
105

Time-sharing of hybrid computers
using electronic patching by ROBERT M. HOWE University of Michigan

RICHARD A. MORAN
THOMAS D. BERGE

Applied Dynamics
Ann Arbor, Michigan 48106

INTRODUCTION

Ever since the introduction of patchboards for allowing
storage of analog-computer programs, the desirability of
having a remotely controlled switch matrix to replace
the analog patchboard has been evident. Only recently,
however, has automatic patching received widespread
interest and study 1, 2, 3. One reason for this is the
current widespread availability of hybrid computer sys-
tems, with the result that the automatic patching pro-
gram can be stored and implemented through the gen-
eral-purpose digital computer. Not only have hybrid
computers made automatic patching of the analog sub-
system more feasible, but also they have emphasized the
desirability of having automatic patching.

Additional technological developments have made
automatic patching feasible. The availability of low-cost,
high-performance solid-state switches for implementing
the necessary switching matrices is very important. Also,
low-cost integrated circuit chips can be used to provide
storage of switch settings. Finally, the availability and
widespread use of digitally set coefficient devices for the
analog subsystem allows high-speed setup of all the
parameter values as well as component interconnections.
This in turn allows complete problem reprogramming
within milliseconds, which means that time-sharing of a
single hybrid computer through remote stations is prac-
tical. The resulting increase in computer cost-
effectiveness far exceeds the extra cost of the hardware
and software necessary to implement automatic patch-
ing of the analog subsystem.

In the paragraphs to follow we will describe the details
of an automatic-patching system for the AD/FOUR
analog/hybrid computer shown in Figure l. As of the

writing of this paper more than 60 AD/FOUR computer
systems are operating in the field, many of them inter-
faced with general-purpose digital computers. Because
the design of this computer reduces the number of switch

elements needed to mechanize an efficient automatic-

patching system, it was decided to add this capability to
the existing system as opposed to designing a completely
new system from scratch. This has the advantage that ,

AD/FOUR systems in the field can be updated to <

include automatic patching. _

The next section describes the configuration of the
automatic patching system. Following sections present
an example application, discuss diagnostic consid-
erations, and summarize the system capabilities when
operating in a time-shared mode using remote terminals.

Figure I -AD/FOUR computer system .I I

106

DESCRIPTION OF THE SYSTEM

In the AD/FOUR conventional analog programming is
achieved using patchcords for interconnections between
holes in the large removable patchboard in the center of
the console shown in Figure 1. This patchboard is
divided into four quadrants (hereafter called fields), with
a matrix of 32 x 30 = 960 holes in each field. The fields are
numbered 0, 1, 2, and 3, as shown in Figure 2, and the
fields are normally filled with computing components in
the order 2, 3, 0, 1. Thus field 1, in the upper right corner
of the patchboard, is the last to be filled with analog
components, and very few of the existing systems are
expanded into field 1. For this reason it was decided to
terminate the electronic-switch matrices for automatic

programming in field 1. These are then patched to the
appropriate holes in fields 0, 2, and 3 to mechanize the
automatic patching. Thus a single analog patchboard is
permanently wired with the automatic program
configuration. Note that this patchboard can be replaced
by a conventionally wired patchboard at any time when
it is desired to operate the AD/FOUR in the normal
patchboard mode.
As can be seen in Figure I, there is a second patch-

board on the right side of the console. This is just half the
size of the central analog patchboard; it terminates the
logic-level signals associated with the hybrid and digital
computing elements in the computer. No attempt has
been made to implement general-purpose automatic
patching of the logic elements. Instead, it is proposed to
accomplish all logic functions in the digital subsystem of
the hybrid computer. The logic patchboard is wired to

implement the necessary control and timing functions
when the computer is operating in the automatic patch-
ing mode.

If completely flexible automatic patching were
needed, then it would be necessary to be able to connect
every analog element to every other element. Since this
would require a prohibitively large number of switches,
one invariably divides the analog system into modules
when mechanizing an automatic patching system. Flex-
ible interconnection of analog components within each
module is then provided, along with programmable
interconnections between modules. In the subject com-
puter the module size for automatic patching is an

analog field, which includes the following component
count:

16 bipolar summer integrators

12 multipliers, each with a bipolar input
buffer amplifier

64 digital coefficient units (DCU’s)

In addition, each of the 16 summer integrators and 12
multiplier buffer amplifiers has a digital reference unit
(28 in all). Function generation is performed using
DCU’s updated from the digital computer, with special
dual comparators used to provide the necessary inter-
rupts for DCU updating.

Figure 3 - Circuit schematic for DCU switch matrix

, , .B: ., ..

Figure 3 shows the circuit schematic within a given
field for the summer-integrator and DCU switch matrix.
Each bipolar output of the summer-integrators in the
field is permanently patched to a pair of DCU’s, utilizing
16 x 2 = 32 DCU’s (amplifiers 200, 201, etc. in Figure 3).
Each output of an additional 8 bipolar amplifiers (100,
101, etc. in Figure 3) is patched permanently to four
DCU’s, utilizing 8 x 4 = 32 DCU’s. The input to each of
these 8 amplifiers can be switched to any of the 16

summer-integrator outputs. Thus all summer integrators
drive a minimum of 2 DCU’s, and can be programmed
additionally to drive a total of 6, 10, 14, etc., DCU’s.

107

The output of each of the 64 DCU’s in the computer in
Figure 3 can be programmed to any of the 16 summer-
integrator input summing junctions, or to any of the 12
multiplier Y-input buffer-amplifier summing junctions
(see Figure 4). Thus a 64x28 summing-junction switch
matrix for DCU outputs is represented by the circuit in
Figure 3, as well as a 16x8 switch matrix for the DCU
buffer amplifier inputs. Each DCU is the standard 15-bit
AD/FOUR single-buffered MDAC, with the most
significant bit providing polarity. Thus a given DCU can
be programmed between a gain of - 1.6384 and + 1.6383
using two’s complement logic and a minimum bit size of
0.0001. Since the DCU is a summing-junction output
device, summing-junction switching can be used
throughout the switch matrix.
A digital reference unit (DRU) is permanently

patched to each of the 16 summer-integrator amplifiers,
allowing a programmable bias. Also, the output, VIC, of
an initial-condition amplifier is patched to all of the 16
integrator-summer input terminals. This allows initial
conditions for the entire field to be set sequentially using
the single DRU which drives the initial condition am-
plifier. The procedure starts with all integrators returned
to the IC (Initial Condition) mode with the DRU set at
zero (i. e. , V IC = 0). This puts zero initial conditions on
all integrators, which are then all switched to HOLD.
Following this, each integrator is switched to IC sequen-
tially with the DRU programmed to yield the desired
initial condition for that particular integrator. The in-
tegrator is then returned to HOLD and the next in-

tegrator switched to IC, etc. After all initial conditions
have been established in this manner, the integrators can
all be switched to Operate.

Figure 4 shows the schematic for the connections to
the 12 multipliers within a given field. The bipolar X
inputs for each multiplier are permanently wired to
specific summer-integrator outputs. The bipolar Y in-
puts are each programmed to the outputs of the 12

bipolar summers in the field. The summing junctions of
these amplifiers are in turn switchable to the outputs of
any of the 64 DCU’s in the field (see Figure 3). In

addition, there is a DRU permanently patched to the
input of each of the 12 Y input buffer amplifiers,
allowing a programmable bias into each multiplier Y
input.

Extensive study of typical analog programs has shown
that the X inputs to multipliers are seldom all independ-
ent. For this reason the multiplier X inputs are assigned
to summer-integrator outputs using the configuration
shown in Figure 5. The first four multipliers are as-

signed, respectively, to the first four summer-integrators.
The fifth multiplier (no. 221) has its X input assigned to
the fourth amplifier (no. 211), and the sixth multiplier
(no. 222) has its bipolar X input patched to the common
terminal of a 3-position, double-pole relay (nos. 220,
221). The position of this relay, part of the standard
AD/FOUR equipment complement, is controlled by
registers set from the digital computer. In this way the X
input to multiplier 222 can be programmed to amplifier
210, 21 l, or 222. Thus the configuration of multiplier X

Figure 4 - Circuit schematic showing multiplier switch matrix

Figure 5 - Schematic showing assignment of amplifier outputs to
multiplier X inputs in one-half of field 2

108

inputs assigned, respectively, to summer integrators in
half a field can be programmed to be 1, 1, 1, 2, 1 ; 1, 1, 1,
3; or 1, 1, 2, 2. Later examples show the utility of this
scheme.

Four hard feedback-limiters are permanently pro-
grammed, respectively, around four of the 16 summer-
integrators in each field in the automatic patching sys-
tem. DRU (digital reference unit) outputs are per-
manently programmed in pairs to each hard limiter to
allow digitally controlled setup of the + and - limits. In
the subject computer each summer-integrator is nor-

mally in the summer configuration. By grounding, re-
spectively, either one of two patchboard holes associated
with each summer integrator, the amplifier can be
changed to an integrator or to a high-gain configuration.
In the automatic-patching system these amplifier
configuration holes in each field are patched to corre-
sponding holes in field 1. These field-1 holes, under
register control from the digital computer, provide pro-
gram-controlled electronic grounds. Thus any of the 16
summer-integrators in each field can be configured as
summers, integrators, or high-gain amplifiers.

FUNCTION GENERATION

Generation of precision functions of one or more vari-
ables on analog computers has always presented major
difficulties. In fact, one of the principle tasks of the
digital subsystem in many hybrid problems has been the
generation of multi-variable functions for use by the

analog sybsystem. However, this approach has serious
dynamic limitations. Since it is desirable to have the

automatically patched analog computer operate at rela-
tively high speed in order to permit time sharing, pure
digital function generation is undesirable. Instead, a
hybrid method analogous to that first proposed by Rubin
4 is utilized.

The graph in Figure 6 illustrates the function-gener-
ation method when applied to a function of one variable.
Between breakpoints xi and xi+ 1 the function f(x) is

represented as having intercept ai and slope bi, i.e.,
f(x)=ai+bix. The mechanization is achieved by termi-
nating two DCU’s in amplifier 1, as shown in the figure.
Whenever x crosses over into a new zone, e.g., between
xi+ 1 and xi+2, the two DCU’s are updated to represent
ai+ I and bit+ 1, respectively, the intercept and slope in
the new zone.

High-speed detection of the zone in which x is located
is achieved by a special dual comparator with digitally-
programmed bias inputs xi and xi+ 1. Whenever x passes
outside the zone bounded by xi and xi+ l, the gate shown
in Figure 6 throws the analog system into HOLD. By
sensing the state of comparators A and B the digital
computer determines whether x now lies in the i-1 or
i+ 1 zone. It then looks up the values for intercept a and
slope b in the new zone and sets the corresponding
DCU’s terminated in amplifier I to the new values. It
also sets the bias inputs into comparators A and B to the
corresponding values for the new zone. After completing
these operations the digital computer restores the analog
system to the OPERATE mode.

Figure 6 - Circuit schematic for function generation

Because the analog computer is in the HOLD mode
while the digital computer is accomplishing the neces-
sary DCU and DRU updatings, any dynamic errors
which would otherwise result from the time required by
the digital computer to accomplish the updatings are

eliminated. The only significant sources of dynamic
error include the lag in dual comparator response (the
order of one microsecond), the delays in HOLD mode
control switches (the order of one microsecond), and
differential timing errors in activation of both HOLD
and OPERATE mode control (less than one micro-
second). Also, offsets caused by cycling the integrators
back and forth between HOLD and OPERATE must be
considered. In the subject computer each such mode
cycle causes the order of 0.5 millivolt of additional
integrator output offset for integrators programmed
with a gain of 1000 (typical for high-speed problem
solution). At foreseeable HOLD-OPERATE cycle rates
in implementing the function generation as described
here, the equivalent steady offset represents only from
0.0 % to 0.1 % of full scale. Even with these offsets there
will be no significant effect except where open-ended
integrations are involved. Study has shown that in-
tegrator drift during HOLD is completely negligible
over the time required for updating DCU’s and DRU’s.

109

Generation of functions of two variables is imple-
mented using the formula fix,y}=a+bx+cy+dxy. The
circuit is shown in Figure 6 using 4 DCU’s terminated in
amplifier 2. The DCU settings correspond to the func-
tion f(x,y) for xi x xi+ l, yi y yi+ 1. When either x or y
moves into a new zone, as detected by the respective dual
comparator, the 4 DCU’s are updated while the analog
computer is in HOLD. The resulting f(x,yJ analog func-
tion is equivalent to linear interpolation in x and y. A
function of three variables can be generated using the
formula f(x,y,zJ = a + bx + cy + dz + exy + fxz + gyz
+ hxyz. As before the 8 DCU settings needed to

generate the three-variable function correspond to the
appropriate x, y, and z zones.

Since each summer-integrator in the automatic patch-
ing system can terminate any number of DCU’s and has
a permanently assigned DRU (digital reference unit),
each summer integrator can be used to generate any
multivariable function or any sum of multivariable func-
tions. Reference to Figure 4 shows that each Y-input
bipolar buffer amplifier for multipliers terminates any
number of DCU’s as well as an assigned DRU. Thus it
can be used to generate the sum of multivariable func-
tions, which in turn are multiplied by the other multiplier
input, X.

In the computer’s automatic patching system, 8 dual
comparators, each with an assigned DRU pair as shown
in Figure 6, are available in each analog field. Inputs for
these 8 dual comparators can be assigned to any of the
16 summer integrators in the field, using switches driven
by digitally set registers. Fixed function generators, e.g.,
sin x, cos x, and log x function generators, can be
terminated in multiplier locations in the computer. In
this case the general I/O format shown in Figure 4 for
multipliers is preserved. For example, the Y-input bipo-
lar buffer amplifier is used to terminate the sin x and cos
x fixed dfg (still with summing-junction output and
hence output switches).

INTERFIELD PATCHING

Up to now we have only described the circuit
configuration needed to patch automatically the con-
nections within one field. It is, of course, also necessary
to implement interconnections between each of the fields
(three-fields maximum; see Figure 2). This is accom-

plished in the following two ways:
I. The first of the two DCU’s permanently as-

signed to the output of each summer integrator
. (e.g., DCU 200, 202, etc., in Figure 3) has its

output programmable to the summing-junction
input of any summer-integrator in the other two
fields as well as summing junctions in its own field.

II. The input to each quad DCU buffer amplifier
can be switched to any summer-integrator am-
plifier output in the other two fields as well as in its
own field (see Figure 3).

The effectiveness of the above automatic interfield

patching capability is best appreciated by studying ex-
ample problems. Extension of II above to amplifier

outputs trunked in from adjacent consoles provides
effective interconsole trunking capability.

DIAGNOSTICS

Diagnostics, both to determine proper component func-
tioning and to debug analog programs, is appreciably
simpler with the automatic-patching system than with a
conventional analog patchboard program. First of all,
the patchboard on which the automatic-patching pro-
gram is wired also serves as the diagnostic patchboard,
i. e. , no special diagnostic patchboard is required. Sec-
ond, because of the fixed configuration, the complete
computer control of all component modes and inter-
connections, the presence of programmable initial condi-
tions and bias inputs for every bipolar amplifier, etc., it
is extremely straightforward to write the software for
checking every analog amplifier, DCU, DRU, and non-
linear element as well as every matrix switch.

For example, proper functioning of every DCU and
DCU output switch can be implemented by setting a
one-machine-unit initial condition on the integrator driv-
ing each DCU, with all other summer-integrators pro-
grammed as summers. Each bit of the DCU can be
checked individually by programming the DCU back to
the driving-amplifier input and monitoring that amplifier
input. Next the DCU can be set at, say, unity gain and
its output switched successively to every amplifier sum-
ming junction (both summer-integrators and multiplier
Y-input buffers). Proper matrix-switch functioning is
assured by checking the respective amplifier outputs.
Equally straightforward checks can be implemented for
other components, including a rate test for all in-

tegrators using the programmable bias (DRU) input.
The thousands of individual checks making up an overall
three-field diagnostic will take only seconds, with easily-
identified printout of any malfunctions.
A similar scheme is proposed for program

verification, where, successively, a given initial condition
(usually one machine unit) is applied to every integrator
with the output (or summing-junction input) to all

amplifiers measured and stored. This allows checking of
the setting and input assignment of every DCU, as well
as its output assignment. By programming unit X and Y
inputs to each multiplier, successively, and monitoring
all summer outputs and integrator inputs, multiplier
output assignments can be checked. Function generator
setup can be checked by observing amplifier outputs for
successively programmed values of the input variable. It
is believed that this type of program verification is even
more powerful and easily debugged than the more con-

&dquo;

>

ventional static check.

. , ’

TIME-SHARED OPERATION . ° . ,

’

WITH TERMINALS

It is estimated that complete setup time for all com-

ponent configurations, switch-matrix registers, and
DCU and DRU settings will be approximately 10 mil-
liseconds for the AD/FOUR automatic-programming
system. With integrators programmed at nominal gain

110

settings of 1000, this implies solution times of perhaps 10
to 100 milliseconds for typical systems of nonlinear
differential equations. Such rapid program turnaround
time, in turn, suggests that it should be quite feasible and
extremely cost effective to time-share a single hybrid
system among a number of users stationed at remote
terminals.
A relatively simple terminal system suitable for time-

sharing is shown in Figure 7. This is the AD Dynamics
Terminal, originally developed primarily for the educa-
tional market in order to allow individual terminal

operators to time-share a single problem programmed
on the AD/FOUR or AD/FIVE hybrid computer.
Across the top of the front panel of the terminal are
eight 3-digit-plus-sign parameter-entry thumbwheel
switch sets which are assigned, respectively, to 8 problem
parameters. To the right are 8 pushbuttons which con-
trol singly or in combination logic signals on the hybrid
system, which in turn control problem configuration. On
the lower panel are channel selector, gain, and bias
controls for the x and y axes of the memory scope used
for solution readout. Also on the lower panel of the
terminal are the computer mode-control switches.
A number of terminals (up to 16 or more) can be

connected to a single AD/FOUR hybrid computer. The
computer interrogates each terminal in sequence to see
whether the operator has requested a solution since the
last interrogation of his terminal. If he has, the computer
sets his parameter values and proceeds to generate a
solution, which is stored on the memory scope and takes,
perhaps, 50 milliseconds. If the operator has not re-
quested a solution, the computer wastes no time and
skips to the next terminal for interrogation. Under these
conditions each terminal operator usually receives a
response to his solution request in a fraction of a second,
and can obtain and display multiple solutions i.
different parameter settings about as fast as he can reset
the parameter-entry wheels and push the solution but-
ton.
When operating with this automatic programming

system, the Dynamics Terminal will be used to call up
various programs using the 8 logic pushbutton switches
(256 combinations). Several of the pushbuttons can be
used to assign the 8 parameter inputs to different groups
of problem parameters. If a given terminal operator
calls for a solution, his problem is programmed on the
computer upon interrogation of his terminal. If the

problem has been stored in core (roughly 500 words
required for a typical large problem), then the program
setup takes only about 10 milliseconds. The net result is
an access time essentially comparable to that now en-
joyed with the Dynamics Terminal System, except that
each user receives his own problem when he obtains
control of the computer.
When the relatively simple Dynamics Terminals as

described above are used for time-sharing, initial setup
and debugging of each problem must be done using the
conventional hybrid 1-0 and not through the terminal.
Obviously, it would be advantageous to have a more
sophisticated terminal which also allows problem setup
and debugging, in addition to problem running. This

Figure 7 - Dynamics Terminal

more sophisticated terminal will probably require a
keyboard, alpha-numeric display, and perhaps even a
mini-digital computer. In any case, if problem setup and
debugging is to be achieved through terminals while
time-sharing the hybrid computer with other terminals,
a very extensive and powerful software system for time-
sharing will have to be available for the digital subsys-
tem. ,

z

A SIMPLE EXAMPLE

As a simple example for the programming of a nonlinear
differential equation, consider the Vander Pol equation:

A circuit for solving this equation using the automatic
patching setup is shown in Figure 8. Since the solution is
known to approach a limit cycle of amplitude 2, we have
indicated that x/2 is computed. Thus x = 2 corresponds
to x/2 = 1 (one machine unit) at the output of integrator
201. Since DCU’s can be set to gains between -1.6384
and + 1.6384, the value of the parameter , as set on
DCU 212, can range up to 1.6383/4 = 0.4096.
Although the gain (time scale) of the two integrators is

under digital program control, integrator gain constants
of 1000 would normally be used for a high-speed solu-
tion. Under these conditions the resulting oscillation
would have a period of approximately 6 milliseconds,
which means that for five cycles to be displayed the
solution would take about 30 milliseconds. The problem
can be rescaled to allow higher values of by simply
reducing each integrator gain by the same factor. For
example, if the gain of each integrator is reduced by a
factor of 4, DCU’s 200, 203, and 212 would be reset to
0.25, -0.25, and , respectively. Now can range up to

1.6383, and the computer solution is one-fourth as fast
as before. Thus about 120 milliseconds are required for
some five cycles of the solution. Or by programming the
basic integrator time scales to X 10,000 instead of
XI 000, about 12 milliseconds is required for five cycles
of the solution.

111

Figure 8 - Automatic patching circuit for van der pol’s equation

It should be noted that the address and data format

currently used for setting DCU’s in the AD/FOUR is
used for setting the switch registers needed to program
the connections shown in Figure 8. The address indicates
the device to which the switch common is connected. The
data word indicates the component to which the device is
connected. In the address fields 4, 6, and 7 are used
instead of fields 0, 2, and 3 in order to distinguish the
address of switch registers from the address of actual
components, as used for readout purposes or DCU setup
purposes. Hence the field address of all switch commons
in Figure 8 is 6 instead of 2. The first 3 bits of the data
word give the field to which the switch is to be connected,
the next 3 the area, the next 3 the number. In each case
the switch goes to an amplifier. Thus the following list
would be required to implement the switch settings in
Figure 8.

Setting Data Word
No. Component Address Field Area Number

_ 1 ~ DCU 600 010 000 001 1

’ 2 DCU 601 010 001 001
3 DCU 602 010 000 011 1
4 -_ DCU 603 010 000 000

3 DCU 610 010 000 010
6 DCU 612 010 000 000
7 MULT 600 010 001 1 001 1
8 MULT 601 1 010 001 1 000

For clarity the switch setting numbers 1 thru 8 are shown
in Figure 8 to allow correlation between the above table
and the settings. Actually, in implementing the switch
settings the digital computer merely thinks it is address-

ing and setting DCU’s, so that existing HCR’s (hybrid
communication routines) can be used. Although the
example in this section is very simple, it illustrates the

implementation of the automatic patching scheme for
solving a nonlinear differential equation. The actual
switching configuration described in this paper evolved
from considering the program for much larger problems,
e.g., nonlinear partial differential equations, six-degree-
of-freedom flight equations, complex control systems,
etc.

SWITCHING SYSTEM

There is a tradeof’ between hardware and software in

any automatic patching system. By choosing a system of
only three large modules of sixteen integrators each we
have enormously simplified the setup procedure, allow-
ing a direct programming technique without the need for
any fancy interpreter, i.e., standard HCR’s are utilized
to control the interconnections. Indeed the setup proce-
dure is so direct that there is no additional training
burden in implementing this system.
The number of switches in the system is as follows:

Switches per Field:
’

.

’ ,’.
’

64 DCU’s to 28 S.J.’s 1792
12 MULT S.J.’s to 16 S.J.’s

~

192
8 QUAD DCU AMPL to 16 Outputs 128
8 DUAL COMP to 9 AMPL 72

2184

Interconnection between Two Fields

z

(16DCU’sx 16) x 2 512

(8 QUAD DCU AMPL to
’

256
16 Outputs) x 2

Total Switches
’

768

One Field System
(16 Integrators) .

2184

Two Field System
(32 Integrators) . 2184

.. , ,
2184

.

’

, 768

..
~ 5136

Three Field System
°

(48 Integrators)
~

2184
. 2184

.

2184
’ ~ 768

’ ’ ’

768
- ’ 768

.

’

8856

These numbers compare very favorably with those of
other systems previously cited. Reference 3 points out
the advantage of a current-patched computer in an
automatic patching system. However, the profound ad-
vantage of implementing such patching in a computer

112

equipped with only digital coefficient devices and con-
trolling the interconnections (&dquo;patching&dquo;) with the same
software which sets the coefficient devices has been
overlooked.

It can be seen from the switch quantities that the
system will add about 20% to the cost of the hybrid
system, a figure which can be substantially recovered in
the saving in patching hardware alone.

The system is flexible. Since it is implemented on a
patchboard, the patchboard can be modified easily.
Moreover this patchboard can be removed and the
computer can be used in the traditional way. Also large
numbers of consoles can be easily and economically
retrofitted with this system.

Finally, the system uses modern electronic switches.
This allows true hybrid time-sharing, providing the
rather large software investment is made. Even without
such an investment, the system will provide time-sharing

RICHARD A. MORAN is a graduate of the United States Naval
Academy and holds an M.S. Degree in Electrical Engineering from
Stanford University, majoring in Systems Techniques. For six years
prior to joining Applied Dynamics in 1967, he was on the faculty of the
U.S. Air Force Academy where he was Director of the Analog
Computer Laboratory. He has also taught in the engineering and
science area for Baylor University and the University of Colorado. His
consulting activities have included several government agencies and
analog computer manufacturers. Mr. Moran is Manager of Marketing
Services at Applied Dynamics and is responsible for the generation of
documentation for the product line, direction of training courses
offered to customers, operation of the Hybrid Computation Facility,
and Advertising. He is past Chairman of the Rocky Mountains
Simulation Council and member of the SCI Board of Directors. Mr.
Moran is a Senior Member of the I.E.E.E. and I.S.A., a Life Member
of SCI and a registered professional engineer.

of the analog console with complete repatching between
successive runs.

REFERENCES:

1 STARR D A JOHNSON J J
The design of an automatic patching system
SIMULATION June 1968 pp 281-288

2 HANNAUER G
Automatic patching for analog and hybrid computers
SIMULATION May 1969 pp 219-232

3 GRACON T J STRAUSS J C
A decision procedure for selecting among proposed automatic analog
computer patching systems
SIMULATION September 1969 pp 133-145

4 RUBIN A I

Hybrid techniques for generation of arbitrary functions
SIMULATION December 1966 pp 293-308

THOMAS D. BERGE is a graduate of the University of Michigan at
Ann Arbor where he received his B.S. and M.S. Degrees in Electrical
Engineering as a General Motors scholar. He is currently doing course
work toward his professional EE degree. In 1966 Mr. Berge joined
Applied Dynamics where he became a Product Manager in Computer
Development. His circuit design experience includes hard limiters, high
speed electronic switches, and digital to analog converters. Recently,
he managed development of an on-line hybrid computer system to
reduce the data obtained in analyzing automobile exhaust emissions.
He is the project leader for the development of the electronic patching
system for the AD/Four computer. Mr. Berge is a member of Tau
Beta Pi, Eta Kappa Nu, Phi Kappa Phi, and the Instrument Society of
America.

*Also published in Proceedings of the Summer Computer Simulation
Conference, Denver, June 10-12, 1970. Republished with permission of
copyright owners.

