
A survey of techniques for recognizing
parallel processable streams in
computer programs *

by C. V. RAMAMOORTHY and M. J. GONZALEZ

The University of Texas
Austin, Texas

INTRODUCTION

State-of-the-art advances—in particular, anticipated
advances generated by LSI—have given fresh impetus
to research in the area of parallel processing. The
motives for parallel processing include the following:

1. Real-time urgency. Parallel processing can
increase the speed of computation beyond the
limit imposed by technological limitations.

2. Reduction of turnaround time of high priority
jobs.

3 Reduction of memory and time requirements
for "housekeeping" chores. The simultaneous
but properly interlocked operations of reading
inputs into memory and error checking and
editing can reduce the need for large inter­
mediate storages or costly transfers between
members in a storage hierarchy.

4. An increase in simultaneous service to many
users. In the field of the computer utility, for
example, periods of peak demand are difficult to
predict. The availability of spare processors
enables an installation to minimize the effects
of these peak periods. In addition, in the event
of a system failure, faster computational speeds
permit service to be provided to more users
before the failure occurs.

: This work was supported by NASA Grant NGR 44-012-144.

o. Improved performance in a uniprocessor multi-
programmed environment. Even in a unipro­
cessor environment, parallel processable seg­
ments of high priority jobs can be overlapped so
that when one segment is waiting for I /O, the
processor can be computing its companion
segment. Thus an overall speed up in execution
is achieved.

With reference to a single program, the term "paral­
lelism" can be applied at several levels. Parallelism
within a program can exist from the level of statements
of procedural languages to the level of micro operations.
Throughout this paper, discussion will be confined to
the more general "task" parallelism. The term "task"
(process) generally is intended to mean a self-contained
portion of a computation which once initiated can be
carried out to its completion without the need for
additional inputs. Thus the term can be applied to a
single statement or a group of statements.

In contrast to the way the term "level" was used
above, task parallelism can exist at several levels within
a hierarchy of levels. The statements of the main
program of a FORTRAN program, for example, are
said to be tasks of the first level. The statements within
a subroutine called by the main program would then
be second level tasks. If this subroutine itself called
another subroutine, then the statements within the
latter subroutine would be of the third level, etc. Thus
a sequentially organized program can be represented
by a hierarchy of levels as shown in Figure 1. Each

1

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1478559.1478561&domain=pdf&date_stamp=1969-11-18

2 Fall Joint Computer Conference, 1969

LEVEL 1 LEVEL 2 LEVEL 3 LEVEL n

_•

Figure 1—Hierarchical representation of a sequentially
organized program

block within a level represents a single task; as before,
a task can represent a statement or a group of state­
ments.

Once a sequentially organized program is resolved
into its various levels, a fundamental consideration of
parallel processing becomes prominent—namely that
of recognizing tasks within individual levels which can
be executed in parallel. Assuming the existence of a
system which can process independent tasks in parallel,
this problem can be approached from two directions.
The first approach provides the programmer with
additional tools which enable him to explicitly indicate
the parallel processable tasks. If it is decided to make
this indication independent of the programmer, then
it is necessary to recognize the parallel processable
tasks implicitly by analysis of the relationship between
tasks within the source program.

After the information is obtained by either of these
approaches, it must still be communicated to and
utilized by the operating system. At this point, efficient
resource utilization becomes the prime consideration.

The conditions which determine whether or not two
tasks can be executed in parallel have been investi­
gated by Bernstein.1 Consider several tasks, T t , of a
sequentially organized program illustrated by a flow
chart as shown in Figure 2(a). If the execution of

v
Tl

V

V

T2

:

(a)

Figure 2-

(b) (c)

-Sequential and parallel execution of a
computational process

task T8 is independent of whether tasks Tx and T2 are
executed sequentially as shown in Figure 2(a) or 2(b),
then parallelism is said to exist between tasks Ti and
T2. They can, therefore, be executed in parallel as
shown in Figure 2(c).

This "commutativity" is a necessary but not suffi­
cient condition for parallel processing. There may exist,
for instance, two processes which can be executed in
either order but not in parallel. For example., the in­
verse of a matrix A can be obtained in either of the
two ways shown below.

(1)
a) Obtain transpose of A

b) Obtain matrix of co-
factors of the transposed
matrix

c) Divide result by
determinant of A

(2)
a) Obtain matrix of

cof actors of A
b) Transposes matrix

of cofactors

c) Divide result by
determinant of A

Thus obtaining the matrix of cofactors and the trans­
position operation are two distinct processes which can
be executed in alternate order with the same result.
They cannot, however, be executed in parallel.

Other complications may arise due to hardware
limitations. Two tasks, for example, may need to access
the same memory. In this and similar situations,
requests for service must be queued. Djkstra, Knuth,
and Coffman2-8'4 have developed efficient scheduling
procedures for using common resources.

In terms of sets representing memory locations,
Bernstein has developed the conditions which must be

Techniques for Recognizing Parallel Processable Streams 3

satisfied before sequentially organized processes can be
executed in parallel. These are based on four separate
ways in which a sequence of instructions can use a
memory location:

(1) The location is only fetched during the execution
ofT<.

(2) The location is only stored during the execution
ofTi.

(3) The first operation within a task involves a fetch
with respect to a location; one of the succeeding oper­
ations of Ti stores in this location.

(4) The first operation within a task involves a store
with respect to a location; one of the succeeding oper­
ations of T i fetches this location.

Assuming a machine model in which processors are
allowed to communicate directly with the memory
and multi-access operations are permitted, the con­
ditions for strictly parallel execution of two tasks or
program blocks can be stated as follows.

(1) The areas of memory which Task 1 "reads"
and onto which Task 2 "writes" should be mutually
exclusive, and vice-versa.

(2) With respect to the next task in a sequential
process, Tasks 1 and 2 should not store information in
a common location.

The conditions listed by Bernstein are sufficient to
guarantee commutativity and parallelism of two
program blocks. He has shown, however, that there do
not exist algorithms for deciding the commutativity or
parallelism of arbitrary program blocks.

As an example of what has been discussed here
consider the tasks shown below which represent FOR­
TRAN statements for evaluation of three arithmetic
expressions.

X = (A+B) * (A - B)

Y = (C - D) / (C + D)

Z = X + Y

Because the execution of the third expression is inde­
pendent of the order in which the first two expressions
are executed, the first two expressions can be executed
in parallel.

Parallelism within a task can also exist when indi­
vidual components of compound tasks can be executed
concurrently. In the same manner that individual
processors can be assigned to independent tasks,

individual functional units can be assigned to inde­
pendent components within a task. The motivation
remains the same—a decrease in execution time of
individual tasks. The CDC 6600, for example, can
utilize several arithmetic units to perform several
operations simultaneously. This type of parallelism can
be illustrated by the arithmetic expression which
follows.

X = (A+B) * (C - D)

Normally, this expression would be evaluated in a
manner similar to that shown in Figure 3(a). The
independent components within the expression, how­
ever, permit parallel execution as shown in Figure
3(b) with the same results.

Explicit and implicit parallelsim

In the explicit approach to parallelism, the program­
mer himself indicates the tasks within a computational
process which can be executed in parallel. This is
normally done by means of additional instructions in
the programming language. This approach can be
illustrated by the techniques described by Conway,
Opler, Gosden, and others5-6-*. FORK in the FORK
and JOIN technique6 indicates thep arallel process-
ability of a specified set of tasks,within a process. The
next sequence of tasks will not be initiated until all

T =A+B

1 r

T2=C-D

1 r
X=T *T

1 2

1 r

(a) (b)

Figure 3—Illustration of parallelism within a compound
task

4 Fall Joint Computer Conference, 1969

the tasks emanating from a FORK converge to a
JOIN statement.

In some instances, some of the parallel operations
initiated by the FORK instruction do not have to be
completed before processing can continue. For example,
one of these branch operations may be designed to
alert an I/O unit to the fact that it is to be used mo­
mentarily. The conventional FORK must be modified
to take care of these situations. Execution of an IDLE

Figure 4—FORK and JOIN technique

statement, for example, permits processors to be
released without initiation of further action.7 The
FORK and JOIN TECHNIQUE is illustrated in
Figure 4.

Another example of the explicit approach is the
PARALLEL FOR7 which takes advantage of parallel
operations generated by the FOR statement in ALGOL
and similar constructs in other languages. For example,
the sum of two n X n matrices consists essentially of
n2 independent operations. If n processors were availa­
ble, the addition process could be organized such that
entire rows or columns could be added simultaneously.
Thus the addition of the two matrices could be accom­
plished in n units of time. Another example of this
approach is the programming language PL/1 which
provides the TASK option with the CALL statement
which indicates concurrent execution of parallel
tasks.

An additional way of indicating parallelism explicitly
is to write a language which exploits the parallelism in
algorithms to be implemented by the operating system.
This is the case with TRANQUIL,821 an ALGOL-
like language to be utilized by the array processors of
the ILLIAC IV. The situation is unique in that the
language was created after a system was demised to
solve an existing problem. "The task of compiling a
language for the ILLIAC IV is more difficult than
compiling for conventional machines simply because of
the different hardware organization and the need to
utilize its parallelism efficiently." A limitation of this
approach is that programs written in that particular
language can only be run on array-type computers and
is,therefore, heavily machine dependent.

The implicit approach to parallelism does not depend
on the programmer for determination of inherent
parallelism but relies instead on indicators existing
within the program itself. In contrast to the relative
ease of implementation of explicit parallelism, the
implicit approach is associated with complex compiling
and supervisory programs.

The detection of inherent parallelism between a set
of tasks depends on thorough analysis of the source
program using Bernstein's conditions. Implementation
of a recognition scheme to accomplish this detection
is dependent on the source language. Thus a recognizer
which is universally applicable cannot be implemented.

An algorithm developed by Fisher9 approaches the
problem of parallel task detection in a general manner.
His algorithm utilizes the input and output sets of
each task (process) to determine essential ordering
and thus inherent parallelism. Given such information
as the number of processes to be analyzed, the input
and output set for each process, the given permissible

Techniques for Recognizing Parallel Processable Streams 5

ordering among the processes, and any initially known
essential order among the processes, the algorithm
generates the essential serial ordering relation and the
covering for the essential serial ordering relation. This
covering provides an indication of the tasks within the
overall process which can be executed concurrently.

Basically, this work formalizes in the form of an
algorithm the conditions for parallel processing devel­
oped by Bernstein. The conditions for parallel processing
between two tasks are extended to an overall process

Detection of task parallelism—A new approach

The next subject covered in this paper involves
implicit detection of parallel processable tasks within
programs prepared, for serial execution. An indication
is desired of the tasks which can be executed in parallel
and the tasks which must be completed before the
start of the next sequence of tasks. Thus the problem
can be broken down in two parts—recognizing the
relationships between tasks within a level and using
this information to indicate the ordering between tasks.

The approach presented here is based on the fact
that computational processes can be modeled by
oriented graphs in which the vertices (nodes) represent
single tasks and the oriented edges (directed branches)
represent the permissible transition to the next task
in sequence. The graph (and thus the computational
process) can be represented in a computer by means
of a Connectivity Matrix, C.10-11 C is of dimension
n X n such that C;y is a " 1 " if and only if there is a
directed edge from node i to node j , and it is "0"
otherwise. The properties of the directed graph and
hence of the computational process it represents can
be studied by simple manipulations of the connectivity
matrix.

A graph consisting of a set of vertices is said to be
strongly connected if and only if any node in it is reach­
able from any other. A subgraph of any graph is defined
as consisting of a subset of vertices with all the edges
between them retained. A maximal strongly connected
(M.S.C.) subgraph is a strongly connected subgraph
that includes all possible nodes which are strongly
connected with each other. Given a connectivity matrix
of a graph, all its M.S.C. subgraphs can be determined
simply by well-known methods.10 A given program
graph can be reduced by replacing each of its M.S.C.
subgraphs by a single vertex and retaining the edges
connected between these vertices and others. After
the reduction, the reduced graph will not contain any
strongly connected components.

The paragraphs which follow will describe the se­
quence of operations needed to prepare for parallel

processing in a multiprocessor computer a program
written for a uniprocessor machine.

(1) The first step is to derive the program graph
which identifies the sequence in which the computation
al tasks are performed in the sequentially code-
program. Figure 5(a) illustrates an example program
graph. The program graph is represented in the com­
puter by its connectivity matrix. The connectivity
matrix for the example is given in Figure 5(b).

(2) By an analysis of the connectivity matrix, the
maximal strongly connected subgraphs are determined
by simple operations.10 This type of subgraph is il­
lustrated by tasks 2 and 12 in Figure 5. Each M.S.C.
subgraph is next considered as a single task, and the
graph, called the reduced graph, is derived. The re­
duced graph does not contain any loops or strongly

1

2a
2b
3
4
5
6
7
8
9

10
11
12a
1 2 b
12c
13
14

1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

2
a
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0

2b
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

3

0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

4

0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0

5

0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0

6

0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0

7

0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0

8

0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0

9

0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0

10

0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0

11

0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0

12
a

0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0

1 2b
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0

12
c

0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0

13

0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0

14

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0

Figure 5—Program graph of a serially coded program
and its connectivity matrix

6 Fall Joint Computer Conference, 1969

connected elements. In this graph; when two or more
edges emanate from a vertex, a conditional branching
is indicated. That is, the execution sequence will take
only one of the indicated alternatives. A vertex which
initiates the branching operation will be called a
decision or branch vertex. The reduced graph for the
example program graph is shown in Figure 6. In this
graph, vertex 3 represents a branch vertex.

(3) The next step is to derive the final program
graph and its connectivity matrix T. The elements of
T are obtained by analyzing the inputs of each vertex
in the reduced graph. An element, T iy, is a " 1 " if
and only if the j-th task (vertex) of the reduced graph
has as one of its inputs the output of task i; otherwise
T»y is a " 0 " . Figure 7 illustrates the final program for
the example after consideration is given to the input-
output relationships of each task. The connectivity
matrix for the final program graph is shown in F'gure 8.

From the sufficiency conditions for task parallelism,
two tasks can be executed in parallel if the input set of
one task does not depend on the output set of the other
and vice versa. The technique outlined in Step 4 detects
this relationship and uses it to provide an ordering
for task execution.

(4) The vertices of the final program graph are

10 = f(8) 5 = f(3)

13 = f (1 0 , l l , 1 2)

Figure 7—Final program graph of the parallel
processable program

1

2

3

-4

5

6

7

8

9

10

11

12

13

14

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

1

0

0

0

0

0

0

0

0

0

0

0

0

0

3

0

1

0

0

0

0

0

0

0

0

0

0

0

0

4

0

0

1

0

0

0

0

0

0

0

0

0

0

0

Precedence
Partitions

5

0

0

1

0

0

0

0

0

0

0

0

0

0

0

[1

{6

6

0

0

0

0

1

0

0

0

0

0

0

0

0

0

] ,

,11

7

0

0

0

1

0

1

0

0

0

0

0

0

0

0

[2]

,121,

8

0

1

0

0

0

0

0

0

0

0

0

0

0

0

9

0

0

0

0

0

0

0

1

0

0

0

0

0

0

{3,8] ,

{7,131,

10

0

0

0

0

0

0

0

1

0

0

0

0

0

0

{4,5

{141

11

0

0

0

0

0

0

0

0

1

0

0

0

0

0

12

0

0

0

0

0

0

0

0

1

0

0

0

0

0

9,10]

13

0

0

0

0

0

0

0

0

0

1

1

1

0

0

14

0

0

0

0

0

0

1

0

0

0

0

0

1

0

Figure 6—Reduced program graph of the serially coded
program

Figure 8—Connectivity matrix of the final program
graph

partitioned into "precedence partitions"1- as follows.
Using the connectivity matrix T, a column (or columns)
containing only zeroes is located. Let this column
correspond to vertex vi. Next delete from T both the
column and the row corresponding to this vertex. The
first precedence partiton is Pi = {vi}. Using the re­
maining portion of T, locate vertices {v2i, v22,- • •} which
correspond to columns containing only zeroos. The
second precedence partition P2 thus contains vertices
{v2i, v22,. . . } . This implies that tasks in set P2 =

Techniques for Recognizing Parallel Processable Streams 7

{V21, v22,. • •} can be initiated and executed in parallel
after the tasks in the previous partition (i.e., Pi) have
been completed. Next delete from T the columns and
rows corresponding to vertices in P2. This procedure is
repeated to obtain precedence partitions P3,P4,. • -Pj»
until no more columns or rows remain in the T matrix.
I t can be shown that this partitioning procedure is
valid for connectivity matrices of graphs which contain
no strongly connected components.

The implication of this precedence partitioning is
that if Pi,P2,. . .PP corresponds to times ti,t2,. . .tp, the
earliest time that a task in partition P ; can be initiated
ist».

The final program graph contains the following types
of vertices: (1) The branch or decision type vertex
from which the execution sequence selects a task from
a set of alternative tasks. (2) The Fork vertex which
can initiate a set of parallel tasks. (3) The Join vertex
to which a set of parallel tasks converge after their
execution. (4) The normal vertex which receives its
input set from the outputs of preceding tasks. Figure 7a
indicates the final program graph with the first three
types of vertices indicated by B, F, and J, respectively.

(5) From precedence partitioning and the final
program graph, a Task Scheduling Table can be
developed. This table, shown in Table I, serves as an
input to the operating system to help in the scheduling
of tasks. For example, if the task being executed is a
Fork task, a look-ahead feature of the system can
prepare for parallel execution of the tasks to be ini-
tated upon completion of the currently active task.

(6) The precedence partitions of Step 4 provide an
indication of the earliest time at which a task may be
initiated. I t is also desirable, however, to provide an
indication of the latest time at which a task may be
initiated. This information can be obtained by per­
forming precedence partitions on the transpose of the
T matrix. This process can be referred to as "row par­
titions". The implication here is that if task is in the
partition corresponding to time period tk, then t* is
the latest time that the task i can be initiated.

Using both the row and column partitions, the per­
missible initiation time for each task can be derived as
shown in Table II . Task 4, for example, can be in­
itiated during t4 or t6 depending on the availability of
processors.

At this point it is desirable to clarify some possible
misinterpretations of the implications of this method.
The method presented, here does not try to determine
whether any or all of the iterations within a loop can
be executed simultaneously. Rather the iterations
executed sequentially are considered as a single task.

TABLE I—Task scheduling table

TIME

<i

l2

l3

S

<4

l4

'4

l4

H
's

E5

<6

'fi

'7

INPUTS
TO TASKS

-

1

2

2

3

3

8

8

5

9

9

4 ,6

10,11,12

7,13

TASK
NUMBER

I

2

3

8

4

5

9

10

6

11

12

7

13

14

TASK
TYPE

FORK

BRANCH

FORK

FORK

JOIN

JOIN

JOIN

For this reason, the undecidability problem introduced
by Bernstein is not a factor here.

In addition, precedence partitions may place the
successors of a conditional within the same partition.
The interpretation of this is that only one of the suc­
cessors will be executed, and it can be executed in
parallel with the other tasks within that partition.

The FORTRAN parallel task recognizer

In order to determine the degree of applicability of
the method described above, it was decided to apply
the method to a sample FORTRAN program. This
was accomplished by writing a program whose input
consists of a FORTRAN source program; its output
consists of a listing of the tasks within the first level
of the source program which can be executed in parallel.
The program written to accomplish this parallel task

8 Fall Joint Computer Conference, 1969

TABLE II—Permissible task initiation time

COLUMN PARTITIONS

TIME

\

7

s
*4

l5

l 6

*7

TASK

1

2

3 , 8

4 , 5 , 9 , 1 0

6,11,12

7,13

14

ROW PARTITIONS

\

t2

fc3

fc4

l5

l 6

l7

1

2

3 , 8

5 ,9

4,6,10,11,12

7,13

14

PERMISSIBLE TASK

INITIATION PERIODS

TASK

1;

2

3:

4

5;

6

7

8:

9

10:

11

12

13

H

TIME

\

fc2

S
VS

*4

l 5

t 6

^

t 4

V's
t 5

S
^

l7

detection is known in its final form as a FORTRAN
Parallel Task Recognizer.13

The recognizer, also written in FORTRAN, relies
on indicators generated by the! way in which the
program is actually written. Consider the expressions
given below.

XI = fx(A,B)

X2 = f2(C,D)

Because the right-hand side of the second expression
does not contain a parameter generated by the compu­
tation which immediately precedes it, the two expres­
sions can be executed in parallel, if, on the other hand,
the expressions were rewritten as shown below, the

termination of the first computation would have to
precede the initiation of the second.

XI = fx(A,B)
X2 = f2(Xl,C)

The recognizer performs this determination by com­
paring the parameters on the right-hand of the equality
sign to outcomes generated by previous statements.

Other FORTRAN instructions can be analyzed
similarly. Consider the arithmetic IF :

IF (X - Y) 3,4,5

Here the parameters within the parentheses must be
compared to the outputs of preceding statements in
order to determine essential order.

Other FORTRAN instructions are analyzed in a
similar manner in order to generate the connectivity
matrix for the source program. During this analysis
the recognizer assigns numbers to the executable
statements of the source program. After this is com­
pleted, the recognizer proceeds with the method of
precedence partitions described earlier. Precedence
partitions yield a list of blocks which contain the state­
ment numbers which can be executed concurrently,

Figure 9 shows a block diagram of the steps taken by
the recognizer to generate the parallel processable
tasks within the first level of a FORTRAN source
program.

Some statements within the FORTRAN set are
treated somewhat differently. The DO statement, for
example, does not itself contain any input or output
parameters but instead generates a series of repeated
operations. Because of the loop consideratioEis men­
tioned earlier, and because the rules of FORTRAN
require entrance into a loop only through the DO
statement, all the statements contained within a DO
loop are considered as a single task. A loop, however,
may contain a large number of statements, and a great
amount of potential parallelism may be lost if con­
sideration is not given to the statements within the
loop. For this reason, the recognizer generates a sepa­
rate connectivity matrix for each DO loop within the
program.

The recognizer itself possesses limitations which
must be eliminated before it can be applied to programs
of a complex nature. For example, only a subset of
the entire FORTRAN set is considered for recogniton.
This could be corrected by expanding the recognition
process to include a more complete set of instructions.

In addition to the DO statement, loops can also be

Techniques for Recognizing Parallel Processable Streams 9

(S T A R T)

• *

READ NEXT
SOURCE
PROGRAM
INSTRUCTION

IF THIS TASK IS THE
SUCCESSOR OF A
BRANCH OR TRAN3HR
OPERATION, RECORD
THIS INFORMATION

ASSIGN A
STATEMENT
NUMBER
TO THIS
INSTRUCTION

SCAN EXECUTABLE
STATEMENTS AND
COMPARE INPUT
PARAMETERS TO
OUTPUTS OFFRE\KXTS
STATEMENTS

/ E N D \ ^
RECORD INPUT
WD OUTPUT

_k »ARAMETERS
^REQUIRED BY

THIS TASK

WHEN MATCH IS
FOUND,MACE ENTRY
IN C,Le. , SHOW A
CONNECTION FROM
PREDECESSOR TO
SUCCESSOR

AFTER GENERATION
OF CIS COMPLETE,
GENERATE
PRECEDENCE
PARTITIONS

USING THE ASSIGNED
STATEMENT NUMBERS
INDICATE THOSE
TASKS WITHIN THE
FIRST LE\EL WHICH
CAN BE DONE IN
PARALLEL

f END \

Figure 9—Block diagram of the FORTRAN
parallel task recognizer

created by branch and transfer operations such as
the IF and GO TO instructions. To eliminate these
loops, it would be necessary to analyze the connectiv­
ity matrix in the manner mentioned earlier before
beginning the process of precedence partitions. The
recognizer does not presently perform this analysis.

Nested DO loops are not permitted, and the source
program size is limited in the number of executable
statements it may have and in the number of param­
eters any one statement can contain.

Some of these limitations could be eliminated quite
easily; others would require a considerable amount of
effort. To allow a source program of arbitrary size
would require a somewhat more elaborate handling of
memory requirements and associated problems. At the

c

1
2
3
4
5
6
7
8

C
9
10
U
12
13
14
IS
16
17
18
19
20

21

20

10

30
40

50

60

100
200

3057
315

4
52

THIS IS A TEST PROGRAM DESIGNED TO CHECK PPS
DIMENSION A1(10),A2(10),A3(10)
INTEGER A1,A2,ABC,A2 /X2,B,C,D
READ 100, (A1(I),1=1,10) , B , C , D
READ 100, (A2(I),I=t,10),NS,NST,NSTU
DO 10 1=1,10
IF(A1(I)-A2(I))20,30,40
X1=(A1(I))*(B-C)
X2=D+(B/C)
A3(I)=X1*X2
CONTINUE
THIS IS A TEST COMMENT
PRINT 2 0 0 , B , C D
CALL ALPHA(A1,A2,ABC,B4,B5)
PRINT 3057,X1,X2,(A3(I),I=1,10)
CALL BETA(X1,X2,A3,B6)
IF(B4-B5)50,50,60
READ 3 1 5 , E , F , G , H
X3=(E*F)+(G-H)
X4=B6+G
X5=X3-X4
X6=(B4+B5)*X5
PRINT 4,X3,X4,X5
PRINT 52,(A1(I) ,I=1,10),ABCC(A3(I) ,I=1,10)
FORM ATU0I2,313)
FORMAT(lH0,8 B C D * , / , 3 I 3)
FORMAT(lH ,2I3,10F7.1)
FORMAT(4F7.4)
FORMAT(3F7.4)
FORMAT(12I3,10F7.1)
END

PARALLEL
PROCESSABLE
TASKS

(1,2)
(3)
(9,10,11,12)
(13)
(14)
(15,16)
(17)
(18,19,20)

(a) (b)

Figure 10—An example of the recognition process.

present time the recognizer consists of a main program
and six subroutines. In its present form the recognizer
consists of approximately 1300 statements.

The recognizer is presently written in such a manner
that it will detect only first level parallelism. The
method it uses, however, can be applied to parallelism
at any level.

The theory of operation of the FORTRAN parallel
task recognizer will be illustrated by applying the
recognition techniques to a sample FORTRAN program.
Figure 10(a) is a listing of the sample program showing
the individual tasks. Figure 10(b) is a listing of the
parallel processable tasks as determined by precedence
partitions. The numbers to the left of the executable
statements are the numbers assigned by the recognizer
during the recognition phase.

Elimination of the limitations mentioned here and
other limitations not mentioned explicitly will be the
subject of future effort.

Observations and comments

Regardless of the manner in which the subject of
parallel processing is approached, common problems
arise. Prominent among these is a need to protect
common data. If two tasks are considered for con­
current execution and one task accesses a memory
location and the other amends it, then strict observance
must be paid to the order in which this is done. The

10 Fall Joint Computer Conference, 1969

FORTRAN recognizer, for example, may determine
that two subroutines can be executed in parallel. At
the present time no consideration is given to the fact
that both subroutines may access common data
through COMMON or EQUIVALENCE statements.

In order to truly optimize execution time for a
program which is set up for parallel processing, it
would be highly desirable to determine the time re­
quired for execution of the individual tasks within
the process. I t is not enough to merely determine that
two tasks can be executed concurrently; the primary
goal is that this parallel execution result in higher
resource utilization and improved throughput. If the
time required for the execution of one task is 100 times
that of the other, for example, then it may bo desirable
to execute the two tasks serially rather than in parallel.
The reasoning here is that no time would bo spent
in allocating processors and so forth.

Determination of task execution time, however, is
not a simple matter. Exhaustive measurements of the
type suggested by Russell and Estrin14 would provide
the type of information mentioned here.

Another problem area involves implementation of
special purpose languages such as TRANQUIL. It
was mentioned earlier that programs written in a
language of this type are highly machine-limited. I t
would be highly desirable to be able to implement
programs written in these languages in systems which
are not designed to take advantage of parallelism.
Along these lines, the programming generality sug­
gested by Dennis16 may be significant.

I t should be pointed out that all the techniques
which have been discussed here will create a certain
amount of overhead. For this reason it is felt that a
parallel task recognizer, for example, would be best
suited for implementation with production programs.
Thus even though some time would be lost initially,
in the long run parallel processing would result in a
significant net gain.

Conclusions

The method of indicating parallel processable tasks
introduced here and illustrated in part by the FOR­
TRAN Parallel Recognizer appears to provide enough
generality that it is independent of the language, the
application, the mode of compilation, and the number
of processors in the system. It is anticipated that this
method will remain as the basis for further effort in
this area.

In addition to the comments made earlier, some
possible future areas of effort include determination of

possible parallelism of individual iterations within a
loop. I t is hoped that additional information can be
provided to the operating system other than a mere
indication of the tasks which can be executed in paral­
lel. This would include the measurements mentioned
earlier and an indication of the frequency of execution
of individual tasks.

I t is also hoped that a sub-language may be de­
veloped which can be added to existing languages to
assist in the recognition process and the development
of recognizer code.

Detection of parallel components within
compound tasks

Several algorithms exist for the detection of inde­
pendent components within compound tasks,16'17'18-19

These algorithms are concerned primarily with de­
tection of this type of parallelism within arithmetic
expressions. The first three algorithms referenced
above are summarized in [191 where a new algorithm
is also introduced.

The arithmetic expression which will be used as an
example for each algorithm is given below.

A + B + C + D * E * F + G + H

Throughout this discussion the usual precedence
between operators will apply. In order of increasing
precedence, the precedence between operators will be
as follows: + and — , * and/, and T, where T stands
for exponentiation.

Hellerman's algorithm

This algorithm assumes that the input string is
written in reverse Polish notation and contains only
binary operators. The string is scanned from left to
right replacing by temporary results each occurrence
of adjacent operands immediately followed by an
operator. These temporary results will be considered
as operands during the next passes. Temporary results
generated during a given pass are said to be at the
same level and therefore can be executed in parallel.
There will be as many passes as there are levels in the
syntactic tree. The compilation of the expression
listed above is shown in Figure 11.

Although this algortihm is simple and fast, it has
two shortcomings. The first is a possible difficulty in
implementation since it requires the input string to
be in Polish notation; the second is its inability to
handle operators which are not commutative.

Techniques for Recognizing' Parallel Processable Streams 11

l INPUT STRING AFTER THE 1th PASS

0 AB+C+DE*F*+G+H+

1 Rl C+R2 F*+G+H+

2 R3 R4+G+H+

3 R5 G+H+

4 R6 H+

5 R7

LEVEL

5

4

TEMPORARY RESULTS
GENERATED DURING 1th PASS

R1=A+B
R2=D*E

R3=Rl+C
R4=R2*F

R5=R3+R4

R6=R5+G

R7=R6+H

yR6

/ R 3 \ C /R4
+ *

/ R l \ / R 2 \

B D

Figure 11—Parallel computation of
A + B + C + D * E * F + G + H using Hellerman's

algorithm

Stone's algorithm

The basic function of this algorithm is to combine
two subtrees of the same level into a level that is one
higher. For example, A and B, initially of level 0, are
combined to form a subtree of level 1. The algorithm
then searches for another subtree of level 1 by attempt­
ing to combine C and D. Since precedence relation­
ships between operators prohibit this combination, the
level of subtree (A+B) is incremented by one. The
algorithm now searches for a subtree of level 2 by
attempting to combine C, D, and E. Since this com­
bination is also prohibited, subtree (A+B) is incre­
mented to level 3. The next search is successful, and a
subtree of level 3 is obtained by combining C, D, E
and F. These two subtrees are then combined to form a
single subtree of level 4.

In a similar manner the subtree (G+H) , originally
of level 1, is successively incremented until it achieves
a level of 4; at that time it is combined with the other
subtree of the same level to form a final tree of level 5.

The algorithm yields an output string in reverse
Polish which does not expressly showT which operations
can be performed in parallel. Even though the output
string is generated in one pass, the recursiveness of

the algorithm causes it to be slow, and at least one
additional pass would be required to specify parallel
computations.

Squire's algorithm

The goal of this algorithm is to form quintuples of
temporary results of the form:

Ri (operand 1, operator, operand 2, start level
= max [end level op. 1; end level op. 2], end level=
start level+1).

All temporary results which have the same start level
can be computed in parallel. Initially, all variables
have a start and end level equal to zero.

Scanning begins with the rightmost operator of the
input string and proceeds from right to left until an
operator is found whose priority is lower than that of
the previously scanned operator. In the example th^
scan would yield the following substring:

D * E * F + G + H

Now a left to right scan proceeds until an operator is
found whose priority is lower than that of the left­
most operator of the substring. This yields: D*E*F.
At this point a temporary result R l is available of the
form:

R1(D,*,E,0,1).

The temporary result, R l , replaces one of the operands
and the other is deleted together with its left operator
The new substring is then:

R 1 * F + G + H .

The left to right scans are repeated until no further
qunituple can be produced, and at that time, the right
to left scan is re-initiated. The results of the process
are shown in Figure 12.

Although the example shows the algorithm applied
to an expression containing only binary operators, the
algorithm can also handle subtraction and division
with a corresponding increase in complexity.

A significant feature of this algorithm is that Polish
notation plays no part in either the input string or
the output quintuples. Because of the many scans and
comparisons the algorithm requires, it becomes more
complex as the length of the expression and the di­
versity of operators wTithin the expression increase.

12 Fall Joint Computer Conference, 1969

INITIAL STRING: A+B+C+D*E*F+G+H

RIGHT TO LEFT SCAN

D*E*F+G+H

A+B+C+R2+G+H

QUINTUPLES

Rl
R2
R3
R4
R5
R6
R7

O p . l

D
F
A
C
H
R4
R2

OPERATpR

*
*
+
+
+
+
+

Op. 2

E
Rl
B
G
R3
R5
R6

LEFT TO RIGHT SCAN

R1*F+G+H
R2-K3+H

R34C+R2+G+H
R4+R3+R2+H
R4+R5+R2
R6+R2
R7

START

0
I
0
0
1
2
3

END

I
2
1
1
2
3
4

LEVEL

4

3

2

LEVEL

Figure 12—Parallel computation of
A + B + C + D * E * F + G + H using Squire's algorithm

Baer and Bovet's algorithm

The algorithm uses multiple passes. To each pass
corresponds a level. All temporary results which can
be generated at that level are constructed and inserted
appropriately in the output string produced by the
corresponding pass. Then, this output string becomes
the input string for the next level until the whole
expression has been compiled. Thus the number of
passes will be equal to the number of levels in the
syntactic tree. During a pass the scanning proceeds
from left to right and each operator and operand is
scanned only once.

The simple intermediate language which this al­
gorithm produces is the most appropriate for multi­
processor compilation in that it shows directly all
operations which can be performed in parallel, namely
those having the same level number. The syntactic
tree generated by this algorithm is shown in Figure
13.

A new algorithm

This section will introduce a technique whose goals
are: (1) to produce a binary tree which illustrates the
parallelism inherent in an arithmetic expression; and

Figure 13—Parallel computation of
A + B + C + D * E * F + G + H using Baer and

Bovet's algorithm

(2) to determine the number of registers needed to
evaluate large arithmetic or Boolean expressions with­
out intermediate transfers to main memory.

This technique is prompted by the fact that existing
computing systems possess multiple arithmetic units
which can contain a large number of active storages
(registers). In addition, the superior memory band-
widths of the next generation of computers will simplify
some of the requirements of this technique.

In the material presented below, a complex arithmet­
ic expression- is examined to determine its maximum
computational parallelism. This is accomplished by
repeated rearrangement of the given expression. During
this process the given expression in reverse Polish form
is also tested for "well formation", i.e., errors and
oversights in the syntax, etc.

The arithmetic expression which was used as a model
earlier will also be used here, namely A-f B-f-C+D
* E * F + G + H . The details of the algorithm follow:

(1) The first step is to rewrite the expression in
reverse Polish form and to reverse its order.

+ H + G + * F * E D + C + B + A

(2) Starting with the rightmost symbol of the string,
assign a weight to each member of the string based on
the following procedure:

Techniques for Recognizing Parallel Processable Streams 13

Assign to symbol Si the value \ \ = (V w) + R»
i = 1,2,. . .,n

where Rj = 1 — § (Si) given that

5(S^ = 0 if S, is a variable

5(Si) — 1 if Si is a unary operator

8 (Si) = 2 if Si is a binary operator

and W i = Vi-2+Ri-i, Vi-2 == V;-3 + R;-2,
etc.,

such that Vi-(i-j) = \ \ = Ri. and V0 = 0

Using this procedure, the following expression results:

INITIAL RIGHTMOST S,-f *F*ED-f-C+B A

SUBSTRING V» 1 2 3 2 3 2 1 2 1 2 1

Root
Node

i

S i

V i

15

+
1

14

H

2

V.

9 8

Y *

3 2

7

E

3

13

+
1

6

D

2

12

G

2

5

+
1

|

|

1

4

C

2

11

+
1

3

+
1

2

B

2

10

*

2

1

A

1

Note that for a "well-formed expression" of n svmbols
V. = 1.

(3) At this point the root node of the proposed
binary tree can be determined. Thus the given string
can be divided into two independent sub-strings. To
determine the root node, draw a line to the left of the
first symbol with a weight of 1 (i = 11, S,-= + , V,-= 1)
to the left of the symbol with the highest weight,
VTO(i=7, S* = E, Vi = Vm = 3). The two independent
substrings consist of the strings to the left and to the
right of this line. The root node will be the leftmost
member of the string to the left of the line (i=15,
S t = + , V i = l) . Note that V,- also equals 3 for i = 9;
however Vm is chosen from the earliest occurrence of
a symbol with the highest weight.

(4) The next step is to look for parallelism withni
each of the new substrings. Consider the rightmost
substring. Form a new substring consisting of the
symbols within the values of V»= 1 to the right and to
the left of Vm. Transpose this substring with the sub­
string to the right of it whose leftmost member has a
weight of V i = l .

FINAL RIGHTMOST i 11 10 9 8 7 6 5 4 3 2 1

SUBSTRING Si + + C + B A * F * E D

Vi 1 2 3 1 3 2 1 2 1 2 1

This procedure is repeated until the initial Vm occupies
the position i = 2 in the substring. For this example
this is already the case. Thus the rightmost substring
is in the proper form.

(5) The transposition procedure of step 4 is applied
next to the leftmost substring. However, since the
leftmost substring of this example consists of only two
operands and one operator, no further operations are
necessary.

(6) The resultant binary tree is shown in Figure 14.
The numbers assigned to each node represent the final
weight Vi of the symbol as determined in steps 1-5
above.

Some observations and comments on this algorithm
are given below.

(1) The two branches on either side of the root node
can be executed in parallel. Within each main branch,
the transposition procedure of step 4 yields supplemen­
tary root nodes. The sub-branches on each side of the
supplementary nodes can be executed in parallel.

(2) The number of levels in the binary tree can be

LEVEL

4

Figure 14—Binary tree for parallel computation of
A + B + C + D*K*F+G+H

Fall Joint Computer Conference, 1969

predicted from the Polish form of the original string.
No. of LEVELS = MAX [NUMBER OF l 's; Vm]

in the substring (rightmost or leftmost) containing Vm.
(3) The tree is traversed in a modified postorder

form.20 The resulting expression is

D * E * F + A + B + C + G + H

(4) An added feature of this technique is that the
number of registers required to evaluate this expression
without intermediate STORE and FETCH operations
is obtained directly from the binary tree. This infor­
mation is provided by the highest weight assigned to
any node within the tree. Thus for this example the
expression could be evaluated using at most two
registers without resorting to intermediate stores and
fetches.

(5) This technique of recognizing parallelism on a
local level has been applied to a single instruction, in
particular, an arithmetic expression. I t is worthwhile
mentioning that each variable within the expression
can itself be the result of a processable task. Thus this
technique can be extended to a higher level of parallel
stream recognition, i.e., level parallelism.

In order to implement the techniques mentioned
here for components within tasks and the techniques
mentioned earlier for individual tasks, several system
features are desirable. Schemes for detecting parallel
processable components within compound tasks are
oriented primarily toward arithmetic expressions. For
these situations string manipulation ability would be
highly desirable. Since individual tasks are repre­
sented by a graph and its matrix, the ability to ma­
nipulate rows and columns easily would be very im­
portant. In this same area, an associative memory
could greatly reduce execution time in the implemen­
tation of precedence partitions.

ACKNOWLEDGMENTS

The authors would like to thank the referees of the
FJCC for their comments and suggestions which
resulted in improvements of this paper.

REFERENCES

1 A J BERNSTEIN
Analysis of programs for parallel processing
I E E E Trans on EC Vol 15 No 5 757-763 Oct 1966

2 E W DJKSTRA
Solution of a problem in concurrent programming control
Comm ACM Vol 8 No 9 569 Sept 1965

3 D KNUTH
Additional comments on a problem in concurrent
programming control
Comm ACM Vol 9 No 5 321-322 May 1966

4 E G COFFMAN It R MUNTZ
Models of pure lime sharing disciplines for research
allocation
Proc 1969 Natl ACM Conf

5 M E CONWAY
A multiprocessor system design
Proc FJCC Vol 23 139-146 1963

6 A OPLER
Procedure-oriented statements to facilitate parallel processing
Comm ACM Vol 8 No 5 306-307 May 1965

7 J A GOSDEN
Explicit parallel processing description and control in
programs for multi- and uni-processor computers
Proc FJCC Vol 29 651-660 1966

8 N E ABEL P P BUDNIK D J KUCK
Y MURAOKA R S NORTHCOTE
It B WILHELMSON
TRANQUIL: A language for an array processing computer
Proc SJCC 57-68 1969

9 I) A FISHER
Program analysis for multiprocessing
Burroughs Corp May 1967

10 C V RAMAMOORTHY
Analysis oj graphs by connectivity considerations
Journal ACM Vol 13 No 2 211-222 April 1966

11 C V RAMAMOORTHY M J GONZALEZ
Recognition and representation of parallel processable streams
in computer programs—77 (task/process parallelism)
1969 Natl ACM Conf

12 C V RAMAMOORTHY
A structural theory of machine diagnosis
Proc SJCC 743-756 1967

13 M J GONZALEZ C V RAMAMOORTHY
Reogiitio-% aii represz'itathn of parallel processable
streams in computer programs
Symposia on Parallel Processor Systems Technologies and
Applications Ed. L C Hobbs Spartan Books June 1969

14 E C RUSSELL G ESTRIN
Measurement based automatic analysis of FORTRAN
programs
Proc SJCC 1969

15 J B D E N N I S
Programming generality, parallelism and computer
architecture
Proc IFIPS Congress 68 C1-C7

16 H H E L L E R M A N
Parallel processing of algebraic expressions
I E E E Trans on E C Vol 15 No 1 Feb 1966

17 H S STONE
One-pass compilation of arithmetic expressions for a
parallel processor
Comm ACM Vol 10 No 4 220-223 April 1967

18 J S SQUIRE
A translation algorithm for a multiprocessor computer
Proc 18th ACM Natl Conf 1963

19 J L BAER D P BOVET
Compilation of arithmetic expressions for parallel
computation

Techniques for Recognizing- Parallel Processable Streams 15

Proc IFIPS 68 B4-B10
20 D KNUTH

The art o) computer programming, Vol. 1, fundamental
algorithms

Addison-Wesley 316
21 R S NORTHCOTE

Software developments for the array computer ILLIAC IV,
Univ of Illinois Rpt No 313 March 1969

