
The macro assembler, SWAP—A general
purpose interpretive processor

by M. E. BARTON

Bell Telephone Laboratories
Naperville, Illinois

INTRODUCTION Inputs

A new macro assembler, the Switching Assembly-
Program (SWAP), provides a variety of new features
and avoids the restrictions which are generally found
in such programs. Most assemblers were not designed
to be either general enough or powerful enough to ac­
complish tasks other than produce object code. SWAP
may be used for a wide variety of other problems such
as interpretively processing a language quite foreign
to the assembler.

SWAP has been developed at Bell Telephone Lab­
oratories, Incorporated, to assemble programs for three
very different telephone switching processors. (SWAP
is written in the IBM 360 assembly language and runs
on the 360 with at least 256K bytes of memory.) With
such varied object machines and the need to have all
source decks translatable from the previously used as­
sembler languages to the SWAP language, it is no
wonder that the SWAP design includes many features
not found in other assemblers. The cumulative set of
features provides a powerful interpretive processor that
may be used for a wide variety of problems.

DESCRIPTION

The source language is free field. Statement labels
begin in column one. Operation names and parameters
are delimited by a single comma or one or more blanks.
Comments are preceded by the sharp sign (#), and the
logical end of line is indicated by the semicolon (;) or
physical end of card. A method is provided for user in­
terpretation of other than this standard syntax; SWAP
is currently being used as a preliminary version of
several compilers.

The SWAP assembler may receive its original input
from a card, disc, or tape data set. The SOURCE
pseudo-operation allows the programmer to change the
input source at any point within a program. It is also
capable of receiving input lines directly from another
program, normally a source editor.

Outputs

Because the input line format is free field, the as­
sembly listing of the source lines may appear quite
unreadable. Therefore, the normal procedure is to have
the assembler align all the fields of the printed line.
The positions of the fields are, of course, a programmer
option. There are several classes of statements that
may be printed or suppressed at the programmer's
discretion. In keeping everything as general as possible,
it is natural that any operation, pseudo-operation, or
macro may be assigned to any combination of these
classes of statements.

In addition to producing the object program, which
varies with different applications, and the assembly
listing just described, SWAP has the facility to save
symbol, instruction, or macro definitions in the form of
libraries which may be loaded and used to assemble
other programs.

Macro expansions and the results of text substitu­
tion functions are another optional output. The pro­
grammer completely controls which lines are to be
generated and the format of these lines. These lines
may be printed separately from the object listing or
placed on card, disc, or tape storage. This optional out­
put may be used to provide input to other assemblers,

1

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1478462.1478464&domain=pdf&date_stamp=1970-11-17

2 Fall Joint Computer Conference, 1970

and in this way SWAP can become a pseudo-compiler
for almost any language. This output can also be used
to produce preliminary program documents from com­
ments which were originally placed in the source pro­
gram deck.

Variables

There are numerous types of variable symbols, such
as integers, floating point numbers, truth value, and
character strings. The programmer may change or
assign the type of any symbol as he wishes. For this
purpose, the type of a symbol or operation is repre­
sented by a character. Each variable symbol may have
up to 250 user-defined attributes which are data as­
sociated with each symbol. In addition, each symbol
represents the top of a push-down list which allows the
programmer to make a local use of any symbol.

A string variable would be defined by the TEXT
pseudo-operation:

VOWELS TEXT 'AEIOU'

while a numeric value is assigned by SET:

LIMIT SET 10

The 'functional' notation is used extensively to
represent not only the value of a symbol attribute, but
also to represent array elements and predefined or
user-defined arithmetic functions. In the following
statement:

ALPHA (SA) SET BETA (SB)+10

the ALPHA attribute of symbol SA would be assigned
a value ten greater than the BETA attribute of symbol
SB.

An array of three dimensions would be declared by
the statement:

ARRAY C U B E (- 1 : 1 , 3 , 0 : 2) = 4

In this example, the range of the first dimension runs
from —1 through + 1 , while the second dimension is
from + 1 through + 3 , and the third is from 0 through
2. Each element would have the initial value 4, but
the following statement could be used to assign another
value to a particular element of the array:

C U B E (- 1 , 2 , 0) SET 5

An attribute, array, or function reference may occur
anywhere that a symbol may be used in an arithmetic
expression.

Expressions

The following is a hierarchical list of the operators
allowed in expressions:

**
*

unary—

+

= , > , < , - .
=
=
&

1

=
>
<

or
and

and

and

or
or
or
and

and

t
/

unary-i

—

*)
> \
<)

!

exponentiation
multiplication and

division
negation and comple­

ment
addition and subtrac­

tion

the six relational op­
erators

logical AND and
AND of comple­
ment

logical OR and EX­
CLUSIVE OR

() , [] , and { } may be used in the usual manner to
force evaluation in any order.

Four particular rules apply to the use of these
operations:

1. Combined relations ApBpC are evaluated the
same as the expression A pB&BpC where p is any
relational operator.

2. Character strings in comparisons are denoted as
quoted strings.

3. The type of each operand is used to determine
the method of evaluation. (For example, the
complement of an integer is the 32-bit comple­
ment while the complement of a truth value is a
1-bit complement.)

4. If a TEXT symbol is encountered as an operand
in an expression, it is called an indirect symbol,
and its value is the result of evaluating the
string as an expression.

Predefined Functions

Several built-in or predefined functions are provided
to aid in evaluating some of the more common expres­
sions. The following is a partial list of the available
functions:

E(EXP) Results in 2 raised to the
EXP power.

M A X (E X P i , . . . , EXPre) Returns the maximum of
the expressions EXPi
through EXP„.

SWAP 3

STYP(EXP, C) Returns the value of EXP,
but the type of the result
is the character C as dis­
cussed in the Variables
section.

SET(SYMB, EXP) Returns the value of EXP
and assigns that same
value to the symbol
SYMB. This differs from
the SET pseudo-opera­
tion in that the symbol
is denned during the
evaluation of an expres­
sion.

Programmer-defined functions

To allow the programmer to define any number of
new functions, the DFN pseudo-operation is provided.
The general form of a function definition is written:

DFN F(P1, P2, ... ,Pn) = A1:Bh A2:B2, ..., An:Bn

where F is the function name, the Ps are dummy
parameter names, and the As and Bs are any valid
expressions. These expressions may contain the Ps and
other variables as well as other function calls which may
be recursive.

To evaluate the function, the Bs are evaluated left
to right. The result is the value of the A corresponding
to the first B that has a value of true (or nonzero).
The colons may be read as the word "if." A simple
example would be the function:

DFN P O S (X) = 1 : X > 0 , 0 : X < 0

which returns the value 1 if its argument is positive;
otherwise, the result is zero. If the expression B„ is
omitted, it is assumed to be true. Another example is
the following definition of Ackermann's function:

DFN ACK(M,N)=N+1:M=0,ACK(M-1,1):

N = 0, ACK(M-1, ACK(M, N-l))

Two features are provided to allow an arbitrary num­
ber of arguments in the call of a function. The first is
the ability to ask if an argument was implicitly omitted
from the call. This feature is invoked by a question
mark immediately following the dummy parameter
name. If the argument was present, the result of the
parameter-question mark is the value true; otherwise,
the value is false. For example, the function defined by:

DFN INC(X, Y) = Z + F : F?, X+ . l

Y is present, but the value of INC (3) is 4 since an
argument value for Y was omitted.

The other feature which allows an arbitrary number
of arguments is the ability to loop over a part of the
defining expression, using successive argument values
wherever the last dummy parameter name appears in
the range of the loop. This feature is invoked by the
appearance of an ellipsis (. . .) in the defining expres­
sion. The range of the loop is from the operator im­
mediately preceding the ellipsis backward to the first
occurrence of the same operator at the same level of
parentheses. As an example, consider the following
statement:

DFN $\JM(X,Y)=A-FX**(Y+C) + ~-

The range of the loop is from the + following the right
parenthesis backward to the + between the A and the
X. The call SUM (4, 1,2,3) would yield the same
result as the following expression:

A+4**(l+C) +4**(2+C) +4**(3+C)

The loop may also extend over the expression between
two commas as the next example shows. A recursive
function to do the EXCLUSIVE OR of an indefinite
number of arguments could be defined by:

DFN XOR(A,B,C)=A^B\B-lA:-lC?,

XOR(XOR(A,B)£c}...)

Sequencing control

The pseudo-operations that allow the normal se­
quence of processing to be modified provide the real
power of an assembler. In SWAP, the pseudo-operations
that provide that control are JUMP and DO. JUMP
forces the assembler to continue sequential processing
with the indicated line, ignoring any intervening lines.
The statement:

JUMP .LINE

will continue processing with the statement labeled:
.LINE. The symbol .LINE is called a sequence symbol
and is treated not as a normal symbol but only as the
destination of a JUMP or DO. Sequence symbols are
identified by the first character, which must be a period.
A normal symbol may also be used as the destination
of a JUMP or DO, if convenient. The destination of a
JUMP may be either before or after the JUMP state­
ment.

The JUMP is taken conditionally when an expres­
sion is used following the sequence symbol:

would yield the value 7 when called by INC (2, 5) since JUMP .XX r I NO 10 # IS IT OVER LIMIT

4 Fall Joint Computer Conference, 1970

The JUMP to .XX will occur only if the value of the
symbol IN€ is greater than ten.

The DO pseudo-operation is used to control an as­
sembly time loop and may be written in one of three
forms:

DO .LOC, VAR = INIT, TEXP, INC (i)
DO .LOC, VAR = INIT, LIMIT, INC (ii)
DO .LOC, VAR = (LIST) (Hi)

Type (i) assigns the value of INIT to the variable
symbol VAR. The truth value expression TEXP is
then evaluated and, if the result is true, all the lines
up to and including the line with .LOC in its location
field are assembled. The value of INC (if INC is
omitted, 1 is assumed) is then added to the value of
VAR and the test is repeated using the incremented
value of VAR.

Type (ii) is the same as type (i) except that the
value of VAR is compared to the value of LIMIT; the
loop is repeated if INC is positive and the value of VAR
is less then or equal to the value of LIMIT. If INC is
negative, the loop is repeated only while the value of
VAR is greater than or equal to the value of LIMIT.

Type (Hi) assigns to VAR the value of the first item
in LIST. Succeeding values are used for each successive
time around the loop until LIST is exhausted.

The following are examples of the use of DO:

Type (i) DO .Y, M = l, M<10&A(M)>0
Type (ii) DO .X, K = l, 100, K + l

Type (Hi) DO .Z, N= (1, 3, 4, 7, 11, 13,17)

Control of optional output

Selected results of macro and text substitution facili­
ties may be used as an optional output. This is accom­
plished by the use of the EDIT psuedo-operation
which may be used in a declarative, global, or range
mode.

The declarative mode does not cause any output to
be generated, but is used to declare the destination
(printer, punch, or file) of the output and the method
of handling long lines. I t is also used to control the
exceptions to the global output mode. For example,
the statement:

PRINT EDIT OFF ('ALL'),
ON ('REMARKS', NOTE, DOC),

CONT(72, 'X ' , ' - - - ')

would indicate that edited output is to be printed, and
that any line that exceeds 72 characters is to be split

into two print records with an X placed at the end of
the first 72 characters and the remainder appended to
the - - - . If EDIT ON, the global form, were to be
used with the above declarative, then only lines that
contain NOTE or DOC in the operation field as well
as all remark statements will be outputted.

The range form of EDIT allows a sequence of lines
to be outputted regardless of their syntax. Lines out-
putted in this mode are then ignored by the remainder
of the assembly processes.

Two examples of this form are EDIT .NEXT which
causes the next line to be outputted, and EDIT .LINE
which causes all lines up to, but not including, the line
with the sequence symbol .LINE in its label field. See
the Appendix for examples of the use of the EDIT
pseudo-operation.

Macros

The macro facilities incorporated in SWAP make it
one of the most flexible assemblers available. The
macro facilities presented here are by no means ex­
haustive but only representative of the more com­
monly used features.

The general form of a macro definition is:

MACRO
prototype statement

macro text lines
MEND

The prototype statement contains the name of the
macro definition as well as the dummy parameter
names which are used in the definition. The macro
text lines, a series of statements which make up the
definition of the macro, will be reproduced whenever
the macro is called.

Any operation, pseudo-operation, or macro may be
redefined as a macro. Also, there are no restrictions as
to which operations are used within a macro definition;
this means that it is legitimate for macro definitions to
be nested.

Macro operators and subarguments

Macro operators are provided to allow the pro­
grammer to obtain pertinent information about macro
arguments and some of their common parts. A macro
operator is indicated by its name character followed by
a period and the dummy parameter name of the
operand. For example, if a parameter named ARG has
the value (A, B, C), then the number operator,

SWAP 5

N.ARG, would be replaced by the number of subargu-
ments of ARG; in this example, N.ARG is replaced
by 3.

Any subparameter of a macro argument may be ac­
cessed by subscripting the parameter name with the
number of the desired subargument. Additional levels
of subarguments are obtained with the use of multiple
indexes. As an example, let the parameter named ARG
assume the value P(Q,R(S, T)), then:

ARG(O)
ARG(l)
ARG (2)
ARG (2,0)
ARG (2,1)

is replaced by P
is replaced by Q
is replaced by R(S, T)
is replaced by R
is replaced by S

The macro operators may be used on the results of
each other as well as on subparameters; for example,
N.ARG (2) would be replaced by 2.

The following is an example of a simple macro to
define a list of symbols:

MACRO
DEFINE LIST
DO .LP, K = 1,N .LIST

LIST(K,1) SET LIST(K, 2)

.LP NULL # MARK END OF DO LOOP
MEND

If the macro were called by the following line:
DEFINE ((SYMB, 5), (MATRIX (2), 7), (CC, 11))
it would expand to:

SYMB
MATRIX (2)
CC

SET 5
SET 7
SET 11

Macro functions

To provide more flexibility with the use of macros,
several system parameters and macro functions have
been made available. Macro functions are built-in
functions that are replaced by a string of characters.
This string, called the result, is determined by the
particular function and its arguments. The arguments
of a macro function may consist of macro parameters,
other macro function calls, literal character strings, or
symbolic variables. An example would be the DEC
macro function, which has one argument, either a
valid arithmetic or logical expression. The result is the
decimal number equal to the value of the expression;
the call DEC (7+8) would be replaced by 15.

Some of the major macro functions are:

1. IS (expression, string) is replaced by string if
the value of expression is nonzero; otherwise,
the result is the null string.

2. IFNOT(string) is replaced by string if the
expression in the previously evaluated IS had a
value of zero; otherwise, the result is null.

3. STR(exph exp2, string) is replaced by exp2

characters starting with the expi character of
string.

4. MTXT (tsym) is replaced by the character
string which is the value of the TEXT symbol
tsym.

5. MTYP (symb) is replaced by the character that
represents the type of the variable symbol
symb.

6. MSUB (string) is replaced by the result of doing
macro argument substitution on string a second
time.

7. SYSLST(ea;p) is replaced by the expth. argu­
ment of the macro call.

8. MDO (DO parameters; string) is a horizontal
DO loop where string is the range of the loop.
Each time around, the loop produces the value
of string, which is normally dependent on the
DO variable symbol.

Keyword arguments

When the macro is called, keyword arguments are
indicated by the parameter name followed by an equal
sign and the argument string. An example would be
the following calls of a MOVE macro:

MOVE FROM=NEWDATA, TO = OLDDATA
or

MOVE TO = OLDDATA, FROM=NEWDATA

Both calls will yield the same expansions as the expan­
sion of the MOVE macro using normal arguments:

MOVE NEWDATA, OLDDATA

Default a rguments

Default strings are used whenever an argument is
omitted from a macro call. The default string is as­
signed on the macro prototype line by an equal sign
and the desired default string after the dummy param­
eter name. Although the notation is the same, default
arguments are completely independent of the use of
keyword arguments.

6 Fall Joint Computer Conference, 1970

Marco pseudo-operations

The ARGS pseudo-operation provides a method of
declaring an auxiliary parameter list which supple­
ments the parameter list declared on the prototype
statement. These parameters may also be assigned
default values.

The parameters defined on an ARGS line may be
used anywhere a normal parameter may be used. The
parameter values may be reset by the use of keyword
arguments.

I t is also possible for the programmer to reset his
named macro argument values anywhere within a
macro by using the MSET pseudo-operation. For
example:

PARM MSET DEC(PARM)

would change the value of PARM to its decimal value.
The following is an example of the use of the ARGS

pseudo-operation:

MACRO
FUN NUMBER
ARGS WORD = (ONE, TWO, THREE)

NUMBER = WORD (NUMBER) -
MEND

When the macro is called by FUN 1+1 , the following
comment would be generated:

l + l = T W O

but the call FUN 1 + 1, WORD = (EIN, ZWEI, DREI)
would generate:

1 + 1 = ZWEI

Text manipulating facilities

Some of the more exotic features provided by SWAP
are the character string pseudo-operations and the
dollar macro call.

HUNT and SCAN pseudo-operations

The HUNT pseudo-operation allows the programmer
to scan a string of characters for any break character
in a second string. I t will then define two TEXT
symbols consisting of the portions of the string before
and after the break character. For example, the

statements:

BRKS TEXT '+-*/'

HUNT .LOC, TOKEN, REMAIN,
'LSIZE *ENTS', BRKS

will result in the symbols TOKEN and REMAIN
having the string values of 'LSIZE' and '*ENTS' re­
spectively. If one of the characters in BRKS could not
be found in the scanned string, then a JUMP to the
statement labeled .LOC would occur.

The SCAN pseudo-operation provides the extensive
pattern matching facilities of SNOBOL31 along with
success or failure transfer of control. This pseudo-
operation is written:

SCAN TSYM Pi./.JP» GOTO

where TSYM is a previously defined string valued
variable. The SNOBOL3 notation is used to represent
the pattern elements Pi through P„ as well as the GOTO
field. See the references for a more detailed presentation
of these facilities.

Dollar functions

Dollar functions are very similar to macro functions
in that the result of a dollar function call is a string of
characters that replace the call. However, these func­
tions may be used on input lines as well as in macros.
The dollar functions provide the ability to call a one-
line macro anywhere on a line by preceding the macro
name with a dollar sign and following it with the argu­
ment list in parenthesis. For example, the macro:

MACRO
CHECK A, B

IS(A<B, DEC(B-A) MORE)
IFNOT (BEC(A-B) OVER)
MEND

could be called by:

OP X # $CHECK(X,7)

For X = 4, the line would appear in the assembly
listing as:

OP X # 3 MORE

SWAP 7

and when X has the value 9, the line would appear as:

OP X # 2 OVER

Special control

A special pseudo-operation has been provided to
allow the programmer to ignore most of the SWAP
syntax on input lines. The pseudo-operation is called
UNIOP for universal operation, and it assigns the
macro named in the variable field as the operation to be
used for all succeeding lines. This means that regardless
of what appears on a statement, that macro is called
and may be used to decompose the line into meaningful
SWAP statements. The following macro will make a
simple test (i.e., the presence of an equal sign) to see
if a line is a FORTRAN arithmetic statement and inter-
pretively perform the assignment if it is; otherwise, it
will call the macro named OTHER.

MACRO
ARITH

STRIP STATEMENT NUMBER
AND LOOK FOR EQUAL
SIGN

HUNT .OTHER, SYMB, RMDR,
'STR(7, 64, SYSLIN)', ' = '

MTXT(SYMB) SET STR(2, 62, MTXT(RMDR))
PERFORM ASSIGNMENT

JUMP .OUT # TERMINATE
MACRO EXPANSION

.OTHER OTHER 'SYSLIN' # NOT
ARITHMETIC STATEMENT

MEND

Approximately 150 lines of SWAP macro definitions
(see the Appendix) were used to build an interpreter of
a FORTRAN like language. The following is a listing
of a sample program and the printout that resulted
from interpreting the program.

DIMENSION KOUNT (10,10)
C
700 FORMAT (3X, 10/4)
C

DO 50 N=l,10
KOUNT(iV, 1) = 1

50 KOUNT {N,N) = 1
C

DO 100 JV = 3,10
DO 100 M = 2,N-1

100 KOUNT(iV, M) = KOUNT(JV-1, M)
C + K O U N T (i V - l , M - l)

DO 200 JV=1,10
200 PRINT 700, (KOUNT(N, M), M = l, N)
C

STOP
END

1
1 1
1 2 1
1 3 3 1
1 4 6 4
1 5 10 10
1 6 15 20
1 7 21 35
1 8 28 56
1 9 36 84

1
5

15
35
70

1
6

21 1
56 28 8 1

126 126 84 36 9 1

The system macro parameter SYSLIN is replaced
by the entire line of the macro call. The HUNT pseudo-
operation will search for an equal sign and force a jump
to the statement labeled .OTHER whenever the equal
sign cannot be found. If UNIOP were initially set to
the ARITH macro by the statement:

UNIOP ARITH

then the line:

100 M T X (2 , 3) = M T X (3 , 2) + 1

would serve as a call to the ARITH macro which would
then generate the following line:

MTX (2,3) SET MTX (3 , 2) + l

CONCLUSION

The general design and implementation of the SWAP
macro assembler has led to three things:

1. The job of writing a program in assembler lan­
guage has been made easier. This is saving many
man hours of programmer effort over the life of a
project.

2. The development of intermediate level languages
using macros has been made easier. This is aiding
in the design of a true higher level language by
clarifying the requirements of the new language.

3. The interpretive processing capabilities of the
SWAP assembler have been used to solve a wide
variety of problems. This is significantly reducing

8A Fall Joint Computer Conference, 1970

the number of programs needed and, more
importantly, reducing the programmer effort
required to produce a given program.

ACKNOWLEDGMENTS

The author wishes to acknowledge the contribution of
Messrs. R. E. Archer, A. J. Emrick, N. M. Haller,
and E. Walton of Bell Telephone Laboratories, In­
corporated, to the design and implementation of
SWAP. The author would also like to thank Mr. D. E.
Eastwood for his many suggestions and "philosophical
arguments."

REFERENCES

1 D J FARBER R E GRISWOLD I P POLONSKY
SNOBOL, a string manipulation language
JACM Vol II No 1 pp 21-30 January 1964

2 D J FARBER R E GRISWOLD I P POLONSKY
The SNOBOLS programming language
BSTJ Vol XLV No 6 pp 897-901 July 1966

3 M E BARTON N M HALLER G W RICKER
Service programs
BSTJ Vol 48 No 8 pp 2866-2880 October 1969

SWAP 8B

APPENDIX

A SWAP Program to Interpretively Process a
FORTRAN Like Language.

SYSPRINT EDIT
FTYPES* TEXT
BRKS* TEXT
FTYPTB* TRPAT

OFF(EDIT,'ALL•) ,ON{•MACROS•)
•IX« # FORMAT ITEM TYPES
•/,H'"()' •FORMAT BREAK CHARACTERS
(X(7D)#»QMr(M

,»,Pf)#(,),#,CM# (,»,#,C •),(•/•,
•S«) , (X(7F) ,'Q*) , (255) # TRANSLATE BREAKS TO

ALPHABETICS
DELETES ALL BLANKS
•EQUAL SIGN IS BREAK CHAP

SQZ% TRPAT (• •,(>), (255)
EQ% TEXT • = •
DIMENSION OPSET ARRAY
STOP OPSET END1
CONTINUE OPSET NULL
•

MACRO •
NONOP

HUNT .OUT V%
OUT BLANKS

IS («MrYP(O.MTXT(V%)) '-'US DFN MTXT (V%) MTXT (E%)) IFNOT (MTXT (V%)
SET1 STR(2,99,MTXT(E%)))

MEND

ALL UNDEFINED OPS ARE ASSUMED TO BE EQUATIONS

E* •MTR(,STR(7#99,SYSLIN) •, SQZ%) » EQ% •• SQUEEZ

MACRO
GOTO

JUMP
MEND

LOC,VAL=1
LOC (VAL) • • ALSO TAKES CARE OF COMPUTED GOTOS

MACRO
IF COND,EQ,GT

TMP% TEXT •MTR(,COND»,SQZ%) •
SCAN
JUMP
JUMP
JUMP
MEND

TMP% *(E%)* *LT%* ## GET EXPRESSION
MTXT (LT*) E%<0
EQ E*=0
GT E%>0

MACRO
PRINT FMT

DO ,X K%=2,N.SYSLST • • CHECK FOR ITERATIVE
I S (f S T R (1 # 1,SYSLST(K%)) • = • (• , ITEM*) IFNOT (ITM%:DEC(K%)

•SYSLST(K%) •
• X NULL
FMT OUT_ MDO(K*=2,N.SYSLST;MTXT(ITM*:DEC (K%)))

MEND

LISTS
TEXT)

8C Fall Joint Computer Conference, 1970

MACRO
FMT OUT
K% SET 1;J% SET 0 ;JJ% SET 0
.LP EDIT .NEXT #* GENERATE A LINE OF PRINTOUT
MSUB (MTXT (FMT:_:DEC(K%)))
JUMP .LP,SET(K%,K%*1) <FMT: L ## HAS FORMAT BEEN EXHAUSTED

JUMP .OUT,J£>N.SYSLST| J*<JJ% ## WHEN PRINT LIST
EXHAUSTED OR NOTHING BEING DONE

JJ% SET J*
.RLP EDIT .NEXT ## BACK UP TO LAST LEFT PAREN
MSUB (STR (FMT: K, 500, MTXT (FMT: : DEC (FMT: R))))

JUMP „RLP SET(K%#FMT:IR+1)>FMT:~LSJJ%<J%<N.SYSLST
JUMP .LP,J%<N.SYSLST
MEND

MACRO
ITEM% IT ## PROCESS ITERATIVE PRINT LIST

HUNT .LST,VAR%,REM%, •S.Q.ITSEQ*
TMP MSET MTXT(VAR%)
VS MSET TMP (N. TMP) ##ISOLATE LOOP INDEX

MACRO
FRMNDX VS=I.DEC(VS)

VLST% TEXT «R.TMP(1) .TMP (N.TMP-1) •
MEND FRMNDX
FRMNDX ## REPLACE INDEX BY ITS VALUE

ITM%: DEC (Kt) TEXT • MDO (VS:MTXT (REM%) ;MSUB (MTXT (VLST*))) •
JUMP .OUT

.LST NULL
ITM%:DEC(KX) TEXT IT ## IT WAS JUST AN EXPRESSION

MEND

MACRO
FMT FORMAT LST

EDIT SAVE, OFF ## STOP PRINTING LINES
MEND FORT_PROG ## SUSPEND PROGRAM DEFINITION

REM* TEXT »LST~
A* SET 0;%LINES SET 1;FMT: R SET 1 ;FMT:_K SET 1
FMT BRK_OUT ~ # • BUILD FORMAT DEFINITION
FMT: L SET %LINES
FMT:~:DEC(%LINES) TEXT «MDO(K*=1,A%;MT XT(ITM%:DEC(K%)))• •
FORT_PROG EXTEND ## RESUME SOURCE PROGRAM DEFINITION

EDIT RESTORE ## RESUME PRINTING LISTING
MEND

MACRO

FMT BRK OUT
.LP HUNT " •OUT#TRM56#REM%#

,STR(2#99rMTXT(REM%)) •#BRKS%
FMT BRK :MTR(REM%,FTYPTB%,1) ## GO ON TRANSLATED BREAK

JUMP .LP
MEND

SWAP 8D

MACRO
BRK C ## COMMA OR RIGHT PAREN

HUNT " .OUT,DUPX,TYPX, 'MTXT (TRMX) * ,FTYPESX
FTYP_: MTR (TYPX, FTYPTBX, 1)
MEND"

F**T
FMT: 1
FMT: J

BLMT%

REM*
*BK
REM%

MACRO
BRK,

SET
SET
SCAN
SET
DO
TEXT
BFK OUT
TEXT
MEND

P ## LEFT PAREN
XLINES-1 ## SAVE POSITION FOR AUTO REPEAT
1:MDO(KX=1,AX;*K.MTXT(ITMX:DEC(KX))•)

REM* *(SAVE%)* *SV2X* / F (. O U T)
MAX (1,TRMX) # t DUPLICATION FACTOR

• BK,BX=1,BLMTX
•MTXT(SAVEX)»

,MTXT(SV2X)

MACRO
FMT BRK_S ## SLASH

BRK C*~
FMT: :DEC(XLINES) TEXT «MDO (KX= 1 ,AX;MTXT (ITMX:DEC (KX))) •
A* SET 0 ;XLINES SET XLINES+1

MEND
*

MACRO
BRK Q ## QUOTED STRING

ITMX:DEC(SET7AX #A*+1)) TEXT «Q. MTXT(REMX) »
REMX TEXT »STR(K.Q.MTXT(REMX)+2#99,MTXT(REMX)) »

MEND

MACRO
BRK H *# HOLERITH STRING

ITMX : DEC (SET7AX, AX* 1)) TEXT • STR (2, TRMX , MTXT (REM*)) •
REM* TEXT •STR(TRM*+1f99,MTXT(REMX))•

MEND
»

MACRO
FTYP_I ## INTEGER

LN MSET STR (2, 10, MTXT (TYP*))
DP MSET DEC(MAX(1,DUPX))
ITM*: DEC (SET (A*, AX* 1)) TEXT • : I .MDO (XN=1 ,MIN (DP , I. N. I, SYSLST-
I,DEC(J*)) ; I.DEC (I.SYSLST (SET (JX,JX+1)),LN, • »)) '

MEND

MACRO
FTYP X

ITM* : DEC (SET (A*, A* • 1))
MEND

BLANKS
TEXT »MDO(NX=1,MAX(1,DUPX);

8E Fall Joint Computer Conference, 1970

MACRO
END

SYSPRINT EDIT OFF
MEND FORT_PROG
FORT PROG
END1~
MEND

*
FORMAT OPBITS ON (ACTIVE)

END
END

EDIT

*

OPBITS ON (ACTIVE)
OPBITS OFF(CONT)

ft TERMINATE SOURCE LISTING
#t END OF SOURCE PROGRAM

#* NOW EXECUTE SOURCE PROGRAM
TERMINATE RUN

ALLOW THESE OPS TO EXPAND
DURING MACRO DEFINITION

NO CONTINUATION ALLOWED FOR END
MACRO

OPBITS ON (ACTIVE)
EDIT ON (FORMAT, END)

MAKE ENTIRE PROGRAM A MACRO DEFINITION MACRO
FORT_PROG

SYSPRINT EDIT .NEXT ## EJECT TO NEW PAGE
1
PRINT EDIT ON ## PRODUCE SOURCE LISTING

