
The binary floating point digital
differential analyzer

by J. L. ELSHOFF and P. T. HULINA

The Pennsylvania State University
University Park, Pennsylvania

INTRODUCTION

Twenty years ago the digital differential analyzer,
DDA, was developed to replace the analog computer
in the solution of differential equations. Although the
DDA is slower than the analog computer, the DDA is
capable of more accurate results since its accuracy is
not bounded by its component characteristics. The cost
of solving differential equations with the DDA is
quite low compared with other methods such as a
general purpose machine, since the DDA is a more
simple device.

As time has passed, advances have been made in
DDA technology. These advances have resulted in
increased speed and accuracy,1,2 reductions in cost,1

and improvements in man-machine interface.3 Still the
DDA is seldom used except as a special purpose device.
Despite the dependence of the problem solution on the
quality of the components and the higher cost of the
analog computer, analog computation continues to
grow in popularity. Similarly, general purpose com­
puters continue to be more widely used even though
they cost more and solve differential equations at a
slower rate than the DDA.

In recent years analog and digital computers have
been combined into hybrid systems.3,4 In theory, the
hybrid system takes advantage of the high speed of the
analog computer and the easy programmability and
decision capabilities of the digital computer. In practice,
however, the speed of the analog computer is greatly
reduced in operational performance by digital software
and the digital-to-analog and the analog-to-digital
conversion hardware. The general purpose digital
computer can be programmed in an easy problem-
oriented language like Fortran while the analog portion
of the problem must be physically patched.

This paper concerns itself with a brief review of DDA
technology and an investigation of ways in which to

expand that technology. The emphasis is placed on in­
creasing the speed, reducing the cost, and improving
the utility of the DDA in such a way that the DDA
would replace the analog computer and provide a more
practical hybrid system.

THE DDA

The vector form of the general linear homogeneous
constant coefficient ordinary differential equation can
be written

x = Ax, x{0) =x0 (1)

where A is a constant mXm matrix, and x and x are
m X l column vectors. In rectangular integration the
vector difference equation that replaces equation (1)
is

y(n+l)=y(n)+y(n)At = y(n)+Ay(n) (2)

where from equation (1)

Ay{n) = y{n)At = {At) Ay in).

For any given value of y{0), an iterative solution of
equation (2) can be obtained. If y{0)=xo, then x{t)
is approximated through the relation

x{nAt)=y{n)-\-0{{At)2)

where 0{{At)2) represents the truncation error and
nAt = t.

In a DDA the fractional part of y (n) At is held in a
residue register {R register) and only the integer part
is used in equation (2). Let R{n) be the contents of
the R register at t = nAt. Then the equation for y (n) At
is modified to

y(ri)At+R(n-l)=AZ(n)+R(n)

where AZ{n) is a signed integer and \R{n) \ < 1 .
Bartee, Lebow, and Reed,5 Huskey and Korn,6 and

369

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1478462.1478516&domain=pdf&date_stamp=1970-11-17

370 Fall-Joint Computer Conference, 1970

AY

Y + AY ADDER

Y REGISTER

R + YAt ADDER

R REGISTER

*AZ

At

BLOCK DIAGRAM

AY } » A Z

At

b. PROGRAMMING SYMBOL

Figure 1—Basic DDA integrator

McGhee and Nilsen2 explain the mathematical prin­
ciple of the DDA in detail.

Figure 1 displays the block diagram and a program­
ming symbol for the DDA integrator. The F register
contains the value of y(n). The AF input holds the
value of Ay, the incremental change of the integrand,
at each step. The AZ output and R register contain the
integral and residue of y(n)At, respectively. Finally,
the At input holds the value of At, the step size of the
independent variable.

With these values available, the iterative solution
to equation (2) can be completed. A single step of
rectangular integration is performed by the transfer
equations

Integration phase: YAt+R-^AZ+R

Incrementation phase: F+AF—*Y

where AF is a weighted sum of AZ outputs. By alter­
nating the integration and incrementation phases, the
solution to equation (2) is iteratively realized.

In operation the inputs and outputs in a DDA are
represented by two binary bits, the sign bit and coeffi­
cient bit. For an arbitrary problem the input and out­

put increments each represent a fixed magnitude. For
example, if AF=c, where c is a constant, then the co­
efficient bit is one or zero depending on whether or not
there is a AF during each particular incrementation
phase. The sign bit is one or zero depending on whether
AF is negative or positive. Thus, the value c is fixed for
the problem during the programming and is not actually
transferred during the solution. Only a signed coeffi­
cient of one or zero is transferred.

In practice the inputs and outputs in a base e DDA
are coefficients of incremental values that are equal to
integer powers of e. By choosing a step size equal to
2~i in a binary DDA the YAt term can be calculated
by a simple shift instead of a multiplication. Let
At = 2~i for i a positive integer, then the F register is
assumed to be shifted right i positions so that the R
and F registers have their bits aligned. Thus, the inte­
gration phase is reduced to a simple addition.

The method of programming a DDA resembles that
of programming an analog computer. A certain quantity
is assumed to be known. The other values are calculated
from the assumed value. Finally, the assumed value is
derived back from the known values. The actual pro­
gram must then be physically patched.

The fixed point arithmetic used in the DDA is a
major disadvantage of the DDA. Problems must be
magnitude scaled for solution. Although Gill7 and
Knudsen8 have developed a completely systematic
procedure for scaling a DDA, the scaling problem is
difficult and solution accuracy depends upon estimated
maximum values.

Since the DDA has not enjoyed widespread use, most
of the developments in DDA's have been pointed at
particular problem solutions. Usually emphasis is
placed on increasing the speed and accuracy of the
DDA, which happen to be inversely proportional. An
improvement in one aspect of DDA's is often compro­
mised by added complications and new problems in
other aspects. Like the analog, the inconvenience in
using the DDA contributes to its lack of popularity.
Because of the lack of popularity, only slight attention
has been focused on improving user convenience.

The emphasis in this work was aimed at user con­
venience in a hybrid computing system. Since the
major problems seemed to be in programming and
scaling, they were given a high priority. Being digital,
two components can be connected or disconnected by
passing their connection time through an AND gate
with a switching variable that is either on or off,
respectively. Thus, in a hybrid system, the general
purpose computer can be used to program the DDA.
The obvious answer to the scaling problems seemed to
be floating point arithmetic. The use of floating point
arithmetic was also expected to be more accurate which

Binary Floating Point Digital Differential Analyzer 371

is a very desirable effect. Floating point arithmetic
was implemented in a DDA design and the design
simulated on a general purpose digital computer. The
implementation and simulation results appear in the
remainder of this paper.

THE BINARY FLOATING POINT DDA

The purpose of this section is to present the binary
floating point digital differential analyzer (BFPDDA).
The BFPDDA differs from the conventional DDA in
that the incremental units being transferred between
the components are exponents. Multiple bits must be
used to transmit an exponent instead of the usual one
or two transmission bits in the regular DDA. Yet with
as few as seven bits, signed quantities ranging from
2 - 3 1 to 2+31 can be passed from one component to another
component in the BFPDDA.

In the BFPDDA floating point arithmetic is intro­
duced into the conventional DDA structure in place
of the normal fixed point arithmetic. The floating point
arithmetic transforms the conventional DDA in many
ways without losing its basic structure. The altered
structure, the mathematical algorithms, and the opera­
tion of the BFPDDA are presented in the following
sections.

AY At

, . 1
Y + AY ADDER

RESCALE
CONTROL

'
•
1

•Y-EXPONENT

REGISTER

• t '

Y REGISTER

< • ' • i
R+ Ydt ADDER

• ,

R REGISTER

SHIFT

EXPONENT

*
I 1

INTEGRATE
CONTROL

1 •

i

- i
OUTPUT

CONTROL

AZ

Figure 2—BFPDDA integrator block diagram

THE BFPDDA INTEGRATOR STRUCTURE

The BFPDDA should operate at the fastest speed
possible in order to effectively replace the analog com­
puter; therefore, the integrators should operate in
parallel. Each integrator with its own adders and con­
trol units is assumed to be on an integrated circuit chip.
Figure 2 is a block diagram of a proposed BFPDDA
integrator showing its basic units and the lines of com­
munication among these units. Note that the four units
directly under the AY input are the same as the units
in a DDA.

Let the current value of the integrand F be repre­
sented by

Y=±.yyyy*2k

where yyy is the mantissa and k is the characteristic.
Similarly, the residue R is represented by

R = ±.rrrr*2k+j

where \j\ is the number of positions the Y register is
shifted right so its bits are aligned with the bits of the
R register. The value of j is negative so that R<Y.
Using these definitions, general descriptions of each of
the units making up the integrator are briefly given as
follows.

F + A F Adder—This adder is used to increment the
value of the integrand.

Y Register—The Y register contains the mantissa of
the integrand.

R-\- YAt Adder—This adder performs the integration.
R Register—The R register contains the mantissa of

the residue.
Y-exponent Register—The F-exponent is the char­

acteristic of the integrand.
Rescale Control—The rescale control normalizes the

integrand.
Shift Exponent—The shift exponent is the number

of places which the R register is shifted left in order to
be aligned with the Y register.

Integrate Control—This unit controls the information
flow during each iteration.

Output Control—This unit calculates the output
increment.

The Y and R registers contain mantissas of floating
point numbers in binary coded form. In this paper the
left most bit of the register is assumed to be the sign
bit. The radix point is assumed to lie between the sign
bit and the second bit of the register. Thus, the high
order significant bit of the Y and R registers is the
second bit. Thus, the R-\-YAt adder is a simple integer
adder.

Similarly, the F-exponent and shift exponent registers
contain exponents in a binary coded form. The F-

372 Fall Joint Computer Conference, 1970

exponent register contains the number of shift positions
the F register must be shifted to the left for the radix
point to be properly positioned. The shift exponent is
the number of places the R register is shifted from the
Y register.

THE MATHEMATICAL ALGORITHMS FOR
THE BFPDDA

The implementation of floating point arithmetic in
the BFPDDA slightly alter the integration calculations
used in the conventional DDA. The change in num­
ber representation requires an additional calculation to
determine the output exponent. Finally, in order to
make effective use of the dynamic scaling capabilities
of a DDA with floating point arithmetic, algorithms for
rescaling are included.

The integration phase of each iteration realizes the
transfer function

R+YAt-^AZ+R.

The Y and R values are represented by

Y=±.yyyy*2k

and
R = ±.rrrr*2k+j

where yyyy and rrrr are the contents of the Y and R
registers respectively. The F-exponent register contains
k and the shift exponent register contains j . Let

A* =±1.0*2*

where i<j. Then the integration phase is described in
Algorithms I and II, where the carry flag is a simple
set and reset flip-flop.

Algorithm I.—Integration

1. Shift the Y register j — i positions to the right.
2. Add the shifted Y register to the R register.
3. If the R register does not overflow, reset the

carry flag;
Otherwise,
a. If the R register is positive,

i. Decrement the R register by 1.0.
ii. Set the sign bit associated with AZ to

positive,
iii. Set the carry flag.

b. If the R register is negative,
i. Increment the R register by 1.0.

ii. Set the sign bit associated with AZ to
negative,

iii. Set the carry flag.

Noticing that requiring i<j is a very practical
restriction in the BFPDDA structure. The Y register
is considered to be shifted | j | positions left in order to
be aligned with the R register. Therefore, if the step
size of the independent variable is not at least as small
as 2j, a multiple bit overflow, which the DDA is not
prepared to handle, could occur.

Algorthim II.—Output calculation

1. If the carry flag is set, transmit k-\-j as Aj along
with the sign bit.

2. If the carry flag is reset, transmit no output.

During each iteration, the integrand must be up­
dated so that it is as accurate as possible. The incre­
mentation phase performs the transfer function

Y+AY-+Y.

The value of the integrand Y is the same as previously
defined. The value of AY is of the form

AF=±1 .0*2 m

where m is the exponent being received on the AY input
lines along with the correct sign. The procedure used
for the incrementation of the integrand is now given in
Algorithm III.

Algorithm III.—Incrementation of the integrand

1. If k<m, invoke Algorithm IV;
Otherwise,
a. Shift ±1.0 right k-m-l positions.
b. Add the shifted value to the Y register.
c. If the Y register overflows, invoke Algorithm

V.
d. If the magnitude of the Y register is less than

one-half without considering the F-exponent,
invoke Algorithm VI.

An overflow condition occurs when the magnitude of
AF is larger than the magnitude of F. Since this means
that the change in F is larger than F itself, the F value
is considered to be negligible. In this case the integrator
is reset as defined in Algorithm IV.

Algorithm IV.—Resetting the integrand

1. Set the F register to ±0.5 depending on the
sign of AF.

2. Set the F-exponent register to m-\-l.
3. Set the R register to zero.

During the incrementation phase of each iteration,
the F register is treated as a fixed point value. When
the F register overflows, a rescaling of the integrator
is performed as described in Algorithm V.

Binary Floating Point Digital Differential Analyzer 373

Algorithm V.—Rescaling for an increasing integrand

1. Shift the F register one position to the right.
2. Shift the R register one position to the right.
3. Increment the F-exponent register by one.

Just as the value of the integrand may get larger in
magnitude, it may also get smaller. By keeping the
fractional value of the integrand normalized in the F
register, output overflows will tend to be smaller but
will occur more frequently. The procedure for rescaling
for a decreasing integrand is shown in Algorithm VI.
Notice that this algorithm does not alter the R register.
Many tests seemed to indicate that ignoring the R
register gave the best results.

Algorithm VI.—Rescaling for a decreasing integrand

1. Shift the Y register one position to the left.
2. Decrement the F-exponent register by one.

THE OPERATION OF A BFPDDA

As with the conventional DDA, the basic cycle of the
BFPDDA is a two phase iteration. The integration and
incrementation phases are outlined in Table I.

In phase I the integration is performed. While the F
register is being shifted and added to the R register,
the output value is calculated. Then if an overflow oc­
curs, the calculated output value is transmitted, other­
wise, no output is transmitted and the calculated out­
put value is ignored.

In phase II the integrand is incremented. An overflow
in the addition causes the incremented value to be stored
one position to the right and F-exponent register to be
incremented by one. An increment that is larger than
the current value of the integrand causes the F, F-
exponent, and R registers to be reset. On the other hand,
if the mantissa is small enough, the result is stored on^
position to the left in the F register and the F-exponem

, \

1 i

A(ef)

At

Figure 3—DDA program for e*

TABLE I—BFPDDA Operational Iteration

I. Integration Phase II. Incrementation Phase

R + YAt^AZ+R Y+AY^Y
1. Integration 1. Incrementation
2. Output Calculation 2. Rescaling

is decremented by one. In this way the integrand re­
mains normalized.

THE ELIMINATION OF MAGNITUDE
SCALING

One of the major drawbacks of the ordinary DDA is
the fixed point arithmetic it employs. Each integrator
must be magnitude scaled in order that the integrand
register doesn't overflow during the problem solution
causing the program to abort. On the other hand, if the
maximum value is overestimated by a significant
amount, the error being delayed in the R register of the
integrator is much larger, causing the problem error to
be increased.

Consider the DDA solution of y — y = 0. The program
for this equation is very simple as is shown in Figure 3.
Despite the simple program, e* is one of the more diffi­
cult solutions for the DDA to calculate. The expo­
nential represents a continuously increasing function
with a large variation in magnitude. Since the accumu­
lated error will never be canceled, the magnitude of
the error increases as the value of the independent
variable t increases. Also, the initial value of the expo­
nential function is its minimum value which results in
very large initial errors since the integrator must be
scaled for the values of increasing magnitude of the
function.

Table II illustrates the effect of magnitude scaling
on accuracy. When the integrator was scaled for a maxi­
mum value of 23, the error in calculating e2 with a step
size of 2~s was approximately equal to the error in
calculating e2 with a step size of 2 -13 in an integrator
scaled for a maximum value of 28. Although e' may be
the extreme case, the exponential demonstrates the loss
of accuracy in DDA problem solutions with variables
that have a large variation in their magnitude.

The standard DDA has another scaling problem
which the exponential exhibits. When the DDA is
programmed, the step size must be fixed since the shift
between the F and R registers of the DDA is directly
related to the step size. Thus the output line represents
a fixed quantity and each output pulse is one unit of
that quantity. If the step size is then changed, the out-

374 Fall Joint Computer Conference, 1970

TABLE II—Comparison of Maximum Errors in Calculating
e2 = 7.3891 with a DDA Using Varying Magnitude Scalings

Step Size Maximum Integrator Value
23 = 8 28=256

2~8 0.1553 3.3891
2-9 0.0803 1.8891
2-10 0.0406 1.0103
2"11 0.0201 0.5141
2-12 0.0102 0.2623
2~13 0.0051 0.1309
2-1* 0.0026 0.0657

put quantity also changes. The new output quantity-
then must be reprogrammed at each point where it is
used as an input to another component.

In calculating the exponential the integrator is
magnitude scaled. Suppose the maximum value is set
at 23 and a step size of 2~10 is selected, then each overflow
or output bit represents 2~7. The value of e° is loaded as
the initial condition and e2 is calculated. According to
Table II an error of 0.0392 has occurred. If this error
is determined to be too large, a smaller interval must
be chosen. Choosing an interval of 2 -12 makes each out­
put bit represent 2 - 9 . Each increment of Y is then one-
fourth of the previous increment size and the integrator
must be reconnected to allow for these smaller incre­
mental values.

Fixed point arithmetic in the regular DDA also
causes scaling problems for integrators with more than
one input incrementing its integrand value. Since the
DDA is incremented by receiving a pulse, the incre­
ment value is fixed within the integrator being in­
cremented. Therefore, when the integrator receives
increments from two or more components, the inputs
must represent the same value.

The magnitude scaling problem does not exist in the
BFPDDA. As the integrand values become larger the
integrator rescales upward. Similarly, the integrator
rescales downward as the values become smaller in
magnitude. The user does not have to estimate the
maximum values or even know much about the rela­
tionships among the integrators since each integrator
functions independently of the other integrators without
regard to the integrand magnitude.

Since the BFPDDA integrators rescale themselves,
the accuracy of the BFPDDA is better than that of a
regular DDA. When the integrand magnitude becomes
smaller, the integrator rescales downward causing the
fractional error of the integral in the R register to be
reduced. A smaller overflow then occurs in the integra­
tion; however, the overflow occurs much sooner and

introduces much less delay error than in the standard
DDA. Thus the BFPDDA causes more, but smaller
overflows than the ordinary DDA in solving most
integrals which leads to more accurate solutions.

Two solutions of el were calculated using the
BFPDDA. After each iteration the calculated value
was compared with the actual value and the error deter­
mined. The maximum errors in calculating e2 and e5 for
varying interval sizes is shown in Table III . The same
values were also calculated with a regular DDA and
also appear. When the magnitude scaling was done for
e2, only a three bit binary shift was necessary and the
DDA was practically the same as the BFPDDA. How­
ever, when an allowance of eight bits wTas made for e5

in the DDA and two and one-half times as many itera­
tions were performed, the BFPDDA was over ten
times as accurate as the DDA. The BFPDDA could
then solve e5 ten times as fast as the DDA for the same
accuracy, since speed and accuracy are inversely
proportional.

The values appearing in Table III indicate that the
BFPDDA is more accurate because of its rescaling
techniques and floating point arithmetic. Over the
shorter solution of e2 the accumulative error wasn't too
critical. When a slightly longer problem was solved
with a larger range in integrand magnitudes, the ac­
cumulative error in the DDA greatly impaired its ad­
vantages but only minimally effected the BFPDDA.

Other factors not appearing in Table III also make
the BFPDDA preferable. In changing from one inter­
val size to another, the shift exponent register was
merely reloaded with the exponent of the step size
chosen for maximum accuracy. Otherwise, there was
no reconnection for the new problem solution. The
values taken from the BFPDDA were directly readable.
There was no multiplication by a scaling factor neces­
sary to put the calculated result in a form relative to
that of the unsealed, original equation.

TABLE III—Comparison of BFPDDA and DDA in Accuracy
Solving e*

Maximum Error in Maximum Error in
Calculating e2 = 7.3891 Step Size Calculating e5 = 148.41

DDA BFPDDA DDA BFPDDA

0.1553
0.0803
0.0406
0.0201
0.0102
0.0051
0.0026

0.1524
0.0790
0.0392
0.0198
0.0099
0.0050
0.0025

2-8

2-9

2-io

2-n
2-i2

2-i3

2-14

65.413
35.624
18.413
9.393
4.726
2.367
1.187

5.543
2.835
1.413
0.716
0.359
0.180
0.091

Binary Floating Point Digital Differential Analyzer 375

Another advantage of the BFPDDA appears when
second or higher order equations are solved. An inte­
grator receives its integrand increments in the form of
an exponent instead of a pulse. Since the magnitude of
the increment is passed between the integrators, the
integrator may receive increments of different magni­
tudes during the problem solution. Thus, the integrator
may have two or more increment inputs without having
the multiple inputs scaled to represent the same
magnitude.

In the BFPDDA magnitude scaling has been elimi­
nated. Each integrator dynamically rescales itself in­
dependently as the magnitude of its integrand varies.
The accuracy in the BFPDDA is not dependent on the
estimated maximum value used in the magnitude
scaling. With the BFPDDA the independent variable
step size may be changed easily with no reconnection
necessary. Finally, an integrator receiving an increment
from more than one component does not require all of
the incremental values to be of equal magnitude.

BFPDDA SOLUTION OF THE HARMONIC
EQUATION

The BFPDDA program for solving the harmonic
equation, x+oo2x = 0 is shown in Figure 4. The result of
the solution is obtained at any given time during the
solution by reading the current value contained in the
sin cot integrator, which in this problem is simply used
as a summer. In the results shown in this section, sin oot
was read after each iteration and the error calculated
at each point.

The BFPDDA can solve the same problem with
many different parameters without being rescaled or
reprogrammed. Even large variations in the magni­
tudes of the parameters have almost no effect. Table

TABLE IV—Maximum Errors in One Cycle Sine Wave Solutions

A (OP COS (at))
» u COS(iut)

A (Sin («t))

A(-«2 Sin (utl)

«2

0.4437
0.5653
1.8120
3.3890

2-io

0.00662
0.00881
0.01093
0.01328

Step Size
2-12

0.00165
0.00217
0.00271
0.00361

2-H

0.00040
0.00055
0.00064
0.00081

Figure 4—Interconnection of BFPDDA integrators to solve
harmonic equation

IV displays the maximum error that occurred during
the one cycle solution of a sine wave. The frequencies
were generated randomly from successive ranges
bounded by powers of two.

In the BFPDDA all the values shown in Table IV
were calculated without reprogramming or rescaling.
In the standard DDA a change to a smaller step size
would necessitate reconnection so that the proper values
were represented. Similarly, the DDA has to be re-
scaled each time the step size changes or the magnitude
of the frequency is significantly altered. In the case of
the BFPDDA the step size is changed by simply re­
loading the shift exponent registers and setting a smaller
exponent on the independent variable input lines. A
new frequency is simply reloaded in the Y register of
the integrator being used for constant multiplication
and the initial condition reset on the co cos (oot) inte­
grator in order to solve the harmonic equation for a
new co2 value.

The maximum errors increase as the frequency in­
creases since one cycle of the sine wave is broken into
fewer intervals. Thus, as higher frequency sine waves
are generated, smaller intervals may be necessary in
order to maintain accuracy. The smaller intervals will
not increase the overall problem time, however, since
the range of one cycle is much smaller.

The harmonic equation was also used for comparing
the accuracy of the BFPDDA against the accuracy of
the DDA. For this test co2 = 1 and the integrator con­
taining co2 was replaced by an inverter on the sign trans­
fer bit. The results which appear in Table V show that
the BFPDDA is twice as accurate as the DDA.

CONCLUSIONS

The emphasis in designing the BFPDDA has been on
improving user convenience.9 By reconstructing a
standard DDA to use floating point arithmetic and to
transfer exponents between its components, an easily
programmable device requiring no magnitude scaling
resulted. Moreover, the floating point arithmetic
proved the BFPDDA to be more accurate than the

376 Fall Joint Computer Conference, 1970

TABLE V—Maximum Errors in a One Cycle Solution of the
Harmonic Equation with w = 1

Step Size DDA B F P D D A

2-8 0.03209 0.01605
2-» 0.01477 0.00797
2~10 0.00709 0.00406

ordinary DDA. The accuracy improvement becomes
more significant as the variation in magnitude of the
problem variables increases. The BFPDDA also allows
for alterations in the rate of integration during a prob­
lem solution since no new scaling is necessary.

Considering current technology and the BFPDDA,
the hybrid computing system could be headed for new
horizons. The BFPDDA with all main advantages of
digital computation in an analog environment will be an
excellent special purpose differential equation solver
on-line with a time-shared digital computer. Dynamical
systems with unknown solutions can quickly be solved
since the solution will not depend on estimated maxi­
mum parameter values. Being digital the whole field
of automatic patching by program can make the
BFPDDA easier to use. Making the DDA floating
point and greatly increasing user convenience at only
a very slight cost increase should make hybrid com­
putation very popular.

REFERENCES

1 M W GOLDMAN
Design of a high speed DDA
AFIPS Conference Proceedings Fall Joint Computer
Conference pp 929-949 1965

2 R B M c G H E E R N NILSEN
The extended resolution digital differential analyzer: a new
computing structure for solving differential equations
I E E E Trans on Computers Vol C-19 pp 1-9 January 1970

3 T C BARTEE J B LEWIS
A digital system for on-line studies of dynamical systems
AFIPS Conference Proceedings Spring Joint Computer
Conference pp 105-111 1966

4 M W HOYT W T LEC O A R E I C H A R D T
The parallel digital differential analyzer and its application
as a hybrid computing system element
Simulation Vol 4 pp 104-113 February 1965

5 T C BARTEE I L LEBOW I S R E E D
Theory and design of digital machines
McGraw-Hill New York pp 252-265 1962

6 H D HUSKEY G N KORN
Computer handbook
McGraw-Hill New York Chapter 3 pp 14-74 1962

7 A GILL
Systematic scaling for digital differential analyzers
I R E Trans on Electronic Computers Vol EC-8 pp 486-489
December 1959

8 H K KNUDSEN
The scaling of digital differential analyzers
I E E E Trans on Electronic Computers Vol EC-14 pp
583-590 August 1965

9 J L ELSHOFF
The binary floating point digital differential analyzer
PhD dissertation The Pennsylvania State University
University Park Pennsylvania September 1970

