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INTRODUCTION 

Twenty years ago the digital differential analyzer, 
DDA, was developed to replace the analog computer 
in the solution of differential equations. Although the 
DDA is slower than the analog computer, the DDA is 
capable of more accurate results since its accuracy is 
not bounded by its component characteristics. The cost 
of solving differential equations with the DDA is 
quite low compared with other methods such as a 
general purpose machine, since the DDA is a more 
simple device. 

As time has passed, advances have been made in 
DDA technology. These advances have resulted in 
increased speed and accuracy,1,2 reductions in cost,1 

and improvements in man-machine interface.3 Still the 
DDA is seldom used except as a special purpose device. 
Despite the dependence of the problem solution on the 
quality of the components and the higher cost of the 
analog computer, analog computation continues to 
grow in popularity. Similarly, general purpose com­
puters continue to be more widely used even though 
they cost more and solve differential equations at a 
slower rate than the DDA. 

In recent years analog and digital computers have 
been combined into hybrid systems.3,4 In theory, the 
hybrid system takes advantage of the high speed of the 
analog computer and the easy programmability and 
decision capabilities of the digital computer. In practice, 
however, the speed of the analog computer is greatly 
reduced in operational performance by digital software 
and the digital-to-analog and the analog-to-digital 
conversion hardware. The general purpose digital 
computer can be programmed in an easy problem-
oriented language like Fortran while the analog portion 
of the problem must be physically patched. 

This paper concerns itself with a brief review of DDA 
technology and an investigation of ways in which to 

expand that technology. The emphasis is placed on in­
creasing the speed, reducing the cost, and improving 
the utility of the DDA in such a way that the DDA 
would replace the analog computer and provide a more 
practical hybrid system. 

THE DDA 

The vector form of the general linear homogeneous 
constant coefficient ordinary differential equation can 
be written 

x = Ax, x{0) =x0 (1) 

where A is a constant mXm matrix, and x and x are 
m X l column vectors. In rectangular integration the 
vector difference equation that replaces equation (1) 
is 

y(n+l)=y(n)+y(n)At = y(n)+Ay(n) (2) 

where from equation (1) 

Ay{n) = y{n)At = {At) Ay in). 

For any given value of y{0), an iterative solution of 
equation (2) can be obtained. If y{0)=xo, then x{t) 
is approximated through the relation 

x{nAt)=y{n)-\-0{{At)2) 

where 0{{At)2) represents the truncation error and 
nAt = t. 

In a DDA the fractional part of y (n) At is held in a 
residue register {R register) and only the integer part 
is used in equation (2). Let R{n) be the contents of 
the R register at t = nAt. Then the equation for y (n) At 
is modified to 

y(ri)At+R(n-l)=AZ(n)+R(n) 

where AZ{n) is a signed integer and \R{n) \ < 1 . 
Bartee, Lebow, and Reed,5 Huskey and Korn,6 and 
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McGhee and Nilsen2 explain the mathematical prin­
ciple of the DDA in detail. 

Figure 1 displays the block diagram and a program­
ming symbol for the DDA integrator. The F register 
contains the value of y(n). The AF input holds the 
value of Ay, the incremental change of the integrand, 
at each step. The AZ output and R register contain the 
integral and residue of y(n)At, respectively. Finally, 
the At input holds the value of At, the step size of the 
independent variable. 

With these values available, the iterative solution 
to equation (2) can be completed. A single step of 
rectangular integration is performed by the transfer 
equations 

Integration phase: YAt+R-^AZ+R 

Incrementation phase: F+AF—*Y 

where AF is a weighted sum of AZ outputs. By alter­
nating the integration and incrementation phases, the 
solution to equation (2) is iteratively realized. 

In operation the inputs and outputs in a DDA are 
represented by two binary bits, the sign bit and coeffi­
cient bit. For an arbitrary problem the input and out­

put increments each represent a fixed magnitude. For 
example, if AF=c, where c is a constant, then the co­
efficient bit is one or zero depending on whether or not 
there is a AF during each particular incrementation 
phase. The sign bit is one or zero depending on whether 
AF is negative or positive. Thus, the value c is fixed for 
the problem during the programming and is not actually 
transferred during the solution. Only a signed coeffi­
cient of one or zero is transferred. 

In practice the inputs and outputs in a base e DDA 
are coefficients of incremental values that are equal to 
integer powers of e. By choosing a step size equal to 
2~i in a binary DDA the YAt term can be calculated 
by a simple shift instead of a multiplication. Let 
At = 2~i for i a positive integer, then the F register is 
assumed to be shifted right i positions so that the R 
and F registers have their bits aligned. Thus, the inte­
gration phase is reduced to a simple addition. 

The method of programming a DDA resembles that 
of programming an analog computer. A certain quantity 
is assumed to be known. The other values are calculated 
from the assumed value. Finally, the assumed value is 
derived back from the known values. The actual pro­
gram must then be physically patched. 

The fixed point arithmetic used in the DDA is a 
major disadvantage of the DDA. Problems must be 
magnitude scaled for solution. Although Gill7 and 
Knudsen8 have developed a completely systematic 
procedure for scaling a DDA, the scaling problem is 
difficult and solution accuracy depends upon estimated 
maximum values. 

Since the DDA has not enjoyed widespread use, most 
of the developments in DDA's have been pointed at 
particular problem solutions. Usually emphasis is 
placed on increasing the speed and accuracy of the 
DDA, which happen to be inversely proportional. An 
improvement in one aspect of DDA's is often compro­
mised by added complications and new problems in 
other aspects. Like the analog, the inconvenience in 
using the DDA contributes to its lack of popularity. 
Because of the lack of popularity, only slight attention 
has been focused on improving user convenience. 

The emphasis in this work was aimed at user con­
venience in a hybrid computing system. Since the 
major problems seemed to be in programming and 
scaling, they were given a high priority. Being digital, 
two components can be connected or disconnected by 
passing their connection time through an AND gate 
with a switching variable that is either on or off, 
respectively. Thus, in a hybrid system, the general 
purpose computer can be used to program the DDA. 
The obvious answer to the scaling problems seemed to 
be floating point arithmetic. The use of floating point 
arithmetic was also expected to be more accurate which 
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is a very desirable effect. Floating point arithmetic 
was implemented in a DDA design and the design 
simulated on a general purpose digital computer. The 
implementation and simulation results appear in the 
remainder of this paper. 

THE BINARY FLOATING POINT DDA 

The purpose of this section is to present the binary 
floating point digital differential analyzer (BFPDDA). 
The BFPDDA differs from the conventional DDA in 
that the incremental units being transferred between 
the components are exponents. Multiple bits must be 
used to transmit an exponent instead of the usual one 
or two transmission bits in the regular DDA. Yet with 
as few as seven bits, signed quantities ranging from 
2 - 3 1 to 2+31 can be passed from one component to another 
component in the BFPDDA. 

In the BFPDDA floating point arithmetic is intro­
duced into the conventional DDA structure in place 
of the normal fixed point arithmetic. The floating point 
arithmetic transforms the conventional DDA in many 
ways without losing its basic structure. The altered 
structure, the mathematical algorithms, and the opera­
tion of the BFPDDA are presented in the following 
sections. 
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Figure 2—BFPDDA integrator block diagram 

THE BFPDDA INTEGRATOR STRUCTURE 

The BFPDDA should operate at the fastest speed 
possible in order to effectively replace the analog com­
puter; therefore, the integrators should operate in 
parallel. Each integrator with its own adders and con­
trol units is assumed to be on an integrated circuit chip. 
Figure 2 is a block diagram of a proposed BFPDDA 
integrator showing its basic units and the lines of com­
munication among these units. Note that the four units 
directly under the AY input are the same as the units 
in a DDA. 

Let the current value of the integrand F be repre­
sented by 

Y=±.yyyy*2k 

where yyy is the mantissa and k is the characteristic. 
Similarly, the residue R is represented by 

R = ±.rrrr*2k+j 

where \j\ is the number of positions the Y register is 
shifted right so its bits are aligned with the bits of the 
R register. The value of j is negative so that R<Y. 
Using these definitions, general descriptions of each of 
the units making up the integrator are briefly given as 
follows. 

F + A F Adder—This adder is used to increment the 
value of the integrand. 

Y Register—The Y register contains the mantissa of 
the integrand. 

R-\- YAt Adder—This adder performs the integration. 
R Register—The R register contains the mantissa of 

the residue. 
Y-exponent Register—The F-exponent is the char­

acteristic of the integrand. 
Rescale Control—The rescale control normalizes the 

integrand. 
Shift Exponent—The shift exponent is the number 

of places which the R register is shifted left in order to 
be aligned with the Y register. 

Integrate Control—This unit controls the information 
flow during each iteration. 

Output Control—This unit calculates the output 
increment. 

The Y and R registers contain mantissas of floating 
point numbers in binary coded form. In this paper the 
left most bit of the register is assumed to be the sign 
bit. The radix point is assumed to lie between the sign 
bit and the second bit of the register. Thus, the high 
order significant bit of the Y and R registers is the 
second bit. Thus, the R-\-YAt adder is a simple integer 
adder. 

Similarly, the F-exponent and shift exponent registers 
contain exponents in a binary coded form. The F-
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exponent register contains the number of shift positions 
the F register must be shifted to the left for the radix 
point to be properly positioned. The shift exponent is 
the number of places the R register is shifted from the 
Y register. 

THE MATHEMATICAL ALGORITHMS FOR 
THE BFPDDA 

The implementation of floating point arithmetic in 
the BFPDDA slightly alter the integration calculations 
used in the conventional DDA. The change in num­
ber representation requires an additional calculation to 
determine the output exponent. Finally, in order to 
make effective use of the dynamic scaling capabilities 
of a DDA with floating point arithmetic, algorithms for 
rescaling are included. 

The integration phase of each iteration realizes the 
transfer function 

R+YAt-^AZ+R. 

The Y and R values are represented by 

Y=±.yyyy*2k 

and 
R = ±.rrrr*2k+j 

where yyyy and rrrr are the contents of the Y and R 
registers respectively. The F-exponent register contains 
k and the shift exponent register contains j . Let 

A* =±1.0*2* 

where i<j. Then the integration phase is described in 
Algorithms I and II, where the carry flag is a simple 
set and reset flip-flop. 

Algorithm I.—Integration 

1. Shift the Y register j — i positions to the right. 
2. Add the shifted Y register to the R register. 
3. If the R register does not overflow, reset the 

carry flag; 
Otherwise, 
a. If the R register is positive, 

i. Decrement the R register by 1.0. 
ii. Set the sign bit associated with AZ to 

positive, 
iii. Set the carry flag. 

b. If the R register is negative, 
i. Increment the R register by 1.0. 

ii. Set the sign bit associated with AZ to 
negative, 

iii. Set the carry flag. 

Noticing that requiring i<j is a very practical 
restriction in the BFPDDA structure. The Y register 
is considered to be shifted | j | positions left in order to 
be aligned with the R register. Therefore, if the step 
size of the independent variable is not at least as small 
as 2j, a multiple bit overflow, which the DDA is not 
prepared to handle, could occur. 

Algorthim II.—Output calculation 

1. If the carry flag is set, transmit k-\-j as Aj along 
with the sign bit. 

2. If the carry flag is reset, transmit no output. 

During each iteration, the integrand must be up­
dated so that it is as accurate as possible. The incre­
mentation phase performs the transfer function 

Y+AY-+Y. 

The value of the integrand Y is the same as previously 
defined. The value of AY is of the form 

AF=±1 .0*2 m 

where m is the exponent being received on the AY input 
lines along with the correct sign. The procedure used 
for the incrementation of the integrand is now given in 
Algorithm III. 

Algorithm III.—Incrementation of the integrand 

1. If k<m, invoke Algorithm IV; 
Otherwise, 
a. Shift ±1.0 right k-m-l positions. 
b. Add the shifted value to the Y register. 
c. If the Y register overflows, invoke Algorithm 

V. 
d. If the magnitude of the Y register is less than 

one-half without considering the F-exponent, 
invoke Algorithm VI. 

An overflow condition occurs when the magnitude of 
AF is larger than the magnitude of F. Since this means 
that the change in F is larger than F itself, the F value 
is considered to be negligible. In this case the integrator 
is reset as defined in Algorithm IV. 

Algorithm IV.—Resetting the integrand 

1. Set the F register to ±0.5 depending on the 
sign of AF. 

2. Set the F-exponent register to m-\-l. 
3. Set the R register to zero. 

During the incrementation phase of each iteration, 
the F register is treated as a fixed point value. When 
the F register overflows, a rescaling of the integrator 
is performed as described in Algorithm V. 
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Algorithm V.—Rescaling for an increasing integrand 

1. Shift the F register one position to the right. 
2. Shift the R register one position to the right. 
3. Increment the F-exponent register by one. 

Just as the value of the integrand may get larger in 
magnitude, it may also get smaller. By keeping the 
fractional value of the integrand normalized in the F 
register, output overflows will tend to be smaller but 
will occur more frequently. The procedure for rescaling 
for a decreasing integrand is shown in Algorithm VI. 
Notice that this algorithm does not alter the R register. 
Many tests seemed to indicate that ignoring the R 
register gave the best results. 

Algorithm VI.—Rescaling for a decreasing integrand 

1. Shift the Y register one position to the left. 
2. Decrement the F-exponent register by one. 

THE OPERATION OF A BFPDDA 

As with the conventional DDA, the basic cycle of the 
BFPDDA is a two phase iteration. The integration and 
incrementation phases are outlined in Table I. 

In phase I the integration is performed. While the F 
register is being shifted and added to the R register, 
the output value is calculated. Then if an overflow oc­
curs, the calculated output value is transmitted, other­
wise, no output is transmitted and the calculated out­
put value is ignored. 

In phase II the integrand is incremented. An overflow 
in the addition causes the incremented value to be stored 
one position to the right and F-exponent register to be 
incremented by one. An increment that is larger than 
the current value of the integrand causes the F, F-
exponent, and R registers to be reset. On the other hand, 
if the mantissa is small enough, the result is stored on^ 
position to the left in the F register and the F-exponem 

, \ 

1 i 

A(ef) 

At 

Figure 3—DDA program for e* 

TABLE I—BFPDDA Operational Iteration 

I. Integration Phase II. Incrementation Phase 

R + YAt^AZ+R Y+AY^Y 
1. Integration 1. Incrementation 
2. Output Calculation 2. Rescaling 

is decremented by one. In this way the integrand re­
mains normalized. 

THE ELIMINATION OF MAGNITUDE 
SCALING 

One of the major drawbacks of the ordinary DDA is 
the fixed point arithmetic it employs. Each integrator 
must be magnitude scaled in order that the integrand 
register doesn't overflow during the problem solution 
causing the program to abort. On the other hand, if the 
maximum value is overestimated by a significant 
amount, the error being delayed in the R register of the 
integrator is much larger, causing the problem error to 
be increased. 

Consider the DDA solution of y — y = 0. The program 
for this equation is very simple as is shown in Figure 3. 
Despite the simple program, e* is one of the more diffi­
cult solutions for the DDA to calculate. The expo­
nential represents a continuously increasing function 
with a large variation in magnitude. Since the accumu­
lated error will never be canceled, the magnitude of 
the error increases as the value of the independent 
variable t increases. Also, the initial value of the expo­
nential function is its minimum value which results in 
very large initial errors since the integrator must be 
scaled for the values of increasing magnitude of the 
function. 

Table II illustrates the effect of magnitude scaling 
on accuracy. When the integrator was scaled for a maxi­
mum value of 23, the error in calculating e2 with a step 
size of 2~s was approximately equal to the error in 
calculating e2 with a step size of 2 -13 in an integrator 
scaled for a maximum value of 28. Although e' may be 
the extreme case, the exponential demonstrates the loss 
of accuracy in DDA problem solutions with variables 
that have a large variation in their magnitude. 

The standard DDA has another scaling problem 
which the exponential exhibits. When the DDA is 
programmed, the step size must be fixed since the shift 
between the F and R registers of the DDA is directly 
related to the step size. Thus the output line represents 
a fixed quantity and each output pulse is one unit of 
that quantity. If the step size is then changed, the out-
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TABLE II—Comparison of Maximum Errors in Calculating 
e2 = 7.3891 with a DDA Using Varying Magnitude Scalings 

Step Size Maximum Integrator Value 
23 = 8 28=256 

2~8 0.1553 3.3891 
2-9 0.0803 1.8891 
2-10 0.0406 1.0103 
2"11 0.0201 0.5141 
2-12 0.0102 0.2623 
2~13 0.0051 0.1309 
2-1* 0.0026 0.0657 

put quantity also changes. The new output quantity-
then must be reprogrammed at each point where it is 
used as an input to another component. 

In calculating the exponential the integrator is 
magnitude scaled. Suppose the maximum value is set 
at 23 and a step size of 2~10 is selected, then each overflow 
or output bit represents 2~7. The value of e° is loaded as 
the initial condition and e2 is calculated. According to 
Table II an error of 0.0392 has occurred. If this error 
is determined to be too large, a smaller interval must 
be chosen. Choosing an interval of 2 -12 makes each out­
put bit represent 2 - 9 . Each increment of Y is then one-
fourth of the previous increment size and the integrator 
must be reconnected to allow for these smaller incre­
mental values. 

Fixed point arithmetic in the regular DDA also 
causes scaling problems for integrators with more than 
one input incrementing its integrand value. Since the 
DDA is incremented by receiving a pulse, the incre­
ment value is fixed within the integrator being in­
cremented. Therefore, when the integrator receives 
increments from two or more components, the inputs 
must represent the same value. 

The magnitude scaling problem does not exist in the 
BFPDDA. As the integrand values become larger the 
integrator rescales upward. Similarly, the integrator 
rescales downward as the values become smaller in 
magnitude. The user does not have to estimate the 
maximum values or even know much about the rela­
tionships among the integrators since each integrator 
functions independently of the other integrators without 
regard to the integrand magnitude. 

Since the BFPDDA integrators rescale themselves, 
the accuracy of the BFPDDA is better than that of a 
regular DDA. When the integrand magnitude becomes 
smaller, the integrator rescales downward causing the 
fractional error of the integral in the R register to be 
reduced. A smaller overflow then occurs in the integra­
tion; however, the overflow occurs much sooner and 

introduces much less delay error than in the standard 
DDA. Thus the BFPDDA causes more, but smaller 
overflows than the ordinary DDA in solving most 
integrals which leads to more accurate solutions. 

Two solutions of el were calculated using the 
BFPDDA. After each iteration the calculated value 
was compared with the actual value and the error deter­
mined. The maximum errors in calculating e2 and e5 for 
varying interval sizes is shown in Table III . The same 
values were also calculated with a regular DDA and 
also appear. When the magnitude scaling was done for 
e2, only a three bit binary shift was necessary and the 
DDA was practically the same as the BFPDDA. How­
ever, when an allowance of eight bits wTas made for e5 

in the DDA and two and one-half times as many itera­
tions were performed, the BFPDDA was over ten 
times as accurate as the DDA. The BFPDDA could 
then solve e5 ten times as fast as the DDA for the same 
accuracy, since speed and accuracy are inversely 
proportional. 

The values appearing in Table III indicate that the 
BFPDDA is more accurate because of its rescaling 
techniques and floating point arithmetic. Over the 
shorter solution of e2 the accumulative error wasn't too 
critical. When a slightly longer problem was solved 
with a larger range in integrand magnitudes, the ac­
cumulative error in the DDA greatly impaired its ad­
vantages but only minimally effected the BFPDDA. 

Other factors not appearing in Table III also make 
the BFPDDA preferable. In changing from one inter­
val size to another, the shift exponent register was 
merely reloaded with the exponent of the step size 
chosen for maximum accuracy. Otherwise, there was 
no reconnection for the new problem solution. The 
values taken from the BFPDDA were directly readable. 
There was no multiplication by a scaling factor neces­
sary to put the calculated result in a form relative to 
that of the unsealed, original equation. 

TABLE III—Comparison of BFPDDA and DDA in Accuracy 
Solving e* 

Maximum Error in Maximum Error in 
Calculating e2 = 7.3891 Step Size Calculating e5 = 148.41 

DDA BFPDDA DDA BFPDDA 

0.1553 
0.0803 
0.0406 
0.0201 
0.0102 
0.0051 
0.0026 

0.1524 
0.0790 
0.0392 
0.0198 
0.0099 
0.0050 
0.0025 

2-8 

2-9 

2-io 

2-n 
2-i2 

2-i3 

2-14 

65.413 
35.624 
18.413 
9.393 
4.726 
2.367 
1.187 

5.543 
2.835 
1.413 
0.716 
0.359 
0.180 
0.091 
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Another advantage of the BFPDDA appears when 
second or higher order equations are solved. An inte­
grator receives its integrand increments in the form of 
an exponent instead of a pulse. Since the magnitude of 
the increment is passed between the integrators, the 
integrator may receive increments of different magni­
tudes during the problem solution. Thus, the integrator 
may have two or more increment inputs without having 
the multiple inputs scaled to represent the same 
magnitude. 

In the BFPDDA magnitude scaling has been elimi­
nated. Each integrator dynamically rescales itself in­
dependently as the magnitude of its integrand varies. 
The accuracy in the BFPDDA is not dependent on the 
estimated maximum value used in the magnitude 
scaling. With the BFPDDA the independent variable 
step size may be changed easily with no reconnection 
necessary. Finally, an integrator receiving an increment 
from more than one component does not require all of 
the incremental values to be of equal magnitude. 

BFPDDA SOLUTION OF THE HARMONIC 
EQUATION 

The BFPDDA program for solving the harmonic 
equation, x+oo2x = 0 is shown in Figure 4. The result of 
the solution is obtained at any given time during the 
solution by reading the current value contained in the 
sin cot integrator, which in this problem is simply used 
as a summer. In the results shown in this section, sin oot 
was read after each iteration and the error calculated 
at each point. 

The BFPDDA can solve the same problem with 
many different parameters without being rescaled or 
reprogrammed. Even large variations in the magni­
tudes of the parameters have almost no effect. Table 

TABLE IV—Maximum Errors in One Cycle Sine Wave Solutions 

A (OP COS (at)) 
» u COS(iut) 

A (Sin («t)) 

A(-«2 Sin (utl) 

«2 

0.4437 
0.5653 
1.8120 
3.3890 

2-io 

0.00662 
0.00881 
0.01093 
0.01328 

Step Size 
2-12 

0.00165 
0.00217 
0.00271 
0.00361 

2-H 

0.00040 
0.00055 
0.00064 
0.00081 

Figure 4—Interconnection of BFPDDA integrators to solve 
harmonic equation 

IV displays the maximum error that occurred during 
the one cycle solution of a sine wave. The frequencies 
were generated randomly from successive ranges 
bounded by powers of two. 

In the BFPDDA all the values shown in Table IV 
were calculated without reprogramming or rescaling. 
In the standard DDA a change to a smaller step size 
would necessitate reconnection so that the proper values 
were represented. Similarly, the DDA has to be re-
scaled each time the step size changes or the magnitude 
of the frequency is significantly altered. In the case of 
the BFPDDA the step size is changed by simply re­
loading the shift exponent registers and setting a smaller 
exponent on the independent variable input lines. A 
new frequency is simply reloaded in the Y register of 
the integrator being used for constant multiplication 
and the initial condition reset on the co cos (oot) inte­
grator in order to solve the harmonic equation for a 
new co2 value. 

The maximum errors increase as the frequency in­
creases since one cycle of the sine wave is broken into 
fewer intervals. Thus, as higher frequency sine waves 
are generated, smaller intervals may be necessary in 
order to maintain accuracy. The smaller intervals will 
not increase the overall problem time, however, since 
the range of one cycle is much smaller. 

The harmonic equation was also used for comparing 
the accuracy of the BFPDDA against the accuracy of 
the DDA. For this test co2 = 1 and the integrator con­
taining co2 was replaced by an inverter on the sign trans­
fer bit. The results which appear in Table V show that 
the BFPDDA is twice as accurate as the DDA. 

CONCLUSIONS 

The emphasis in designing the BFPDDA has been on 
improving user convenience.9 By reconstructing a 
standard DDA to use floating point arithmetic and to 
transfer exponents between its components, an easily 
programmable device requiring no magnitude scaling 
resulted. Moreover, the floating point arithmetic 
proved the BFPDDA to be more accurate than the 
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TABLE V—Maximum Errors in a One Cycle Solution of the 
Harmonic Equation with w = 1 

Step Size DDA B F P D D A 

2-8 0.03209 0.01605 
2-» 0.01477 0.00797 
2~10 0.00709 0.00406 

ordinary DDA. The accuracy improvement becomes 
more significant as the variation in magnitude of the 
problem variables increases. The BFPDDA also allows 
for alterations in the rate of integration during a prob­
lem solution since no new scaling is necessary. 

Considering current technology and the BFPDDA, 
the hybrid computing system could be headed for new 
horizons. The BFPDDA with all main advantages of 
digital computation in an analog environment will be an 
excellent special purpose differential equation solver 
on-line with a time-shared digital computer. Dynamical 
systems with unknown solutions can quickly be solved 
since the solution will not depend on estimated maxi­
mum parameter values. Being digital the whole field 
of automatic patching by program can make the 
BFPDDA easier to use. Making the DDA floating 
point and greatly increasing user convenience at only 
a very slight cost increase should make hybrid com­
putation very popular. 
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