).
THE PROPOSED MULTICLASS ALGORITHM, The problem of multiclass pattern
classification i1s that it must be determined to which of the R different

classes, Cl’cz""’CR’ a given pattern vector, X, belongs. If the R-

class patterns are linearly separable, there exist R weight vectors yﬂ
to construct R discriminant functions gj(g), (j=1,2,...,R), such that
gj(ﬁ) - Efﬂj > EFHi = gi(z) for all i#j, x ¢ Cj' Chaplin and Levadi

have formulated another set of inequalities which can be considered as

a representation of linear separation of R-class patterns(s). This set
of inequalities is (lgﬁg - E;“ < llﬁfg.‘ E;I[ for all i#j, x ¢ Cj and
all j=1,2,...,R, where U is an nx(R-1) weight matrix and the vectors
Eﬂ's are the vertex vectors of a R-1 dimensional equilateral simplex
with its centroid at the origin. If each Ej is associated with one
class, x is classified according to the nearest neighborhood of the

mapping gﬁg to the vertices. These two representations are, in fact,

16
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equivalent with Ej = H~Ej’ (3=1,2,...,R).
The generalization of the improved two-category algorithm appli-

cable to multi-class pattern classification problems has been developed

(6)

and its convergence proved . The algorithm solves for an nx(R-1)
solution matrix U of a set of linear inequalities éjg'(sj - Ei) >0,
(for all i#j and j=1,2,..,R), which in turn generates the wecight vectors

= g_gj, where éj is the jth block in A composed of n, training aug-

¥y 3

mented pattern vectors of class Cj' Let B be an Nx(R-1) matrix whose

row vectors zh; correspond to the class grouping in A and satisfy the

following inequalities LE; (gj - Ei) > 0 for all i#j, and j=1,2,...,R
Let also Y be an Nx(r-1) matrix composed of row vectors, ,Y.. Then the

3
generalized multi-class algorithm is given in the following equations:

gm)=ﬁmm,um=Au&)—Mm,%&>=%&)%,

B(k+l) = B(k) + p(k)H[Y(k)], H [Y)] = [_S_j(g(k)) + Aj(k)]E_j—l,
U(k+1l) = U(k) + p(k) A H[Y(k)], (N
where .
E,= @j ys -8y —%rrl%-%ﬁr.”,gj~gﬂg

S (z(k)) = [;S jq(Z(k))] = [sinh Z (k)], (2=1,-u,nj)
_A_J(k) oA jq(k)], Q‘qu(k) § (Z(k)) Sgn (2 jq(k))’

d gj(O) = the jth block in B(0) composed of nj row vectors gg. pk)

e

can be expressed by

2 z REACK (00 (B 5 TRz, )E, R, (X))

i
p) = =22 — - (8)
t
2 ) b @-AA)R
where
A
2€500) 2 12,00 RGZ )+ A ()T (E,E, £ 7R, 2, ()
¢ 12, 0ORGZ ()=, A ()]
A 2] =]
§(l§j(k)) = a diagonal matrix [r (sz(k))],
d
- Tq 2y &) = _S_ifzf}l_lé.q » (g=1,2,...,R-1).

£73q
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The proof of convergence of this multiclass algorithm utilizes the con-

cept of mapping the pattern classes into vertices of the equilateral

simplex(6), similar to the procedure used by Teng and Li(7). The
criterion function J(¥) to be minimized with respect to U and B is the
‘N R-1
trace of 4 cT(VC(), s dmreuco=3 ) J; (@, where
1 i=1 j=1
Jij(z) = 4 (cosh = yij) » C(Y) is an Nx(R~1) matrix defined by
C(Y) = [e,.] 5 [cosh l-y 1, end y,, = E a -b
LSS ij 2 Y130 13 4y %13 Yoy T Pij®
(i::l’ .o-,N; jal,.o a’R—l)-
CONCLUSION. Experimental results have shown that the rate of con~

vergence and the computer time can be substantially reduced with the
proposed algorithm when compared to the Ho-Kashyap algorithm, especilal-
ly when the later required a 1aige nutber of iterations.,
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