
Computer-aided system design

by E . D A V I D C R O C K E T T , D A V I D H. COPP, J. W. F R A N D E E N , and C L I F F O R D A. I S B E R G

Computer Synectics, Incorporated
Santa Clara, California

P E T E R B R Y A N T and W. E . D I C K I N S O N

IBM ASDD Laboratory
Los Gatos, California

and

M I C H A E L R. P A I G E

University of Illinois
Urbana, Illinois

I N T R O D U C T I O N

This paper describes the Computer-Aided System
Design (CASD) system, a proposed collection of com
puter programs to aid in the design of computers and
similar devices. CASD is a unified system for design,
encompassing high-level description of digital devices,
simulation of the device functions, automatic trans
lation of the description to detailed hardware (or
other) specifications, and complete record-keeping
support. The entire system may be on-line, and most
day-to-day use of the system would be in conversa
tional mode.

Typically, the design of digital devices requires a
long effort by several groups of people working on dif
ferent aspects of the problem. The CASD system would
make a central collection of all the design information
available through terminals to anyone working on
the job. With conversational access to a central file,
many alternative designs can be quickly evaluated,
proven standard design modules can be selected, and
the latest version of the design can be automatically
documented. The designer works only with high-level
descriptions, which reduce the number of trivial errors
and ensure the use of standard design techniques.

From October, 1968, through December, 1969,
the authors participated in a study at the IBM Ad
vanced Systems Development Laboratory in Los

* This work was performed at the IBM Advanced Systems De
velopment Laboratory, Los Gatos, California.

Gatos, California, which defined the proposed CASD
system and looked into the problems of building the
various component programs. Details of several
prototype programs which were implemented are
given elsewhere.1 There are no present plans to con
tinue work in this area. This paper is essentially a
feasibility report, describing the overall system struc
ture and the reasons for choosing it. I t includes de
scriptions of the data forms in the system and of the
component programs, discussions of the overall ap
proach, and an example of a device described in the
CASD design language.

THE SYSTEM IN GENERAL

The (proposed) Computer-Aided System Design
(CASD) system is a collection of programs to aid the
computer designer in his daily work, and to coordi
nate record-keeping and documentation. I t offers the
designer five major facilities:

High-level description

The designer describes his device in a high-level,
functional language resembling PL/I , but tailored to
his special needs. This is the only description he enters
into the system, and the one to which all subsequent
modifications, etc., refer.

287

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1478462.1478504&domain=pdf&date_stamp=1970-11-17

288 Fall Joint Computer Conference, 1970

High-level simulation

An interpretive simulator allows the designer to
check out his design at a functional level, before it is
committed to hardware. The simulation is interactive,
allowing the designer to "watch" his design work and
evaluate precisely design alternatives.

Translation to logic specifications

The high-level design, after testing by simulation,
is automatically translated to detailed logic specifica
tions. These specifications may take a variety of forms,
such as (1) input to conventional Design Automation
(DA) systems, or (2) microcode for an existing machine.

On-line, conversational updating

The designer makes design changes and does his
general day-to-day work at a terminal, in a conver
sational mode. Batch facilities are also available.

Complete file maintenance and documentation

design automation systems) is a natural by-product
of the CASD organization.

The CASD system can thus be viewed as an extension
to higher levels of current systems for design, in roughly
the same way that compilers are functional extensions
of assemblers to higher levels.

The general organization of the system is pictured
in Figure 1. The designer describes his device in a
source design language, which is translated by a com
piler-like program called the encoder to an internal
form. The internal form is the input both to the high-
level simulator (called the interpreter) and to a series of
translators (two are shown in Figure 1) which convert
it to the appropriate form of logic specifications. Dif
ferent series of translators give different kinds of final
output (e.g., one series for DA input, another series
for microcode). The entire system is on-line, operating
under control of the CASD monitor, which handles
communication to and from the terminals. The user
interface programs handle the direct "talking" to the
user and invoke the proper functional programs.

DATA FORMS IN THE CASD SYSTEM

Source design description

Extensive record-keeping is provided to keep track
of different machines, different designs of machines,
different versions of designs, results of simulation runs,
and so forth. High-level documentation of designs
(analogous to that produced at lower levels by today's

The CASD design language the designer uses is a
variant of PL/I , stripped of features not needed for
computer design and enriched with a few specialized
features for such work. PL/I2 and CASD's language3

are described more fully elsewhere.

(DESIGNER i
USER
INTERFACE
PROGRAMS

INTERPRETER

11

<INDICES, 7
CATALOGS!

TRANSLATOR
n

TRANSLATOfll TEXT EDITOR,!
FORMATTERS]
FILE HANDLERS

/ SOURCE f /'INTERNAL/' /'LOGIC / /"LOGIC "T
[DESIGN I I FORM I (STAGE 1 I I STAGE 2 I

i . i i i

KEY
4 » = DATA FLOW

< » = CONTROL FLOW

Figure 1—The CASD system

Procedures

The basic building block in a CASD description is
the procedure. A procedure consists of: (1) declarations
of the entities involved in the procedure, and (2) state
ments of what is to be done to these entities. A pro
cedure is written as a PROCEDURE statement, fol
lowed by the declarations and statements, followed
by a matching END statement, in the usual PL / I
format:

PROC1: PROCEDURE;

declarations and statements

END PROC1;

defines a procedure whose name is PROC1.
A procedure represents some logical module of the

design, e.g., an adder. A complete design, in general,
would have many such procedures, some nested within

Computer-Aided System Design 289

others. The adder procedure, for example, may con
tain a half-adder as a subprocedure.

Da ta i tems

Each procedure operates on certain data items, such
as registers or terminals. These items are defined by
DECLARE statements, which have the general for
mat:

DECLARE name attribute, attribute, . . .;

The name is used to refer to the item throughout
the description. The attributes describe the item in
more detail, and are of two types—logical and physical.
Logical attributes describe the function of the item
(it is bit storage, or a clock, say); physical attributes
describe the form the item is to take in hardware
(magnetic core, for example). Logical attributes in
fluence the encoding, interpreting, and translating
functions. Physical attributes, on the other hand, are
ignored by the interpreter, giving a truly functional
simulation.

Like any block-structured language, the CASD
language has rules about local and global variables,
and scope of names. These have been taken directly
from the corresponding rules for PL/I .

S ta t ements

The basic unit for describing what is to be done to
the data items is the expression, defined as in PL/ I
but with some added Boolean operators, such as
exclusive or (#) , and some modifications to the bit
string arithmetic.

The basic statement types for describing actions
on data items are the assignment, WAIT, CALL, GO
TO, IF, DO, and RETURN statements. These are
basically as they are in PL/I , except as described below.

1. The assignment statement is extended to allow
concatenated items to appear on the left-hand
side. Thus:

XREG 11 YREG: = ZREG;

where XREG and YREG are 16 bits each and
ZREG is 32 bits, means to put the high 16 bits
of ZREG into XREG and the low 16 bits into
YREG. In combination with the SUBSTR
built-in function,4 this assignment statement
offers convenient ways to describe shifting and
similar operations. The assignment symbol itself
is the ALGOL ": = " rather than " = " as in PL/I .

2. The WAIT statement takes the form

WAIT(expression);

I t thus differs from PL/ I in that it allows one
to specify a wait until an arbitrary expression is
satisfied. This is useful for synchronizing tasks
(see below).

3. The GO TO statement includes the facility of
going to a label variable, and the label variable
may be subscripted. This is useful for describing
such operations as op-code decoding—for ex
ample : GO TO ROUTINE (OP).

Sequencing

The differences in motivation between CASD's
language and PL/ I are most evident in matters of
sequence control and parallelism. PL/I , as a program
ming language, does not emphasize the use of paral
lelism. Programs are described and executed sequen
tially, which is not adequate for a design language.

The basic unit of work in CASD is the node. A node
is a collection of actions which can be performed at
the same time. For example, XREG: = YREG; and
P : = Q; can be performed together if all the items in
volved are distinct. On the other hand, XREG: =
YREG; ZREG :=XREG; cannot be performed (as
written) at the same time, since the result of the first
written operation is needed to do the second. The
basic CASD rules are:

1. Operations are written as sequential statements.
2. However these operations are performed (se

quentially or in parallel), the end results will
be the same as the results of performing them
sequentially.

3. Sequential statements will be combined into a
single node (considered as being done in parallel)
whenever this does not violate rule 2. That is,
CASD assumes you mean parallel unless there's
some' 'logical conflict."5

Of course, the designer may want to override rules
2 and 3. Another rule gives him one way to do this:

4. A labelled statement always begins a new node.
Another way is by specifying parallelism ex
plicitly. If the DO statement is written as
DO CONCURRENTLY, all statements within
the DO will be executed in parallel. Finally,
the TASK option of the CALL statement makes
it possible to set several tasks operating at once.

290 Fall Joint Computer Conference, 1970

Preprocessor facilities

Some of the PL/ I preprocessor facilities have been
retained. These include the iterative %DO, which is
particularly useful in describing repetitive operations,
and the preprocessor assignment statement, useful
for specifying word lengths, etc.

No defaults

Unlike PL/I , the CASD language follows the prin
ciple that nothing should be hidden from the designer.
In particular, it has no default attributes, and every
thing must be declared. Similarly, it does not allow
subscripted subscripts, subscripted parameters passed
to subroutines, or anything else that might force the
encoder to generate temporary registers not specified
by the designer. Such restrictions might be relaxed in
a later version, but we feel that until we have more
experience with such systems, we had better hide as
little as possible.

Internal form

Before the source description can be conveniently
manipulated by other programs, it must be translated
to an internal form. This form is designed to be con
venient for both the translator programs and the in
terpreter. Compromises are necessary, of course—
a computer program might be the most convenient
form for simulation, but would be of no use at all to
the translator.

The CASD internal form resembles the tabular
structure used for intermediate results in compilers
for programming languages. It consists of four kinds
of tables: descriptors, expressions, statements and
nodes.

The descriptor table records the nature of each item
(taken from its DECLARE statement). The entries
are organized according to the block structure of the
source description and the scope-of-names rules of
the language.

The expression table contains reverse Polish forms
of all expressions in the source description, with names
replaced by pointers to descriptors. Each expression
appears only onee in the expression table, although
I T n r t O l T O T"*Y"%OQT* /"fcT-r-QYI T-r-k T K A CJ/-\TlT»rto n A Q n y n r x T i A n i-w-\ s\4-Tr\fi4-

±v ixiay ayycaiL vtivtSij. J.XX UU.O CHJI*IV^O u c b v i i p t i u l i . x n O-iict/U,

the expression table lists the combinational logic the
translator must generate.

The statement table consists of one entry for each
statement in the source description, with expressions

replaced by pointers to entries in the expression table,
and a coded format for the rest of the statement
(statement type plus parameters).

The node table tells which statements in the state
ment table belong in the same node, and the order in
which various nodes should be executed.

The internal form has thus extracted three things
from the source description—data items, actions to
be taken on those items, and the timing of the ac
tions—and recorded them in three separate tables—
the descriptor, the statement, and the node tables.
The expression table is added for convenience.

Simulation results

The high-level simulation involves three forms of
data: values of the variables, control information, and
run statistics.

Before a simulation run begins, the variables of the
source design description (corresponding to registers,
etc.) must be assigned initial values. One way to do
this is with the INITIAL attribute in the DECLARE
statement, which makes initialization of the variables
at execution time a fundamental part of the description.
Sometimes, though, the designer may want to test
a special case, and simulate his design starting from
some special set of initial values. CASD permits him
to store one or more sets of initial values in his files;
and for a given simulation run, to specify the set of
initial values to be used. In this way, he can augment
or override the INITIAL attribute.

At the end of a simulation run, the final values of
the variables may be saved and used for print-outs,
statistics gathering, or as initial values for the next
simulation run. That is, a simulation run may continue
where the last one left off.

The high-level, interpretive simulation in CASD
is perhaps most useful because of its control options.
As an interpreter, operating from a static, tabular
description of the device, the CASD simulator can
give the user unusually complete control over the run
ning of the simulation. Through a terminal, he can at
any time tell the system which variables to trace, how
many nodes to interpret at a time, when to stop the
simulation (e.g., stop if XREG ever gets bigger than 4
and display the results), and so forth. These control
conditions may be saved just as the data values may
be, and a simulation run may use either old or new
control conditions.

Permanent records of a simulation also include sum
maries of run statistics (the number of subprocedure
calls, number of waits, etc.).

Computer-Aided System Design 291

Translator output

Different translators produce different kinds of out
put. Assembly-language level listings of mircocode
might be needed for some lower-level systems, the
coded equivalent of ALD sheets for others. Typically,
output would include error and warning messages.

File structure

In an on-line, conversational system, it is particu
larly important that the working data be easily ac
cessible to the user and the control language seem
natural to him. CASD attempts to facilitate user con
trol in two ways: through the user interface programs,
and the structure of the data files.

The basic organizational unit in the CASD files
is called the design. A design consists of all the data
pertinent to the development of some given device.
A design may have many versions, representing cur
rent alternatives or successive revisions. Each version
has some or all of the basic forms of data associated
with it: source description, internal form, simulation
results, translator output, and so on.

Two catalogs, one for designs and one for versions,
are the basic access points to CASD data. A typical
entry in the design catalog (a design record) contains
a list of pointers to the version descriptors for each
version of every design in the system. The version
descriptor contains pointers to each of the various
forms of data for that version (source description, . . .)
plus control information telling which set of translators
has been applied to the design in this version, and so on.

These descriptors give the user interface programs
efficient access to needed data. For example, if the
user asks to translate a given design, the interface
finds the version descriptor, and can then tell if the
design has been encoded, and if not, inform the user
and request the input parameters for encoding.

PROGRAMS IN THE CASD SYSTEM

CASD monitor and support programs

All the CASD component programs are under con
trol of a monitor program, which provides the basic
services for communicating with terminals and allo
cates system resources. In the prototype version6 the
environment was OS/360 MVT, and it was convenient
to set up the monitor as a single job, attaching one
subtask for each CASD terminal. The CASD files were
all in one large data set, and access to them was con
trolled by service routines in the monitor. The moni

tor also controlled the allocation of CPU time to various
CASD terminals within the overall CASD job. This
approach makes it easier to manage the various in
terrelated data forms within the versions, and would
probably work in environments other than OS/360
as well.

Besides the monitor and the data access routines,
the support programs include a text-editing routine
to use in editing the source description.

User interface programs

CASD system control is not specified in some general
language. Rather, each CASD function has its own
interface program, which has the complete facilities
of the system available to it.

The design records and version descriptors give
precisely the information needed by user interface
programs. A typical user interface program might be
one for encoding and simulating a source design descrip
tion already in the CASD files. The version descriptor
shows, for example, whether or not the source descrip
tion has already been encoded. The interface may then
give the user a message like "Last week you ran this
design for 400 nodes. Should the results of that run
be used as initial values for this run?" The point is
that the conversation is natural to the task at hand.
The tasks under consideration are well defined, and
each natural combination of them has its own interface
program.

Encoder

Since the CASD encoder is roughly the first half
of a compiler, it may be built along pretty standard
lines. Care must be taken only in providing some sort
of conversational compilation facility. Conversational
interaction is an important part of the CASD approach
to design, and some sort of line-by-line feedback is
required. Similarly, since modification is so common
in design work, recompilation must be as efficient as
possible. Incremental compilation—translating each
source statement as far as possible on input, indepen
dently of other statements—is one answer. Then only
those statements which have changed since the last
compilation need be recompiled. The approach used
in the CASD prototype is described elsewhere.7-8

Interpreter

The basic unit that the interpreter simulates is the
node table, the various statements which comprise

292 Fall Joint Computer Conference, 1970

the node are identified. These statments are then "exe
cuted" in two steps: First, all the expressions in the
statements are evaluated; second, the results are stored.
By this two-step procedure, the parallelism inherent
in the definition of the node is correctly simulated.

The interpreter steps from node to node, as they
appear in the node table, with several exceptions. One
is the conditional branch, where some (usually just one)
statment within the node must be evaluated or exe
cuted to determine what the next node should be.
Another exception is when wait, halt, or trace con
ditions have been met. Such "values" as "stop if this
item is referenced" may be stored with the item's
descriptor in the internal form. If this kind of condi
tion is encountered in a node, the interpreter takes
the action indicated before going to the next node.
Control conditions like these may be altered dynam
ically by the user, who may, when a "halt" condition
is satisfied, not only observe the variables and their
values, but alter the control conditions.

Translators

The translator used in the prototype system converts
the internal form to a list structure of the ma
chine logic. Techniques for translating from this to
DA input or actual circuits for any given circuit
family are straightforward. The elements of the list
structure are: hash cells, part cells, subexpression cells,
assignment cells, action cells, condition cells, and clock
cells. Hash (as in "hash code") cells contain index
entries and cross-references to the rest of the cells.
Part cells contain all the information declared about
each item; subexpression cells indicate how the various
items are to be combined to form circuits. Assignment
cells tell what data is to be transferred to where. Action
cells and condition cells are lists of which actions (e.g.,
assignments) are to be taken and under which con
ditions. Clock cells contain labels and other informa
tion about sequencing. Most of the information in
these cells comes fairly directly from the appropriate
tables in the internal form, but the translator links the
cells in a way that corresponds to the hardware that
must be generated. For example, all assignments to
a given register are linked together, and this might
correspond (for a particular circuit family) to a single
storage bus.

Essentially, the translator reduces the high-level
description to a form which currently known pro-
cedures9'10-11-12 can handle, by breaking up the infor
mation in the internal form and linking it up again
in several different ways. Details of the various linking

schemes and how they relate to the source description
are given elsewhere.13

Other programs

The general structure of the CASD system is flexible
enough to permit addition of other programs. A few
possibilities have been considered.

One obvious drawback of interpretive simulation
is the overhead. Simulation by compilation to ma
chine code would be perhaps 50 or 100 times as fast.
This is a significant difference on long runs, after the
design is basically checked out (e.g., runs to get firm
performance figures).

A generalized assembler program to prepare program
input to the interpreter would allow larger quantities
of software to be tested by "running" it on the ma
chine being simulated.

Cost-estimating programs operating directly from
the internal form would give quick-and-dirty estimates
without going through the entire hardware translation
process. Translation from the internal form to micro
code is another possible extension.

COMMENTS

History

Others—most notably Gorman and Anderson,14

Schorr,15 Franke,16 Duley and Dietmeyer,17-18 Fried
man and Yang,20 and Metze and Seshu21—have de
scribed languages and systems for logic translation or
simulation, and occasionally for both. Typically, in
logic translation systems, the design is described in a
special-purpose procedural language similar to pro
gramming languages. The description is usually at
a lower level than in CASD and is translated to Bool
ean equations, or some similar form, by programs
written for the purpose.

In most simulation systems, on the other hand,
designs are described in some high-level, general-
purpose language—either a general simulation language,
or an existing programming language augmented with
timing subroutines and the like. The description is
translated by an existing compiler to a program which
performs the simulation.

There is good reason for this difference. Until re
cently, no existing programming or simulation language
was really adequate to describe logic, and no general-
purpose simulation system was so deficient as to justify
creating a special system for simulating computer

Computer-Aided System Design 293

designs. But the advantages of integrating logic trans
lation and simulation into the same system outweigh
these factors, in our judgment.

Integration of the two functions is achieved in CASD
by translating a single, high-level, special-purpose
language to a common internal form, providing input
to both logic translation programs and an interpretive
simulator. The interpretive simulation is also a key
point in making the system on-line.

Another innovation in CASD is the way in which
descriptions incorporate timing. Timing is included
rather explicitly in typical existing languages. At
lower levels, every statement or action is accompanied
by an indication of when it is to take place (at which
clock pulse, say). At higher levels, actions are simply
recorded sequentially, with some indication of how
long they take and what resources they require. (Simu
lators operating from these descriptions usually con
struct "future events" lists, ordered by increasing
time of occurrence, and simulate whichever event is
on top of the list at the moment.)

Timing in the CASD descriptions is based on the
use of asynchronous design as proposed by Metze
and Seshu.22 Multiple tasks are synchronized by using
shared variables and referring to them with WAIT
statements. This approach has several advantages.
Asynchronous design at the functional level, as of
fered by the CASD system, allows reasonable hard
ware independence, since synchronizing conditions
refer to elements of the functional design rather than
to its physical implementation. (An asyehronous
description may, of course, be implemented in either
synchronous or asynchronous logic circuits.) Perhaps
most important, especially for an on-line system, is
that the PL/ I multitasking scheme, from which the
CASD timing approach is derived, and techniques
like DO CONCURRENTLY make it possible to de
scribe timing relationships in a quick and natural
manner.

Advantages of an on-line system

Conventional design work is slowed by turn-around
time (in the model shop as well as in the computation
center) and an elaborate hierarchy of system architects,
engineers, and technicians. One result is that few al
ternatives are considered in designing a system, and
fewer still are evaluated in any systematic way. The
CASD system bypasses these limitations by putting
the designer directly in touch with a design system
by a terminal, having the system take over many of
the bookkeeping functions of design, and giving him

immediate feedback at each stage of the design process.
Immediate feedback is important in:

a. Encoding, where descriptions are entered line
by line, and syntax is checked immediately,
allowing immediate correction and modification.

b. Simulation, in which the designer may "con
verse" with the system as his design is simu
lated. He may change control conditions as the
simulation progresses, look at values of data
items, and so forth.

c. Selection of different translation procedures
based on the results of simulation, cost esti
mating programs, or other translations.

Except for (a), these could be done with a batch
system, of course, but they are much more effective
in an on-line environment. Suppose, for example, that
a design for a computer is stored in the system, and it
contains special hardware for floating point operations.
The designer wants to know just what difference it
would make if he eliminated this hardware and did all
floating point operations with programmed subroutines.
With the CASD text-editing programs, the designer
would remove the description of the hardware for
floating point, and change the floating point operation
code descriptions to trap these operations to a specified
location. He would re-encode the description and correct
any errors. By simulating and translating both this new
description and the old one, he would obtain precise
figures on the exact difference in hardware and running
time. An on-line system can reduce this complicated
maneuver to a one-day job.

Advantages of an integrated system

Most of the advantages of integrating all aspects
of design in a single system can be summed up in one
word: control. Consider how important it is that the
simulation model accurately reflect the hardware that
is being built. Under the CASD system, this is auto
matic : the design description is the simulation model.

A necessary part of the design process is low-level
checking of logic circuits both for logical correctness
and for race and hazard conditions. In CASD, the sys
tem always uses proven methods. Besides reducing
the necessary tests, this controlled logic synthesis
ensures the use of standard techniques and building
blocks. Different optimality criteria can be used and
the results compared. For example, the different ef
fects of restricting the logic to one chip type, or allowing
more freedom, might be compared. Criteria such as
these are often more important than minimizing the

294 Fall Joint Computer Conference, 1970

total number of circuits; and under the CASD system,
the correct criteria can be enforecd.

A good design must be reliable and allow ready
diagnosis of problems that occur. The CASD controlled
synthesis ensures that the resulting logic is diagnosable.
Indeed, the required diagnostic tests can be produced
as an integral part of the translation process by at
least one method.23 I t is easy to see how translators
could be made to produce either duplicated logic,
triple-modular-redundant logic, or unduplicated logic
(say) if the designer wants to compare their relative
costs.

Finally, the advantages of a unified file system, pro
viding documentation automatically, are fairly clear.
Accurate, consistent, up-to-date documentation may
be the most important single feature of the CASD
system.

EXAMPLE

This section contains an example of a computer
described in the CASD design language. The computer
and the way it is described have been chosen to illus
trate the features of the language, rather than for any
intrinsic merit. The computer is a simple binary ma
chine called SYSTEM/0. It contains 65,536 32-bit
words of memory and 16 general-purpose and index
registers called XREG(O) through XREG(15). XREG
(0) always contains all zeros. I t may be stored, tested,
and shifted, but not altered.

The instructions of SYSTEM/0 are one word (32
bits) long. The first 8 bits contain the operation code.
The next 8 bits contain two four-bit fields, the M (for
modifier) and X (for index register) specifications.
The last 16 bits are used for an address.

The following instructions are described in the fol
lowing CASD description:

ST M,X,ADDR Store the contents of XREG(M)
into memory location [ADDR+
contentsofXREG(X)].

CLA M,X,ADDR Load the contents of memory
location [ADDR+contents of
XREG(X)] into XREG(M).
M may not equal zero.

BC M,X,ADDR Branch to location [ADDR+
contents of XREG(X)] if and
only if the contents of XREG
(M) is zero. (Since XREG(O)
is always zero, BC 0, X,ADDR
is an unconditional branch.)

RR M,X,ADDR Rotate XREG(M) right [con
tents of XREG(X)+ADDR]
places. The number of places to
rotate is always assumed to be
modulo 32.

BAL M,X,ADDR Branch and Link to location
[ADDR+contents of XREG(X)]
storing the return address (=
next location) in the low-order
16 bits of XREG(M), setting the
high-order 16 bits of XREG(M)
to zero. M may not equal zero.

SIO M,X,ADDR Start an input-output operation
on device number [ADDR +
contents of XREG(X)]. The M
field specifies which input-out
put operation is to be performed.

Figure 2 shows the data flow the designer might
expect CASD to generate, after entering the functional
description given in Figures 3 through 7. (The order
of the figures is for illustration only. The designer need
have only a shadowy outline of the data flow in mind
at the time he prepares his functional description.)

Figures 3 through 7 are annotated to highlight in
teresting features of the CASD language. Also note
that there are a few places where the designer did
choose to dictate the data flow. For example, the only
link to the XB,EG's is constrained to be through the Y
register by specifying Y: = MSDATA; XREG(M): =
Y; rather than just XREG(M): = MSDATA; . So,
the designer can exercise as much or as little direct
influence on the final data flow as he chooses.

ACKNOWLEDGMENTS

We wish to thank George T. Robinson and Dr. Eugene
E. Lindstrom for their guidance and advice.

REFERENCES

1 E D CROCKETT et al
Computer-aided system, design
Advanced Systems Development Division IBM
Corporation Los Gatos California Technical Report
»16.198 1970

2 IBM System/360 PL/1 reference manual
IBM Corporation White Plains New York Form C28-8201

3 CROCKETT Appendix A
4 IBM Corporation page 237
5 CROCKETT Appendix G
6 IBID Appendix H
7 IBID Appendices I, J, K

Computer-Aided System Design 295

Art]
- | MAR J

;] ., w

_ _ t . — * _ J — u _ _
MSDATAL T MSDATAR g ^ g

|OP~

A t | MSDATA1

i, F A
MIX I ADDR

MAR

t | |QLATCH||TRAPLATCH|

| |QREG |

I r- / i i

EL Q |YR
~f (M or X)

/* NORMAL OPERATION PROCEDURE */
RUN: PROCEDURE;
DECLARE OPLABEL<0:255) LABEL INITIALCST,CLA,BC,RR/BAL,

SIO,C250)ILLEGAL); /» OPCODE DECODE TABLE * /

IF TRAPLATI

/» ADDRESS CALCULATION PROCEDURE */

: := ALUCPLUS,I<OCARRY,ADOR,YR5]>-
/» GFT INDEX VALUE a/

Routine ILLEGAL. TRAPROUTINE

-fa riptadlabal
BmdsndE

[CASDIanguaaausai'l';)
PL/I would uJt'VB. J

sJ1SDATAJ«rMB*MAW! /a GET NEXT INSTRUCTION FROM MAIN MEM »/
: HSPATAj /» PUT IT IN IRES » / ;

IC := ALU^PLÎ NOCARJmMAR, '0000000000000001');
/» ADD ONE TO IC * /

EXEC: GO TO 0PLA8ELC0P)r\ / * OP CODE DECODE BRANCH « /

\ PLUS and NOCARRY \
"7 rapfacod by'1'and'0' I

I b y pnprocanor. I

J *
^ f u i D

SYSTEM/O DATA FLOW
Figure 5—CASD description of SYSTEM/0, page 3

Figure 2—Flow of data in SYSTEM/0

/"'EXECUTION ROUTINES "/

SYSTEM0: PROCEDURE OPTIONS(MAIN);
DECLARE

r~JC BITCI6J7

OP BITC8)/
M BITCO ,
X BITO),
AOCR BIT^16)f _

CTIREG DEFINED OP||H ||X ||M>OR^

XREGC0.-15) BITC32),

MEMC0:65535) BITC32).

1 Y,
2 YL BITC16),
2 YR BITC16),

IOLATCH B ITU) ,

IOREG BITC16),
IOOP BITC8),
TfWPLATCH BITC1),
IPLLATCH BITO) ;

J" INSTRI.HTIOM CCUHTOI -7

/» OPERATION CODE -I
/'• MCCIFIER FIELD " /
/ - INDEX REGISTER SPECIFICATION * /
/ * ADDRESS PORTION OF INSTRUCTION » /
/-• IHSTIIU6TI0H nCCIOTCR » / may be used like this

define collections. 5
/" RIGHT HALF * /

/•• IliOEX REGISTERS 0 THROUGH 15 * /

- / " IIAUI HMJHI »/

f MAIN MEMORY ADDRESS REGISTER ~l

I- Y REGISTER »/
/* LEFT HALF "/
/» RIGHT HALF »/
/" CONTROL LATCH BETWEEN EXECUTION * /
/ * AND I/O ROUTINES »/
/* USED TO HOLD DEVICE NUMBER "I
l~ USED TO HOLD I/O OP CODE "/
I* USED TO SIGNAL I/O TRAP * /
/ * INDICATES IPL BUTTON DEPRESSED - /

Similarly, structures may ^

<Each.tam.nt of MEM is a \
32-bit rtoragadtwca. I

Physical attributos hava

CALL EAODR;
MSDATA:=«EM(MAJO) Y : = HSDATA,

IF M='0000' THEN SO TOfflSGRSTcFECKT

Y:=XREG<M);
IF r - * (^2)'0• THEN RETURN;
CALL EAODR;
IC := MAR;
RETURN;

/ * STORE INSTRUCTION » /
/ * EVALUATE EFFECTIVE ADDRESS " /
/ * .GET REGISTER VALUE « /
/ * PUT IT INTO MAIN MEMORY » /

/ " LOAD INSTRUCTION ~l
/ » EVALUATE EFFECTIVE ADDRESS »/
/ * GET STORAGE DATA «/

/ * PUT IT AWAY IN PROPER XREG •

/ " CONDITIONAL BRANCH ROUTINE */

Figure 6—CASD description of SYSTEM/0, page 4

Figure 3—CASD description of SYSTEM/0, page 1

Mt to ' 1 / When this happens, it u
— ~ G and the operation code

speration. When it is start
When the operation m complete, it sets TRAPLATCH

r Subtnwtt (OP-'O;^

including (CARRYFLAG-'r) tha carry in tha result.

Y:=XREGCM) J
CALL EACCR;
IF SUBSTROWt.l2.1)«'l' THEN

I" ROTATE RIGHT ROUTINE " /

Y^SUBsfRCY.^S.B.) IISUBSTR(Y.1.2'0^>-
Vf 5 U D 5 T * C M ¥ I , 1 " > , 1) = , 1 ' THEN
Y:=SUBSTRCY,29,W 11 SUBSTRCY, 1,28);

IF SUBSTR(MAR,15,D='r THEN
Y:=SUBSTRCY,31,2) 11 SUBSTRCY,1,30);
IF SUBSTRCMAR,I6,1)=*1' THEN
Y:=SUBSTRCY,32,1) 11 SUBSTRCY,1,31);
XREGCM) := Y;
RETURN;

P BRANCH AND LINK ROUTINE " /
EADDR;

R := C 1 6) ' 0 ' | | I C ;
XREG(M):: Y;
IC := MAR;
RETURN;

/Tx>
-I SI

DO CONCURRENTLY
ovarridas what would othar-
wisa ba two nodos. Rasult

iterchanga (Rotata 16).

—-fRotata right 8, in eff act]

CCASD allows II on taft-hand)
lida of aasignmant stttamanls. /

CALLEADDR:
15UTCIOLATCH = ' l l ' l f Y

>ipLATCH := ' l ' l /

^ " ^ 1 " START I/O ROUTINE " /
S^ 1* GET DEVICE NUMBER * /

/ • WAIT UNTIL PREVIOUS 1-0 STARTS * /

CASOallowswaitinitor J

^Thaia uiauUlii" U 1
^noda. *J

Figure 4—CASD description of SYSTEM/0, page 2 Figure 7—CASD description of SYSTEM/0, page 5

http://Each.tam.nt

296 Fall Joint Computer Conference, 1970

8 P BRYANT
A note on designing incremental compilers
Submitted to CACM August 1970

9 J R DULEY D L D I E T M E Y E R
Translation of a DDL digital system specification to Boolean
equations
I E E E Transactions Vol C-18 April 1969

10 T D F R I E D M A N
ALERT: a program to produce logic designs from preliminary
machine descriptions
Research Division IBM Corporation Yorktown Heights
New York Research Report No RC-1578 March 1966

11 T D F R I E D M A N S C YANG
Methods used in an automatic logic design generator (ALERT)
Research Division IBM Corporation Yorktown Heights
New York Research Report No RC-2226 October 1968

12 D F GORMAN J P ANDERSON
A logic design translator
Proceedings AFIPS Fall Joint Computer Conference 1962

13 CROCKETT Appendix M

14 GORMAN and ANDERSON
15 H SCHORR

Computer-aided digital system design and analysis using a
register-transfer language
I E E E Transactions Vol EC-13 December 1964

16 E A F R A N K E
Computer-aided functional design of digital systems
I E E E Southwestern Conference Record April 1968

17 DULEY and D I E T M E Y E R op cit
18 J R DULEY D L D I E T M E Y E R

A digital system design language (DDL)
I E E E Transactions Vol C-17 September 1968

19 F R I E D M A N
20 F R I E D M A N and YANG
21 G M E T Z E S SESHU

A proposal for a computer compiler
Proceedings AFIPS Spring Joint Computer Conference
1966

22 IBID
23 CROCKETT Appendix N

