
Project DARE: Differential Analyzer
REplacement by on-line digital
simulation

by GRANINO A. KORN

University of Arizona
Tuscon, Arizona

INTRODUCTION

While batch-processed applications of convenient,
highly developed digital continuous-system simulation
languages are now commonplace,1-2 such systems do
not provide the intimate man-machine intercourse
cherished in analog/hybrid simulation. The DES-I
system,2 which combined a special simulation console
and a digital plotter with an SDS 9300 (medium-
sized) computer was, then, a pioneering effort, unfor­
tunately abandoned by its manufacturer. The only
commercially available interactive system appears
to be the IBM CSMP 1130 system which, like its
predecessor PACTOLUS,2 can be programmed from
a simple typewriter terminal. This is an interpreter
system implemented on a small computer and thus
yields relatively quite slow execution.

The writer has felt quite strongly for some time6 that
digital on-line simulation is ready to go—we do have
simple simulation-language programming, plus very
reasonably priced, fast digital computers, plus new
graphic displays. All that would seem to be needed was
a system design which would combine these items
(Table I), with a good deal of human-factors engineering
to make the operator happy as well as efficient. Project
DARE (Differential Analyzer REplacement), spon­
sored by the National Science Foundation at the
University of Arizona, is a continuing attempt to
develop a series of such systems.

Project DARE demonstrates all-digital on-line
simulation of dynamical systems. Each DARE system

adds a very convenient but still relatively inexpen­
sive simulation console to a small or large digital
computer and can replace conventional analog com­
puters in many applications. System equations or
block-statements and input data are entered and
conveniently edited on a cathode-ray-tube typewriter.
Solutions or phase-plane plots appear on a second
cathode-ray-tube display; system parameters and
initial conditions are readily changed for successive
runs; displayed data can be stored for comparisons;
programs and results may be printed and plotted for
hard-copy report preparation; and automatic iterative
operation is possible. With a reasonably fast digital
computer, man-machine interaction at the console
is rather more comfortable than with even a modern
analog/hybrid computer.

DARE I is a flexible CSSL-type floating-point
system permitting relatively slow computation with
the PDP-9 computer. DARE II is a block-diagram-
based system which trades fixed-point operation for
relatively very high speed on the small PDP-9, per­
mitting, for instance, real-time flight simulation.
DARE III and DARE IV are only in the planning
stage and will implement economical and fast floating­
point simulation on a time-shared CDC 6400.

A critical study of future possibilities indicates
that DARE-type systems could permit flight simula­
tions including 40 Hz frequencies by 1975, but that
modern analog computers are still a hundred times
faster. Actual present-day practical applications, how-

247

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1478559.1478588&domain=pdf&date_stamp=1969-11-18

248 Fall Joint Computer Conference, 1969

ever, employ really fast (and therefore relatively in­
accurate) analog computation so rarely that much
analog simulation could well give way to the more
accurate, convenient, and often more economical
digital methods demonstrated by Project DARE.

DARE I: An on-line CSSL-type system

DARE I software, written for the PDP-9 by J.
Goltz as a Ph.D. dissertation,5 produces a complete
floating-point simulation system, including the basic
monitor, editor, and loader used also by DARE II .
DARE I source language is essentially similar to the
SCI-sponsored CSSL.1 Though basically equation-
oriented, DARE I will also implement user-created
analog or hybrid blocks as FORTRAN functions.

TABLE I—A list of requirements
for an on-line digital simulation system

A useful on-line continuous system simulation
system must provide for:

1. Entry of system differential equations (in
equation and/or block;statement form).

2. Entry of data (system parameters, initial
conditions, function tables, etc.).

3. Entry of simulation parameters (frame
time, communication interval or display
sampling interval, maximum computation
time, integration routine used, maximum
tolerable error in variable-increment inte­
gration routines, choice of variables for
display).

4. Editing, modification, and correction of
the above entries.

5. Display of state variables vs. the inde­
pendent variable (usually the time) and
against each other (ph^se-plane plots).

6. Preparation of hard copkj for reports in the
form of printed tables, xy recorder plots,
or strip-chart records.

In addition, a sophisticated simulation system
must permit "simulationstudies," viz.:

7. Computations based on results from multiple
differential-equation-solving runs (statis­
tics, cross-plots).

8. Iterative computation, Le., repeated runs
with system parameters and/or initial
conditions recomputed; on the basis of
preceding runs for optimization, bound­
ary-value problems).

DARE I employs the FORTRAN compiler supplied
with the digital computer and will be described in
detail in a separate paper.5

DARE I accepts system differential equations in first-
order (state-equation) form. These equations are
simply typed in FORTRAN notation on the screen
of a CRT typewriter at the right of the DARE con­
sole (Figure 1). An interactive CRT typewriter pro-

Figure 1—DARE simulation console for use with a PDP-9 or
PDP-15 computer. Programs and data are entered, edited, and
modified on the CRT typewriter a t right. Up to four solution
curves, or a phase-plane plot, are produced on-line on the output
graphic CRT display at left. A simulation control panel under­
neath the output display controls simulation and display, with
special push-buttons producing hard copy of programs, data , and
solutions when desired. The teletypewriter and plotter used for

this purpose are not shown.

Console switches (lower left) are sampled by the computer to
provide control inputs:

Method Switch: A rotary switch used to select the inte­
gration routine.

DT, TMAX, EM AX: 4-decade thumbwheel switches in an
adapted FORTRAN format.

The third decade reads from — 5 through 0 to + 5 , and with
the fourth decade indicates a power of 10.

Elapsed Time: A strip of 12 lamps to indicate the progress
of computation, and to reassure the user that the computer
is actually operating when computation exceeds a few
seconds.

Sense Switches: 2 position switches for various functions,
determined by program.

Trace Finder: Pushbuttons to identify one of 5 traces on
scope display-probably by momentarily blanking it out.

Command Push-buttons (lower two rows):
Lighted pushbuttons, for purposes marked on buttons.
"Type eqns," "type data ," and "select display," are indi­
cators only, offering suggestions to the user from the computer.
Such suggestions can also appear on the alphanumeric CRT
display.

Project DARE 249

gram proceeds to ask for problem data and simulation
parameters. Of the latter, the frame time DT, the
maximum computing time TMAX, and also the error
EMAX for variable-increment integration, can be
entered either with the CRT keyboard or by console
digiswitches, whichever the operator prefers. Console
buttons can recall selected program or data pages
to the CRT screen for editing, or cause them to be
printed out for report preparation.

As the differential-equation solution proceeds, all
state-variable values are read onto DECtape once
per "communication interval"1 (typically every 10
to 50 DT). Thus any selected state variable can be
brought back for single or multiple displays and
printout; it is possible to compare a current solution
with a selected earlier solution display. Permanent
graphic records are obtained with an xy recorder and
a four-channel stripchart recorder connected to the
display.

The choice of integration routines for differential-
equation solution has been discussed and rediscussed
in many survey papers.2-4 All DARE systems (like
the better batch-processing systems2) offer a choice of
integration formulas. With the on-line systems, con­
sole selection of integration routine and frame time
(time increment DT) permits very convenient compari­
son of different integration methods in terms of stored
solution displays.

The flexible and convenient DARE CRT Editor
program5'6 permits overwriting and correction, inser­
tion of text, and automatic search for lines containing
selected strings.

A SORT/EDIT program (precompiler) sorts the
symbol string constituting the program and creates
a FORTRAN differential-equation-solving program,
which is then compiled and executed. After the first
run, data such as system parameters and initial con­
ditions may be changed on the CRT screen, and suc­
cessive differential-equation solving-runs are obtained
without recompilation. Iterative and statistical simu­
lation studies can be programmed with FORTRAN
statements.5

A new homemade graphic display7 associated with
our DARE console displays up to four variables against
time, or selected phase-plane plots. The display uses
one dual 9-bit (18-bit) word per display point to save
memory and refresh time, can generate line segments
for curve interpolation, and shares the processor
memory through a standard PDP-9 data channel.
This permits fast display refreshing with a minimum
of time-wasting instructions.

DARE II: A fast block-macro system with
an efficient precompiler

The DARE I system demonstrates the convenience
and power of a scale-factor-free, floating-point, equa­
tion-oriented, on-line simulation at relatively low
computing speed. But we also wanted to demonstrate a
much faster on-line simulation system, which would
permit true real-time flight simulation, still using the
same small and inexpensive digital computer. With
the PDP-9, this meant giving up floating-point opera­
tion. DARE II machine equations must be scaled
(much like those in analog computers) between — 1 and
1 machine unit; with the PDP-9, ones-complement
coding is employed. Overloads are detected and dis­
played by a special subroutine.

To provide high execution speed, DARE II uses
the PDP-9 macro-assembler to create macros corre­
sponding to analog computing blocks, an approach
first used by Gaskill and McKnight in their batch-
processed DAS system on the IBM 7090.2 Our system
permits especially convenient block programming,
with each block named by type and by the actual
output-variable name. The example of Figure 2 is
represented by

SUM Fl , S1DOT, S2DOT

COS COSA, A

MULT S1DOT, COSA, RDOT

(1)

where the first argument of each block-macro represents
the block output. Note the convenient mnemonics used.

DARE II block-statements and data are entered
on the dual-CRT console used also with DARE I and
can be edited, modified, and printed out with the aid
of the same string-processing editor.6 DARE I I
simulations of many small systems (second to sixth
order) are, however, so fast that repetitive simulation
and display at two to 20 computer runs per second is
possible. Keyboard entry of parameters is then too

S2 DOT

COSA

Figure 2—A block diagram

250 Fall Joint Computer Conference, 1969

slow for CRT demonstration, of parameter-change
effects, and a "diddle knob" or joystick permitting
rapid changes of a keyboard-addressed parameter will
be added. The knob or joystick will control incremen­
tation of an up-down counter holding the parameter
value.

DARE II software incorporates substantial improve­
ments over the DAS system. Block-macros may be
typed in any order. An optimizing precompiler sorts
statements like those in our example (1) before as­
sembly, so that each block of the sorted program can
operate on already computed quantities:

COS COSA, A

MULT SIDOT, COSA, RDOT

SUM Fl , SIDOT, S2DOT

(2)

This will then permit, say, integration of the out­
put F l . DARE II next employs conditional assembly10

to completely eliminate the assembly of code for redundant
store-fetch pairs corresponding to outputs and inputs of
interconnected blocks. Thus, the first macro COS COSA,
A in (2) would ordinarily end with

while the second macro MULT SIDOT, COSA, RDOT
would start with

FETCH COSA (4)

STORE COSA (3)

DARE II automatically cancels the redundant
pair of instructions (3), (4), although (3) would be
kept if it were needed elsewhere in the program. The
pair

STORE SIDOT, FETCH SIDOT

will be similarly cancelled, unless SIDOT is needed
elsewhere. The DARE II precompiler program is specif­
ically designed to permit elimination of as many track-
store pairs as reasonably possible. In addition, condi­
tional assembly also eliminates code for unused multi-
input-summer inputs and similar unused options.
As a result, DARE II produces code which is essentially
as efficient as well-written PDP-9 machine-language
code and permits relatively very fast execution (Table II) .
If core storage is scarce, DARE II block macros can
be subroutine calls to save core at the expense of some
computing time.

Although the basic PDP-9 instruction set is quite
limited (no byte manipulation, spare registers, or add-

TABLE II—Estimated computation times for a typical aerospace-vehicle simulation
(TIMES are in /zsec except as noted)

OPERATION NUMBER
REQUIRED

Total Frame
Time DT
Max. Frequency
at 25
Frames/cycle

DARE I
PDP-9/FORTRAN

(Floating-point)

DARE II DARE I I I / IV 197X
PDP-9/Macro-assembler CDC 6400 System

(Fixed-point) (Floating-point) (Floating-point)

X + Y + Z
XY
AX
F(X)
SINX or COS X

TOTAL—ONE
DERIVATIVE
EVALUATION
Two Derivative
Evaluations
RK2 Integration

100
80
60
8

10

—»

->
12

X1000 = 100,000
X700 = 56,000
X700 - 42,000

X4000 - 32,000
X600 = 60,000

290 msec

580 msec
X3000 = 36,000

X5 = 500
X24 = 1920
X21 = 1260
X52 = 416
X60 = 6002

4.7 msec

9.4 msec
X120 ~= 1440

X3.4 = 340
X7 = 280
X7 = 420

X80 = 640
X100 = 1000

2.7 msec

5.4 msec
X25 = 300

X0.2 = 20
Xl-2 = 96
X1.2 = 72
X10 = 80
X15 = 150

0.46 msec

0.9 msec
X4 = 48

616 msec

0.07 Hz

11 msec

4 Hz

5.7 msec

7 Hz

1.4 msec

30 Hz

Project DARE 251

into-memory), many analog-computer blocks can be
emulated quite nicely. As an example, a single-variable
function with 256 uniformly spaced breakpoints can
be formed by table lookup and interpolation in 50
Msec, and a two-variable function with 16 X 16
breakpoints can be formed in 120 /xsec.9 I t is also readily
possible to add to the DARE II macro-block reper­
toire; one can, for instance, create blocks which pre­
cisely correspond to the computing elements of any
given analog computer.

Like DARE I, DARE II offers a choice of integra­
tion routines. Because PDP-9 lacks true index registers,
the second-order Runge-Kutta routine4

*+r£ = *X + ^ (K i + K2)

Ki = D T F (* X , k D T) (5)

K2 = DT F[*X + K1; (k +1) DT]

is probably the most useful, although it requires two
evaluations of the derivative F(X, T) at each inte­
gration step. To implement Eq. (5), our program does
not first evaluate all n Ki's and then proceed to add
half of each to its *X, as might be done with a real
index register. The program instead computes each
*X + 3^ Ki and *X + Kx before the next Ki is evalu­
ated. When this is finished for all X, the program sets a
tally switch to mark the second part of the Runge-Kutta
routine, increments the independent variable, and
uses the kX. + Ki to produce the K2 and the *+xX
as each derivative is computed. All integrand accumu­
lation is.done in double precision to reduce roundoff-
error effects.

With suitable interrupts from a real-time clock, a
DARE II simulation could be readily linked to a
hybrid-computer setup and/or to real system hardware
(autopilot, operator positions). Note, in this connec­
tion, that the macro-assembler system would cir­
cumvent the reentrancy problems usually encountered
in attempts to service multiple system interrupts with
FORTRAN programs.3

A look into the future: DARE III and DARE IV

The DARE I and DARE II systems are expected
to be completed in 1969. A useful and readily feasible
next step could employ a modern 24 to 36 bit machine
somewhat larger than our PDP-9 (e.g., SEL 840B,
SDS Sigma 5, DEC PDP-10) to speed DARE I exe­
cution, or to add floating-point capability to DARE II .
Such a system would cost between $120,000 and
$200,000, which still matches the cost of a comparable
analog-hybrid computer. Far more interesting from

the point of view of economy as well as computing
speed, however, is the possibility of time-sharing a
substantially larger central digital computer, such as
a CDC 6400. In fact, economical operation of even
a medium-sized digital machine mainly intended for
simulation should provide for time sharing with a
"background" batch-processing program.

Our proposals for follow-on projects, then, envisage
implementation of DARE I- and DARE II-like simu­
lation systems with the University's CDC 6400, using
the existing PDP-9/console combination as a remote
user's station. 6400 activity would be restricted to
very fast and efficient compiling and execution of
differential-equation-solving programs, while the string-
processing CRT editor, data entry and display, and
also some iterative and statistics routines in slow
simulations, would be performed by the small proces­
sor associated with the user's console. I t is interesting
to note that the simulation programs and data sent
to the central computer involve only character strings
transmitted at type-in rates. Alphanumerical data
from the central computer do not require much higher
rates; extensive numerical tables could be line-printed
at the central installation. Each DARE CRT display,
which is refreshed by the console processor, involves
at most 2400 9-bit data samples. For typical 10 sec
flight simulations, this would require transmission of
21,600 bits every 10 sec, or less than 2500 bits/second,
so that a telephone line would do. Such operation is thus
ideally suitable for remote time-sharing, provided
that the 10-second-plus-overhead computer runs can
be made available without excessive delays.

Based on initial DARE II experience, smaller simu­
lation problems would be solved much more rapidly,
say in 0.1 sec of central-processor time. Repetitive
console displays demonstrating parameter-change ef­
fects would not be possible with reasonable data-trans­
mission rates (nor would many such demonstrations
be economically feasible)! Our proposed time-sharing
scheme is, however, ideally suited to fast iterative
simulation or statistics-taking by the central processor
In this type of operation, only successive criterion-
function values, accumulated statistics, or similar
numbers, need to be transmitted and displayed during
the iteration runs, and low transmission rates would
again suffice.

In a console simulation system specifically designed
for remote time sharing, our PDP-9 is really unneces­
sarily elaborate and could very effectively be replaced
by the less costly 8K PDP-15, with DECtape but
without extended arithmetic. Such a system, including
very reasonable display facilities, would cost well

Fall Joint Computer Conference, 1969

under $50,000. An even less expensive system could
be readily based on an even smaller 12-to 16-bit com­
puter. This would save another $10,000; but the 18-
bit word length of the PDP-15; is especially efficient
for display-refreshing purposes and adds to the stand­
alone capabilities of the console. Note, in this con­
nection, that our own PDP-9-based console could
employ DARE I for complete problem debugging
before ever using CDC 6400 time.:

With the large central computer and its relatively
efficient compiler available, the proposed DARE III
and DARE IV systems corresponding the the FOR-
TRAN-based DARE I and the assembler-based DARE
II, may well merge into each other. The multiple
indexing needed for efficient implementation of inte­
gration routines may well be done best by the CDC
6400 FORTRAN compiler, while derivative computa­
tions would probably still be executed more efficiently
by an assembler-based system employing conditional
assembly, as in the DARE II scheme.

Digital vs. analog /hybrid simulation: Computing-speed
considerations

Table II lists detailed estimates for various digital
computation times required in1 a typical medium-
sized aerospace simulation. Our example involves 12
state-variable-derivative integrations, 100 three-
term additions, 140 products, and 18 functions of one
variable. The DARE I and DARE II systems are
implemented on a Digital Equipment Corporation
PDP-9 (one jusec cycle time). This machine was chosen
because it has an 18-bit rather than a 16-bit word
length, although some of the newer 16-bit machines
have much better instruction sets. The PDP-9 FOR-

Figure 2—DARE console in operation with the PDP-9

TRAN compiler appears to be designed mainly to
save core storage and produces relatively very slow
execution. At a reasonably conservative 25 frames
(time increments DT) per period, the resulting 616-
msec frame time for our aerospace simulation would
permit the DARE I system to produce sinusoidal
oscillations at 0.07 Hz. Speedwise, we see that the only
differential analyzer our DARE I system replaces
is an old-fashioned Bush or General Electric mechanical
differential analyzer!

A notable and inexpensive improvement in this
situation is afforded by the fact that several PDP-9-
sized digital computers are already available with
hardware floating-point arithmetic. No such option
is available with the PDP-9, but we ourselves have
designed a current-mode logic, floating-point arith­
metic unit for the PDP-9 which, if and when installed,
would yield a speed improvement by a factor of at
least 15 for the DARE I system, so that our simulated
aerospace vehicle could wiggle at about 1 Hz, floating­
point.

Our block-oriented DARE II system, also running
on the PDP-9, was specifically designed to demonstrate
relatively high-speed, real-time flight simulation on
the inexpensive computer. The price paid for this is
fixed-point operation, but DARE II's efflicient execu­
tion and 11-msec frame time permits about 4 Hz in the
aerospace-simulation example.

An improved 18- to 24-bit stand-alone computer
of the future could probably produce comparable
floating-point simulation at 4 Hz. As we have noted,
though, the DARE III /IV systems will implement
the economically much more important goal of time-
shared operation with a large central digital computer,
in this case the CDC 6400. As we have seen, very
efficient and still relatively machine-independent exe­
cution will be obtained by FORTRAN integration
and macro-assembler implementation of derivative
computations, although many operators may prefer
an entirely equation-oriented approach. In either
case, Table I indicates estimated frame times of the order
of 5.7 msec, thus permitting about 7 Hz operation at
25 frames per cycle. Note that this system would provide
floating-point aerospace-vehicle simulation in real time.

The last column of Table II extrapolates the DARE
III / IV system to a hypothetical 1970X digital com­
puter permitting an approximately fivefold increase
in computing speed through faster hardware and/or
multiprocessing, instruction look-ahead, or hard-wired
subroutines. This is in no sense a way-out extrapolation,
since digital-computer projects now on the drawing
boards already plan for a fifty-fold speed increase. Proba-

Project DARE

bly the most time to be gained in simulation calcu­
lations would be through the availability of fast scratch­
pad memories or multiple registers, which would per­
mit derivative computations with as few core-memory
references as possible; this will already be approximated
in the assembler version of our CDC-6400 simulation
program. Additional computing bandwidth would
readily be obtained with computer systems employing
parallel multiple processors, which would fit nicely
into differential-equation solving schemes. Note, how­
ever, that no manufacturer of large digital computers
would even consider a special design for continuous
system simulation, so that all improvements must
make, as it were, incidental usage of developments
in large-scale scientific and business computers.

Let us now consider the computing-speed situation
on the analog/hybrid computer side. One or two ana­
log computers available for sale in 1970 will offer not
only 0.02 percent of half-scale static accuracy, but
also 0.1 percent of half-scale error in linear compu­
tations at frequencies up to 1 KHz; multiplication
and function generation are somewhat less accurate.
In applications where such component accuracies
suffice, even existing analog computers are thus seen
to have a 20:1 speed advantage over the fastest
digital-simulation systems. This bandwidth advantage
is moreover, not likely to decrease within the next ten
years; since 1965, improved ± 10-V hybrid computers
developed in our laboratory have operated with errors
below 0.2 percent for linear and one percent for non­
linear operations up to 10 KHz, at perfectly reasonable
cost.11-12

Digital versus analog /hybrid: Economics

Our DARE system is implemented on about $90,000
worth of PDP-9 and simulation console; another
$25,000 could be very advantageously spent on a
disk to speed compilation. When implementing the
fixed-point DARE II language, our stand-alone system
is roughly comparable to a modest 150-amplifier hy­
brid computer of 1960 vintage, say, an Electronic
Associates 231-R together with a small digital com­
puter used for potentiometer setup, static checking,
and some function generation.

At a more or less comparable price, the on-line
digital system is incomparably more convenient to
program, check out, and operate (this is, of course,
doubly true of the floating-point system). We also
have, of course, all the possibilities of the 16K PDP-9
with dual display and can produce floating-point check
solutions with DARE I.

Our PDP-9 installation is, however, mainly intended

as a demonstration. A more useful stand-alone instal­
lation, based perhaps on the SDS Sigma 5, would
roughly double our cost, but would permit real-time
floating-point flight simulation, plus some foreground-
background time sharing. Although such a system
would be economically competitive with a 1970 ana­
log/hybrid computer in many applications, the full
economic potential of on-line digital simulation will be
realized only in a time-sharing system. The tremendous
advantage of the time-sharing system is, simply,
that the central processor is free for other business
while the simulation user looks at his console-refreshed
display, or simply scratches himself. We have already
seen that the communication requirements for time-
shared simulation are quite small.

I believe that the foregoing considerations clearly
indicate the area of future analog/hybrid vs. digital
simulation competition. In applications where analog/
hybrid and digital simulation systems compete at equal
computing speeds, i.e., in most real-time or "slow"
simulation, the new digital systems will win overwhelming­
ly both on economic and on human-engineering grounds.
Since, on the other hand, reasonably complex nonlinear
digital simulations will not be able to run at frequencies
much in excess of 100 Hz, faster simulation will still
belong on analog/hybrid computers.

A crucial question confronting the simulation com­
munity (and specifically the analog-computer industry)
is, then, this: where, and how large, are the application
areas of really fast analog/hybrid computation? The
most immediately important would seem to be:

1. Parameter and functional optimization, including
trajectory optimization.

2. Random-process simulation, including optimi­
zation of statistics, communication-system sim­
ulation, and parameter-tolerance studies.

3. Solution of partial differential equations, in­
cluding vtechniques requiring multiplexing of
analog computing elements.

I t is in precisely these applications that the very
large number of computer runs needed may give the
analog/hybrid computer a measure of economic ad­
vantage even over digital batch processing. Even
here, only important and frequent applications could
tilt the balance away from time-shared digital simu­
lation, which saves much analog-computer scaling,
setup, checkout, and "head-scratching" time, not to
speak of computer amortization. Cost estimates for
different simulation methods sometimes omit these
"hidden" costs.

I wronder, finally, how much practical high-speed

254 Fall Joint Computer Conference, 1969

analog/hybrid computation is really done in the aero­
space, chemical and nuclear-energy industries, which
are, at this time, the principal consumers of continuous-
system simulation. Our own laboratory's work on the
design and applications of very fast analog/hybrid
computers,11,12 for instance, has always elicited much
polite interest, but very little imitation. By contrast,
much current aerospace work involves "slow" or real­
time hybrid simulation of aerospace systems, with the
digital computer doing housekeeping functions such
as static checking, plus function generation and, per­
haps, some accurate trajectory integration. The re­
sulting accuracy and software problems combine all
the worst features of both analog and digital compu­
tation; the main reason for employing hybrid simula­
tion at all is either the existence of actual hardware
in the loop or some 20- to 50-Hz components due to
hydraulic servos and/or aeroel$sticity. This type of
hybrid simulation can be swallowed by future on-line
digital systems like Jonah by the whale. For the 1970s,
the simulation community would be well advised to
include on-time digital simulation in its planning,
together with some careful reconsideration of faster
analog/hybrid techniques.

ACKNOWLEDGMENTS

The writer is grateful to the National Science Founda­
tion for supporting Project DARE under NSF Grant
GK 1860, and to Dr. R. Mattson, Head, Electrical
Engineering Department, The iJniversity of Arizona
for contributing University facilities. Project DARE
software and hardware are being developed by a group
of graduate students in the Electrical Engineering De­
partment, including H. M. Aus, D. Chinnock, J. Goltz,
T. Liebert, J. Puis, and A. Trevor. Professor J. V.
Wait is co-principal investigator.

REFERENCES

1 SCI SOFTWARE C O M M I T T E E
The SCi continuous-system simulation language
Simulation Dec 1967

2 R D BRENNAN R N LINEBARGER
A survey of digital simulation
Simulation Dec 1964

3 B JOHNSON
Real-time digital simulation
Proc IBM Symposium on Digital Simulation 1964

4 P R BENYON
Review of numerical methods for digital simulation
Simulation Nov 1968

5 J GOLTZ
The DARE I on-line continuous-system simulation system
ACL Memo 169 Electrical Engineering Dept
The Univ of Ariz 1969

6 A PDP-9/Cathode-ray-typewriter editor
ACL Memo 164 Electrical Engineering Dept The Univ of
Ariz 1968

7 G A KORN et al
A new graphic display/plotter for small digital computers
Proc SJCC 1969

8 A TREVOR J V WAIT
DIFFE: An on-line differential-equation solving routine with
automatically scaled display
ACL MEMO 153 Electrical Engineering Dept the Univ of
Ariz 1968

9 H M AUS G A KORN
Table-lookup /interpolation function generation for fixed-point
digital compulations
I E E E T E C August 1969

10 M D McILROY
Macro-instruction extensions of compiler languages
C ACM April I960

11 G A KORN
Progress of analog /hybrid computation
Proc I E E E Dec 1966

12 B K CONANT
A new soliu-state iterative differential analyzer making maxi­
mum use of intergrated circuits, Proc. FJCC 1968.

