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I N T R O D U C T I O N 

This paper describes the Computer-Aided System 
Design (CASD) system, a proposed collection of com
puter programs to aid in the design of computers and 
similar devices. CASD is a unified system for design, 
encompassing high-level description of digital devices, 
simulation of the device functions, automatic trans
lation of the description to detailed hardware (or 
other) specifications, and complete record-keeping 
support. The entire system may be on-line, and most 
day-to-day use of the system would be in conversa
tional mode. 

Typically, the design of digital devices requires a 
long effort by several groups of people working on dif
ferent aspects of the problem. The CASD system would 
make a central collection of all the design information 
available through terminals to anyone working on 
the job. With conversational access to a central file, 
many alternative designs can be quickly evaluated, 
proven standard design modules can be selected, and 
the latest version of the design can be automatically 
documented. The designer works only with high-level 
descriptions, which reduce the number of trivial errors 
and ensure the use of standard design techniques. 

From October, 1968, through December, 1969, 
the authors participated in a study at the IBM Ad
vanced Systems Development Laboratory in Los 

* This work was performed at the IBM Advanced Systems De
velopment Laboratory, Los Gatos, California. 

Gatos, California, which defined the proposed CASD 
system and looked into the problems of building the 
various component programs. Details of several 
prototype programs which were implemented are 
given elsewhere.1 There are no present plans to con
tinue work in this area. This paper is essentially a 
feasibility report, describing the overall system struc
ture and the reasons for choosing it. I t includes de
scriptions of the data forms in the system and of the 
component programs, discussions of the overall ap
proach, and an example of a device described in the 
CASD design language. 

THE SYSTEM IN GENERAL 

The (proposed) Computer-Aided System Design 
(CASD) system is a collection of programs to aid the 
computer designer in his daily work, and to coordi
nate record-keeping and documentation. I t offers the 
designer five major facilities: 

High-level description 

The designer describes his device in a high-level, 
functional language resembling PL/I , but tailored to 
his special needs. This is the only description he enters 
into the system, and the one to which all subsequent 
modifications, etc., refer. 
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High-level simulation 

An interpretive simulator allows the designer to 
check out his design at a functional level, before it is 
committed to hardware. The simulation is interactive, 
allowing the designer to "watch" his design work and 
evaluate precisely design alternatives. 

Translation to logic specifications 

The high-level design, after testing by simulation, 
is automatically translated to detailed logic specifica
tions. These specifications may take a variety of forms, 
such as (1) input to conventional Design Automation 
(DA) systems, or (2) microcode for an existing machine. 

On-line, conversational updating 

The designer makes design changes and does his 
general day-to-day work at a terminal, in a conver
sational mode. Batch facilities are also available. 

Complete file maintenance and documentation 

design automation systems) is a natural by-product 
of the CASD organization. 

The CASD system can thus be viewed as an extension 
to higher levels of current systems for design, in roughly 
the same way that compilers are functional extensions 
of assemblers to higher levels. 

The general organization of the system is pictured 
in Figure 1. The designer describes his device in a 
source design language, which is translated by a com
piler-like program called the encoder to an internal 
form. The internal form is the input both to the high-
level simulator (called the interpreter) and to a series of 
translators (two are shown in Figure 1) which convert 
it to the appropriate form of logic specifications. Dif
ferent series of translators give different kinds of final 
output (e.g., one series for DA input, another series 
for microcode). The entire system is on-line, operating 
under control of the CASD monitor, which handles 
communication to and from the terminals. The user 
interface programs handle the direct "talking" to the 
user and invoke the proper functional programs. 

DATA FORMS IN THE CASD SYSTEM 

Source design description 

Extensive record-keeping is provided to keep track 
of different machines, different designs of machines, 
different versions of designs, results of simulation runs, 
and so forth. High-level documentation of designs 
(analogous to that produced at lower levels by today's 

The CASD design language the designer uses is a 
variant of PL/I , stripped of features not needed for 
computer design and enriched with a few specialized 
features for such work. PL/I2 and CASD's language3 

are described more fully elsewhere. 
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Figure 1—The CASD system 

Procedures 

The basic building block in a CASD description is 
the procedure. A procedure consists of: (1) declarations 
of the entities involved in the procedure, and (2) state
ments of what is to be done to these entities. A pro
cedure is written as a PROCEDURE statement, fol
lowed by the declarations and statements, followed 
by a matching END statement, in the usual PL / I 
format: 

PROC1: PROCEDURE; 

declarations and statements 

END PROC1; 

defines a procedure whose name is PROC1. 
A procedure represents some logical module of the 

design, e.g., an adder. A complete design, in general, 
would have many such procedures, some nested within 
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others. The adder procedure, for example, may con
tain a half-adder as a subprocedure. 

Da ta i tems 

Each procedure operates on certain data items, such 
as registers or terminals. These items are defined by 
DECLARE statements, which have the general for
mat: 

DECLARE name attribute, attribute, . . .; 

The name is used to refer to the item throughout 
the description. The attributes describe the item in 
more detail, and are of two types—logical and physical. 
Logical attributes describe the function of the item 
(it is bit storage, or a clock, say); physical attributes 
describe the form the item is to take in hardware 
(magnetic core, for example). Logical attributes in
fluence the encoding, interpreting, and translating 
functions. Physical attributes, on the other hand, are 
ignored by the interpreter, giving a truly functional 
simulation. 

Like any block-structured language, the CASD 
language has rules about local and global variables, 
and scope of names. These have been taken directly 
from the corresponding rules for PL/I . 

S ta t ements 

The basic unit for describing what is to be done to 
the data items is the expression, defined as in PL/ I 
but with some added Boolean operators, such as 
exclusive or ( # ) , and some modifications to the bit 
string arithmetic. 

The basic statement types for describing actions 
on data items are the assignment, WAIT, CALL, GO 
TO, IF, DO, and RETURN statements. These are 
basically as they are in PL/I , except as described below. 

1. The assignment statement is extended to allow 
concatenated items to appear on the left-hand 
side. Thus: 

XREG 11 YREG: = ZREG; 

where XREG and YREG are 16 bits each and 
ZREG is 32 bits, means to put the high 16 bits 
of ZREG into XREG and the low 16 bits into 
YREG. In combination with the SUBSTR 
built-in function,4 this assignment statement 
offers convenient ways to describe shifting and 
similar operations. The assignment symbol itself 
is the ALGOL ": = " rather than " = " as in PL/I . 

2. The WAIT statement takes the form 

WAIT(expression); 

I t thus differs from PL/ I in that it allows one 
to specify a wait until an arbitrary expression is 
satisfied. This is useful for synchronizing tasks 
(see below). 

3. The GO TO statement includes the facility of 
going to a label variable, and the label variable 
may be subscripted. This is useful for describing 
such operations as op-code decoding—for ex
ample : GO TO ROUTINE (OP). 

Sequencing 

The differences in motivation between CASD's 
language and PL/ I are most evident in matters of 
sequence control and parallelism. PL/I , as a program
ming language, does not emphasize the use of paral
lelism. Programs are described and executed sequen
tially, which is not adequate for a design language. 

The basic unit of work in CASD is the node. A node 
is a collection of actions which can be performed at 
the same time. For example, XREG: = YREG; and 
P : = Q; can be performed together if all the items in
volved are distinct. On the other hand, XREG: = 
YREG; ZREG :=XREG; cannot be performed (as 
written) at the same time, since the result of the first 
written operation is needed to do the second. The 
basic CASD rules are: 

1. Operations are written as sequential statements. 
2. However these operations are performed (se

quentially or in parallel), the end results will 
be the same as the results of performing them 
sequentially. 

3. Sequential statements will be combined into a 
single node (considered as being done in parallel) 
whenever this does not violate rule 2. That is, 
CASD assumes you mean parallel unless there's 
some' 'logical conflict."5 

Of course, the designer may want to override rules 
2 and 3. Another rule gives him one way to do this: 

4. A labelled statement always begins a new node. 
Another way is by specifying parallelism ex
plicitly. If the DO statement is written as 
DO CONCURRENTLY, all statements within 
the DO will be executed in parallel. Finally, 
the TASK option of the CALL statement makes 
it possible to set several tasks operating at once. 
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Preprocessor facilities 

Some of the PL/ I preprocessor facilities have been 
retained. These include the iterative %DO, which is 
particularly useful in describing repetitive operations, 
and the preprocessor assignment statement, useful 
for specifying word lengths, etc. 

No defaults 

Unlike PL/I , the CASD language follows the prin
ciple that nothing should be hidden from the designer. 
In particular, it has no default attributes, and every
thing must be declared. Similarly, it does not allow 
subscripted subscripts, subscripted parameters passed 
to subroutines, or anything else that might force the 
encoder to generate temporary registers not specified 
by the designer. Such restrictions might be relaxed in 
a later version, but we feel that until we have more 
experience with such systems, we had better hide as 
little as possible. 

Internal form 

Before the source description can be conveniently 
manipulated by other programs, it must be translated 
to an internal form. This form is designed to be con
venient for both the translator programs and the in
terpreter. Compromises are necessary, of course— 
a computer program might be the most convenient 
form for simulation, but would be of no use at all to 
the translator. 

The CASD internal form resembles the tabular 
structure used for intermediate results in compilers 
for programming languages. It consists of four kinds 
of tables: descriptors, expressions, statements and 
nodes. 

The descriptor table records the nature of each item 
(taken from its DECLARE statement). The entries 
are organized according to the block structure of the 
source description and the scope-of-names rules of 
the language. 

The expression table contains reverse Polish forms 
of all expressions in the source description, with names 
replaced by pointers to descriptors. Each expression 
appears only onee in the expression table, although 
I T n r t O l T O T"*Y"%OQT* /"fcT-r-QYI T-r-k T K A CJ/-\TlT»rto n A Q n y n r x T i A n i-w-\ s\4-Tr\fi4-
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the expression table lists the combinational logic the 
translator must generate. 

The statement table consists of one entry for each 
statement in the source description, with expressions 

replaced by pointers to entries in the expression table, 
and a coded format for the rest of the statement 
(statement type plus parameters). 

The node table tells which statements in the state
ment table belong in the same node, and the order in 
which various nodes should be executed. 

The internal form has thus extracted three things 
from the source description—data items, actions to 
be taken on those items, and the timing of the ac
tions—and recorded them in three separate tables— 
the descriptor, the statement, and the node tables. 
The expression table is added for convenience. 

Simulation results 

The high-level simulation involves three forms of 
data: values of the variables, control information, and 
run statistics. 

Before a simulation run begins, the variables of the 
source design description (corresponding to registers, 
etc.) must be assigned initial values. One way to do 
this is with the INITIAL attribute in the DECLARE 
statement, which makes initialization of the variables 
at execution time a fundamental part of the description. 
Sometimes, though, the designer may want to test 
a special case, and simulate his design starting from 
some special set of initial values. CASD permits him 
to store one or more sets of initial values in his files; 
and for a given simulation run, to specify the set of 
initial values to be used. In this way, he can augment 
or override the INITIAL attribute. 

At the end of a simulation run, the final values of 
the variables may be saved and used for print-outs, 
statistics gathering, or as initial values for the next 
simulation run. That is, a simulation run may continue 
where the last one left off. 

The high-level, interpretive simulation in CASD 
is perhaps most useful because of its control options. 
As an interpreter, operating from a static, tabular 
description of the device, the CASD simulator can 
give the user unusually complete control over the run
ning of the simulation. Through a terminal, he can at 
any time tell the system which variables to trace, how 
many nodes to interpret at a time, when to stop the 
simulation (e.g., stop if XREG ever gets bigger than 4 
and display the results), and so forth. These control 
conditions may be saved just as the data values may 
be, and a simulation run may use either old or new 
control conditions. 

Permanent records of a simulation also include sum
maries of run statistics (the number of subprocedure 
calls, number of waits, etc.). 
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Translator output 

Different translators produce different kinds of out
put. Assembly-language level listings of mircocode 
might be needed for some lower-level systems, the 
coded equivalent of ALD sheets for others. Typically, 
output would include error and warning messages. 

File structure 

In an on-line, conversational system, it is particu
larly important that the working data be easily ac
cessible to the user and the control language seem 
natural to him. CASD attempts to facilitate user con
trol in two ways: through the user interface programs, 
and the structure of the data files. 

The basic organizational unit in the CASD files 
is called the design. A design consists of all the data 
pertinent to the development of some given device. 
A design may have many versions, representing cur
rent alternatives or successive revisions. Each version 
has some or all of the basic forms of data associated 
with it: source description, internal form, simulation 
results, translator output, and so on. 

Two catalogs, one for designs and one for versions, 
are the basic access points to CASD data. A typical 
entry in the design catalog (a design record) contains 
a list of pointers to the version descriptors for each 
version of every design in the system. The version 
descriptor contains pointers to each of the various 
forms of data for that version (source description, . . .) 
plus control information telling which set of translators 
has been applied to the design in this version, and so on. 

These descriptors give the user interface programs 
efficient access to needed data. For example, if the 
user asks to translate a given design, the interface 
finds the version descriptor, and can then tell if the 
design has been encoded, and if not, inform the user 
and request the input parameters for encoding. 

PROGRAMS IN THE CASD SYSTEM 

CASD monitor and support programs 

All the CASD component programs are under con
trol of a monitor program, which provides the basic 
services for communicating with terminals and allo
cates system resources. In the prototype version6 the 
environment was OS/360 MVT, and it was convenient 
to set up the monitor as a single job, attaching one 
subtask for each CASD terminal. The CASD files were 
all in one large data set, and access to them was con
trolled by service routines in the monitor. The moni

tor also controlled the allocation of CPU time to various 
CASD terminals within the overall CASD job. This 
approach makes it easier to manage the various in
terrelated data forms within the versions, and would 
probably work in environments other than OS/360 
as well. 

Besides the monitor and the data access routines, 
the support programs include a text-editing routine 
to use in editing the source description. 

User interface programs 

CASD system control is not specified in some general 
language. Rather, each CASD function has its own 
interface program, which has the complete facilities 
of the system available to it. 

The design records and version descriptors give 
precisely the information needed by user interface 
programs. A typical user interface program might be 
one for encoding and simulating a source design descrip
tion already in the CASD files. The version descriptor 
shows, for example, whether or not the source descrip
tion has already been encoded. The interface may then 
give the user a message like "Last week you ran this 
design for 400 nodes. Should the results of that run 
be used as initial values for this run?" The point is 
that the conversation is natural to the task at hand. 
The tasks under consideration are well defined, and 
each natural combination of them has its own interface 
program. 

Encoder 

Since the CASD encoder is roughly the first half 
of a compiler, it may be built along pretty standard 
lines. Care must be taken only in providing some sort 
of conversational compilation facility. Conversational 
interaction is an important part of the CASD approach 
to design, and some sort of line-by-line feedback is 
required. Similarly, since modification is so common 
in design work, recompilation must be as efficient as 
possible. Incremental compilation—translating each 
source statement as far as possible on input, indepen
dently of other statements—is one answer. Then only 
those statements which have changed since the last 
compilation need be recompiled. The approach used 
in the CASD prototype is described elsewhere.7-8 

Interpreter 

The basic unit that the interpreter simulates is the 
node table, the various statements which comprise 
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the node are identified. These statments are then "exe
cuted" in two steps: First, all the expressions in the 
statements are evaluated; second, the results are stored. 
By this two-step procedure, the parallelism inherent 
in the definition of the node is correctly simulated. 

The interpreter steps from node to node, as they 
appear in the node table, with several exceptions. One 
is the conditional branch, where some (usually just one) 
statment within the node must be evaluated or exe
cuted to determine what the next node should be. 
Another exception is when wait, halt, or trace con
ditions have been met. Such "values" as "stop if this 
item is referenced" may be stored with the item's 
descriptor in the internal form. If this kind of condi
tion is encountered in a node, the interpreter takes 
the action indicated before going to the next node. 
Control conditions like these may be altered dynam
ically by the user, who may, when a "halt" condition 
is satisfied, not only observe the variables and their 
values, but alter the control conditions. 

Translators 

The translator used in the prototype system converts 
the internal form to a list structure of the ma
chine logic. Techniques for translating from this to 
DA input or actual circuits for any given circuit 
family are straightforward. The elements of the list 
structure are: hash cells, part cells, subexpression cells, 
assignment cells, action cells, condition cells, and clock 
cells. Hash (as in "hash code") cells contain index 
entries and cross-references to the rest of the cells. 
Part cells contain all the information declared about 
each item; subexpression cells indicate how the various 
items are to be combined to form circuits. Assignment 
cells tell what data is to be transferred to where. Action 
cells and condition cells are lists of which actions (e.g., 
assignments) are to be taken and under which con
ditions. Clock cells contain labels and other informa
tion about sequencing. Most of the information in 
these cells comes fairly directly from the appropriate 
tables in the internal form, but the translator links the 
cells in a way that corresponds to the hardware that 
must be generated. For example, all assignments to 
a given register are linked together, and this might 
correspond (for a particular circuit family) to a single 
storage bus. 

Essentially, the translator reduces the high-level 
description to a form which currently known pro-
cedures9'10-11-12 can handle, by breaking up the infor
mation in the internal form and linking it up again 
in several different ways. Details of the various linking 

schemes and how they relate to the source description 
are given elsewhere.13 

Other programs 

The general structure of the CASD system is flexible 
enough to permit addition of other programs. A few 
possibilities have been considered. 

One obvious drawback of interpretive simulation 
is the overhead. Simulation by compilation to ma
chine code would be perhaps 50 or 100 times as fast. 
This is a significant difference on long runs, after the 
design is basically checked out (e.g., runs to get firm 
performance figures). 

A generalized assembler program to prepare program 
input to the interpreter would allow larger quantities 
of software to be tested by "running" it on the ma
chine being simulated. 

Cost-estimating programs operating directly from 
the internal form would give quick-and-dirty estimates 
without going through the entire hardware translation 
process. Translation from the internal form to micro
code is another possible extension. 

COMMENTS 

History 

Others—most notably Gorman and Anderson,14 

Schorr,15 Franke,16 Duley and Dietmeyer,17-18 Fried
man and Yang,20 and Metze and Seshu21—have de
scribed languages and systems for logic translation or 
simulation, and occasionally for both. Typically, in 
logic translation systems, the design is described in a 
special-purpose procedural language similar to pro
gramming languages. The description is usually at 
a lower level than in CASD and is translated to Bool
ean equations, or some similar form, by programs 
written for the purpose. 

In most simulation systems, on the other hand, 
designs are described in some high-level, general-
purpose language—either a general simulation language, 
or an existing programming language augmented with 
timing subroutines and the like. The description is 
translated by an existing compiler to a program which 
performs the simulation. 

There is good reason for this difference. Until re
cently, no existing programming or simulation language 
was really adequate to describe logic, and no general-
purpose simulation system was so deficient as to justify 
creating a special system for simulating computer 
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designs. But the advantages of integrating logic trans
lation and simulation into the same system outweigh 
these factors, in our judgment. 

Integration of the two functions is achieved in CASD 
by translating a single, high-level, special-purpose 
language to a common internal form, providing input 
to both logic translation programs and an interpretive 
simulator. The interpretive simulation is also a key 
point in making the system on-line. 

Another innovation in CASD is the way in which 
descriptions incorporate timing. Timing is included 
rather explicitly in typical existing languages. At 
lower levels, every statement or action is accompanied 
by an indication of when it is to take place (at which 
clock pulse, say). At higher levels, actions are simply 
recorded sequentially, with some indication of how 
long they take and what resources they require. (Simu
lators operating from these descriptions usually con
struct "future events" lists, ordered by increasing 
time of occurrence, and simulate whichever event is 
on top of the list at the moment.) 

Timing in the CASD descriptions is based on the 
use of asynchronous design as proposed by Metze 
and Seshu.22 Multiple tasks are synchronized by using 
shared variables and referring to them with WAIT 
statements. This approach has several advantages. 
Asynchronous design at the functional level, as of
fered by the CASD system, allows reasonable hard
ware independence, since synchronizing conditions 
refer to elements of the functional design rather than 
to its physical implementation. (An asyehronous 
description may, of course, be implemented in either 
synchronous or asynchronous logic circuits.) Perhaps 
most important, especially for an on-line system, is 
that the PL/ I multitasking scheme, from which the 
CASD timing approach is derived, and techniques 
like DO CONCURRENTLY make it possible to de
scribe timing relationships in a quick and natural 
manner. 

Advantages of an on-line system 

Conventional design work is slowed by turn-around 
time (in the model shop as well as in the computation 
center) and an elaborate hierarchy of system architects, 
engineers, and technicians. One result is that few al
ternatives are considered in designing a system, and 
fewer still are evaluated in any systematic way. The 
CASD system bypasses these limitations by putting 
the designer directly in touch with a design system 
by a terminal, having the system take over many of 
the bookkeeping functions of design, and giving him 

immediate feedback at each stage of the design process. 
Immediate feedback is important in: 

a. Encoding, where descriptions are entered line 
by line, and syntax is checked immediately, 
allowing immediate correction and modification. 

b. Simulation, in which the designer may "con
verse" with the system as his design is simu
lated. He may change control conditions as the 
simulation progresses, look at values of data 
items, and so forth. 

c. Selection of different translation procedures 
based on the results of simulation, cost esti
mating programs, or other translations. 

Except for (a), these could be done with a batch 
system, of course, but they are much more effective 
in an on-line environment. Suppose, for example, that 
a design for a computer is stored in the system, and it 
contains special hardware for floating point operations. 
The designer wants to know just what difference it 
would make if he eliminated this hardware and did all 
floating point operations with programmed subroutines. 
With the CASD text-editing programs, the designer 
would remove the description of the hardware for 
floating point, and change the floating point operation 
code descriptions to trap these operations to a specified 
location. He would re-encode the description and correct 
any errors. By simulating and translating both this new 
description and the old one, he would obtain precise 
figures on the exact difference in hardware and running 
time. An on-line system can reduce this complicated 
maneuver to a one-day job. 

Advantages of an integrated system 

Most of the advantages of integrating all aspects 
of design in a single system can be summed up in one 
word: control. Consider how important it is that the 
simulation model accurately reflect the hardware that 
is being built. Under the CASD system, this is auto
matic : the design description is the simulation model. 

A necessary part of the design process is low-level 
checking of logic circuits both for logical correctness 
and for race and hazard conditions. In CASD, the sys
tem always uses proven methods. Besides reducing 
the necessary tests, this controlled logic synthesis 
ensures the use of standard techniques and building 
blocks. Different optimality criteria can be used and 
the results compared. For example, the different ef
fects of restricting the logic to one chip type, or allowing 
more freedom, might be compared. Criteria such as 
these are often more important than minimizing the 
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total number of circuits; and under the CASD system, 
the correct criteria can be enforecd. 

A good design must be reliable and allow ready 
diagnosis of problems that occur. The CASD controlled 
synthesis ensures that the resulting logic is diagnosable. 
Indeed, the required diagnostic tests can be produced 
as an integral part of the translation process by at 
least one method.23 I t is easy to see how translators 
could be made to produce either duplicated logic, 
triple-modular-redundant logic, or unduplicated logic 
(say) if the designer wants to compare their relative 
costs. 

Finally, the advantages of a unified file system, pro
viding documentation automatically, are fairly clear. 
Accurate, consistent, up-to-date documentation may 
be the most important single feature of the CASD 
system. 

EXAMPLE 

This section contains an example of a computer 
described in the CASD design language. The computer 
and the way it is described have been chosen to illus
trate the features of the language, rather than for any 
intrinsic merit. The computer is a simple binary ma
chine called SYSTEM/0. It contains 65,536 32-bit 
words of memory and 16 general-purpose and index 
registers called XREG(O) through XREG(15). XREG 
(0) always contains all zeros. I t may be stored, tested, 
and shifted, but not altered. 

The instructions of SYSTEM/0 are one word (32 
bits) long. The first 8 bits contain the operation code. 
The next 8 bits contain two four-bit fields, the M (for 
modifier) and X (for index register) specifications. 
The last 16 bits are used for an address. 

The following instructions are described in the fol
lowing CASD description: 

ST M,X,ADDR Store the contents of XREG(M) 
into memory location [ADDR+ 
contentsofXREG(X)]. 

CLA M,X,ADDR Load the contents of memory 
location [ADDR+contents of 
XREG(X)] into XREG(M). 
M may not equal zero. 

BC M,X,ADDR Branch to location [ADDR+ 
contents of XREG(X)] if and 
only if the contents of XREG 
(M) is zero. (Since XREG(O) 
is always zero, BC 0, X,ADDR 
is an unconditional branch.) 

RR M,X,ADDR Rotate XREG(M) right [con
tents of XREG(X)+ADDR] 
places. The number of places to 
rotate is always assumed to be 
modulo 32. 

BAL M,X,ADDR Branch and Link to location 
[ADDR+contents of XREG(X)] 
storing the return address ( = 
next location) in the low-order 
16 bits of XREG(M), setting the 
high-order 16 bits of XREG(M) 
to zero. M may not equal zero. 

SIO M,X,ADDR Start an input-output operation 
on device number [ADDR + 
contents of XREG(X)]. The M 
field specifies which input-out
put operation is to be performed. 

Figure 2 shows the data flow the designer might 
expect CASD to generate, after entering the functional 
description given in Figures 3 through 7. (The order 
of the figures is for illustration only. The designer need 
have only a shadowy outline of the data flow in mind 
at the time he prepares his functional description.) 

Figures 3 through 7 are annotated to highlight in
teresting features of the CASD language. Also note 
that there are a few places where the designer did 
choose to dictate the data flow. For example, the only 
link to the XB,EG's is constrained to be through the Y 
register by specifying Y: = MSDATA; XREG(M): = 
Y; rather than just XREG(M): = MSDATA; . So, 
the designer can exercise as much or as little direct 
influence on the final data flow as he chooses. 

ACKNOWLEDGMENTS 

We wish to thank George T. Robinson and Dr. Eugene 
E. Lindstrom for their guidance and advice. 

REFERENCES 

1 E D CROCKETT et al 
Computer-aided system, design 
Advanced Systems Development Division IBM 
Corporation Los Gatos California Technical Report 
»16.198 1970 

2 IBM System/360 PL/1 reference manual 
IBM Corporation White Plains New York Form C28-8201 

3 CROCKETT Appendix A 
4 IBM Corporation page 237 
5 CROCKETT Appendix G 
6 IBID Appendix H 
7 IBID Appendices I, J, K 



Computer-Aided System Design 295 

Art] 
- | MAR J 

;] ., w 

_ _ t . — * _ J — u _ _ 
MSDATAL T MSDATAR g ^ g 

|OP~ 

A t | MSDATA1 

i, F A 
MIX I ADDR 

MAR 

t | |QLATCH||TRAPLATCH| 

| |QREG | 

I r- / i i 

EL Q |YR 
~f (M or X) 

/* NORMAL OPERATION PROCEDURE */ 
RUN: PROCEDURE; 
DECLARE OPLABEL<0:255) LABEL INITIALCST,CLA,BC,RR/BAL, 

SIO,C250)ILLEGAL); /» OPCODE DECODE TABLE * / 

IF TRAPLATI 

/» ADDRESS CALCULATION PROCEDURE */ 

: := ALUCPLUS,I<OCARRY,ADOR,YR5]>-
/» GFT INDEX VALUE a/ 

Routine ILLEGAL. TRAPROUTINE 

-fa riptadlabal 
BmdsndE 

[CASDIanguaaausai'l'; ) 
PL/I would uJt'VB. J 

sJ1SDATAJ«rMB*MAW! /a GET NEXT INSTRUCTION FROM MAIN MEM »/ 
: HSPATAj /» PUT IT IN IRES » / ; 
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Figure 2—Flow of data in SYSTEM/0 
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