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INTRODUCTION 

While batch-processed applications of convenient, 
highly developed digital continuous-system simulation 
languages are now commonplace,1-2 such systems do 
not provide the intimate man-machine intercourse 
cherished in analog/hybrid simulation. The DES-I 
system,2 which combined a special simulation console 
and a digital plotter with an SDS 9300 (medium-
sized) computer was, then, a pioneering effort, unfor­
tunately abandoned by its manufacturer. The only 
commercially available interactive system appears 
to be the IBM CSMP 1130 system which, like its 
predecessor PACTOLUS,2 can be programmed from 
a simple typewriter terminal. This is an interpreter 
system implemented on a small computer and thus 
yields relatively quite slow execution. 

The writer has felt quite strongly for some time6 that 
digital on-line simulation is ready to go—we do have 
simple simulation-language programming, plus very 
reasonably priced, fast digital computers, plus new 
graphic displays. All that would seem to be needed was 
a system design which would combine these items 
(Table I), with a good deal of human-factors engineering 
to make the operator happy as well as efficient. Project 
DARE (Differential Analyzer REplacement), spon­
sored by the National Science Foundation at the 
University of Arizona, is a continuing attempt to 
develop a series of such systems. 

Project DARE demonstrates all-digital on-line 
simulation of dynamical systems. Each DARE system 

adds a very convenient but still relatively inexpen­
sive simulation console to a small or large digital 
computer and can replace conventional analog com­
puters in many applications. System equations or 
block-statements and input data are entered and 
conveniently edited on a cathode-ray-tube typewriter. 
Solutions or phase-plane plots appear on a second 
cathode-ray-tube display; system parameters and 
initial conditions are readily changed for successive 
runs; displayed data can be stored for comparisons; 
programs and results may be printed and plotted for 
hard-copy report preparation; and automatic iterative 
operation is possible. With a reasonably fast digital 
computer, man-machine interaction at the console 
is rather more comfortable than with even a modern 
analog/hybrid computer. 

DARE I is a flexible CSSL-type floating-point 
system permitting relatively slow computation with 
the PDP-9 computer. DARE II is a block-diagram-
based system which trades fixed-point operation for 
relatively very high speed on the small PDP-9, per­
mitting, for instance, real-time flight simulation. 
DARE III and DARE IV are only in the planning 
stage and will implement economical and fast floating­
point simulation on a time-shared CDC 6400. 

A critical study of future possibilities indicates 
that DARE-type systems could permit flight simula­
tions including 40 Hz frequencies by 1975, but that 
modern analog computers are still a hundred times 
faster. Actual present-day practical applications, how-
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ever, employ really fast (and therefore relatively in­
accurate) analog computation so rarely that much 
analog simulation could well give way to the more 
accurate, convenient, and often more economical 
digital methods demonstrated by Project DARE. 

DARE I: An on-line CSSL-type system 

DARE I software, written for the PDP-9 by J. 
Goltz as a Ph.D. dissertation,5 produces a complete 
floating-point simulation system, including the basic 
monitor, editor, and loader used also by DARE II . 
DARE I source language is essentially similar to the 
SCI-sponsored CSSL.1 Though basically equation-
oriented, DARE I will also implement user-created 
analog or hybrid blocks as FORTRAN functions. 

TABLE I—A list of requirements 
for an on-line digital simulation system 

A useful on-line continuous system simulation 
system must provide for: 

1. Entry of system differential equations (in 
equation and/or block;statement form). 

2. Entry of data (system parameters, initial 
conditions, function tables, etc.). 

3. Entry of simulation parameters (frame 
time, communication interval or display 
sampling interval, maximum computation 
time, integration routine used, maximum 
tolerable error in variable-increment inte­
gration routines, choice of variables for 
display). 

4. Editing, modification, and correction of 
the above entries. 

5. Display of state variables vs. the inde­
pendent variable (usually the time) and 
against each other (ph^se-plane plots). 

6. Preparation of hard copkj for reports in the 
form of printed tables, xy recorder plots, 
or strip-chart records. 

In addition, a sophisticated simulation system 
must permit "simulationstudies," viz.: 

7. Computations based on results from multiple 
differential-equation-solving runs (statis­
tics, cross-plots). 

8. Iterative computation, Le., repeated runs 
with system parameters and/or initial 
conditions recomputed; on the basis of 
preceding runs for optimization, bound­
ary-value problems). 

DARE I employs the FORTRAN compiler supplied 
with the digital computer and will be described in 
detail in a separate paper.5 

DARE I accepts system differential equations in first-
order (state-equation) form. These equations are 
simply typed in FORTRAN notation on the screen 
of a CRT typewriter at the right of the DARE con­
sole (Figure 1). An interactive CRT typewriter pro-

Figure 1—DARE simulation console for use with a PDP-9 or 
PDP-15 computer. Programs and data are entered, edited, and 
modified on the CRT typewriter a t right. Up to four solution 
curves, or a phase-plane plot, are produced on-line on the output 
graphic CRT display at left. A simulation control panel under­
neath the output display controls simulation and display, with 
special push-buttons producing hard copy of programs, data , and 
solutions when desired. The teletypewriter and plotter used for 

this purpose are not shown. 

Console switches (lower left) are sampled by the computer to 
provide control inputs: 

Method Switch: A rotary switch used to select the inte­
gration routine. 

DT, TMAX, EM AX: 4-decade thumbwheel switches in an 
adapted FORTRAN format. 

The third decade reads from — 5 through 0 to + 5 , and with 
the fourth decade indicates a power of 10. 

Elapsed Time: A strip of 12 lamps to indicate the progress 
of computation, and to reassure the user that the computer 
is actually operating when computation exceeds a few 
seconds. 

Sense Switches: 2 position switches for various functions, 
determined by program. 

Trace Finder: Pushbuttons to identify one of 5 traces on 
scope display-probably by momentarily blanking it out. 

Command Push-buttons (lower two rows): 
Lighted pushbuttons, for purposes marked on buttons. 
"Type eqns," "type data ," and "select display," are indi­
cators only, offering suggestions to the user from the computer. 
Such suggestions can also appear on the alphanumeric CRT 
display. 
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gram proceeds to ask for problem data and simulation 
parameters. Of the latter, the frame time DT, the 
maximum computing time TMAX, and also the error 
EMAX for variable-increment integration, can be 
entered either with the CRT keyboard or by console 
digiswitches, whichever the operator prefers. Console 
buttons can recall selected program or data pages 
to the CRT screen for editing, or cause them to be 
printed out for report preparation. 

As the differential-equation solution proceeds, all 
state-variable values are read onto DECtape once 
per "communication interval"1 (typically every 10 
to 50 DT). Thus any selected state variable can be 
brought back for single or multiple displays and 
printout; it is possible to compare a current solution 
with a selected earlier solution display. Permanent 
graphic records are obtained with an xy recorder and 
a four-channel stripchart recorder connected to the 
display. 

The choice of integration routines for differential-
equation solution has been discussed and rediscussed 
in many survey papers.2-4 All DARE systems (like 
the better batch-processing systems2) offer a choice of 
integration formulas. With the on-line systems, con­
sole selection of integration routine and frame time 
(time increment DT) permits very convenient compari­
son of different integration methods in terms of stored 
solution displays. 

The flexible and convenient DARE CRT Editor 
program5'6 permits overwriting and correction, inser­
tion of text, and automatic search for lines containing 
selected strings. 

A SORT/EDIT program (precompiler) sorts the 
symbol string constituting the program and creates 
a FORTRAN differential-equation-solving program, 
which is then compiled and executed. After the first 
run, data such as system parameters and initial con­
ditions may be changed on the CRT screen, and suc­
cessive differential-equation solving-runs are obtained 
without recompilation. Iterative and statistical simu­
lation studies can be programmed with FORTRAN 
statements.5 

A new homemade graphic display7 associated with 
our DARE console displays up to four variables against 
time, or selected phase-plane plots. The display uses 
one dual 9-bit (18-bit) word per display point to save 
memory and refresh time, can generate line segments 
for curve interpolation, and shares the processor 
memory through a standard PDP-9 data channel. 
This permits fast display refreshing with a minimum 
of time-wasting instructions. 

DARE II: A fast block-macro system with 
an efficient precompiler 

The DARE I system demonstrates the convenience 
and power of a scale-factor-free, floating-point, equa­
tion-oriented, on-line simulation at relatively low 
computing speed. But we also wanted to demonstrate a 
much faster on-line simulation system, which would 
permit true real-time flight simulation, still using the 
same small and inexpensive digital computer. With 
the PDP-9, this meant giving up floating-point opera­
tion. DARE II machine equations must be scaled 
(much like those in analog computers) between — 1 and 
1 machine unit; with the PDP-9, ones-complement 
coding is employed. Overloads are detected and dis­
played by a special subroutine. 

To provide high execution speed, DARE II uses 
the PDP-9 macro-assembler to create macros corre­
sponding to analog computing blocks, an approach 
first used by Gaskill and McKnight in their batch-
processed DAS system on the IBM 7090.2 Our system 
permits especially convenient block programming, 
with each block named by type and by the actual 
output-variable name. The example of Figure 2 is 
represented by 

SUM Fl , S1DOT, S2DOT 

COS COSA, A 

MULT S1DOT, COSA, RDOT 

(1) 

where the first argument of each block-macro represents 
the block output. Note the convenient mnemonics used. 

DARE II block-statements and data are entered 
on the dual-CRT console used also with DARE I and 
can be edited, modified, and printed out with the aid 
of the same string-processing editor.6 DARE I I 
simulations of many small systems (second to sixth 
order) are, however, so fast that repetitive simulation 
and display at two to 20 computer runs per second is 
possible. Keyboard entry of parameters is then too 

S2 DOT 

COSA 

Figure 2—A block diagram 
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slow for CRT demonstration, of parameter-change 
effects, and a "diddle knob" or joystick permitting 
rapid changes of a keyboard-addressed parameter will 
be added. The knob or joystick will control incremen­
tation of an up-down counter holding the parameter 
value. 

DARE II software incorporates substantial improve­
ments over the DAS system. Block-macros may be 
typed in any order. An optimizing precompiler sorts 
statements like those in our example (1) before as­
sembly, so that each block of the sorted program can 
operate on already computed quantities: 

COS COSA, A 

MULT SIDOT, COSA, RDOT 

SUM Fl , SIDOT, S2DOT 

(2) 

This will then permit, say, integration of the out­
put F l . DARE II next employs conditional assembly10 

to completely eliminate the assembly of code for redundant 
store-fetch pairs corresponding to outputs and inputs of 
interconnected blocks. Thus, the first macro COS COSA, 
A in (2) would ordinarily end with 

while the second macro MULT SIDOT, COSA, RDOT 
would start with 

FETCH COSA (4) 

STORE COSA (3) 

DARE II automatically cancels the redundant 
pair of instructions (3), (4), although (3) would be 
kept if it were needed elsewhere in the program. The 
pair 

STORE SIDOT, FETCH SIDOT 

will be similarly cancelled, unless SIDOT is needed 
elsewhere. The DARE II precompiler program is specif­
ically designed to permit elimination of as many track-
store pairs as reasonably possible. In addition, condi­
tional assembly also eliminates code for unused multi-
input-summer inputs and similar unused options. 
As a result, DARE II produces code which is essentially 
as efficient as well-written PDP-9 machine-language 
code and permits relatively very fast execution (Table II) . 
If core storage is scarce, DARE II block macros can 
be subroutine calls to save core at the expense of some 
computing time. 

Although the basic PDP-9 instruction set is quite 
limited (no byte manipulation, spare registers, or add-

TABLE II—Estimated computation times for a typical aerospace-vehicle simulation 
(TIMES are in /zsec except as noted) 

OPERATION NUMBER 
REQUIRED 

Total Frame 
Time DT 
Max. Frequency 
at 25 
Frames/cycle 

DARE I 
PDP-9/FORTRAN 

(Floating-point) 

DARE II DARE I I I / IV 197X 
PDP-9/Macro-assembler CDC 6400 System 

(Fixed-point) (Floating-point) (Floating-point) 

X + Y + Z 
XY 
AX 
F(X) 
SINX or COS X 

TOTAL—ONE 
DERIVATIVE 
EVALUATION 
Two Derivative 
Evaluations 
RK2 Integration 

100 
80 
60 
8 

10 

—» 

-> 
12 

X1000 = 100,000 
X700 = 56,000 
X700 - 42,000 

X4000 - 32,000 
X600 = 60,000 

290 msec 

580 msec 
X3000 = 36,000 

X5 = 500 
X24 = 1920 
X21 = 1260 
X52 = 416 
X60 = 6002 

4.7 msec 

9.4 msec 
X120 ~= 1440 

X3.4 = 340 
X7 = 280 
X7 = 420 

X80 = 640 
X100 = 1000 

2.7 msec 

5.4 msec 
X25 = 300 

X0.2 = 20 
Xl-2 = 96 
X1.2 = 72 
X10 = 80 
X15 = 150 

0.46 msec 

0.9 msec 
X4 = 48 

616 msec 

0.07 Hz 

11 msec 

4 Hz 

5.7 msec 

7 Hz 

1.4 msec 

30 Hz 
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into-memory), many analog-computer blocks can be 
emulated quite nicely. As an example, a single-variable 
function with 256 uniformly spaced breakpoints can 
be formed by table lookup and interpolation in 50 
Msec, and a two-variable function with 16 X 16 
breakpoints can be formed in 120 /xsec.9 I t is also readily 
possible to add to the DARE II macro-block reper­
toire; one can, for instance, create blocks which pre­
cisely correspond to the computing elements of any 
given analog computer. 

Like DARE I, DARE II offers a choice of integra­
tion routines. Because PDP-9 lacks true index registers, 
the second-order Runge-Kutta routine4 

*+r£ = *X + ^ ( K i + K2) 

Ki = D T F ( * X , k D T ) (5) 

K2 = DT F[*X + K1; (k +1) DT] 

is probably the most useful, although it requires two 
evaluations of the derivative F(X, T) at each inte­
gration step. To implement Eq. (5), our program does 
not first evaluate all n Ki's and then proceed to add 
half of each to its *X, as might be done with a real 
index register. The program instead computes each 
*X + 3^ Ki and *X + Kx before the next Ki is evalu­
ated. When this is finished for all X, the program sets a 
tally switch to mark the second part of the Runge-Kutta 
routine, increments the independent variable, and 
uses the kX. + Ki to produce the K2 and the *+xX 
as each derivative is computed. All integrand accumu­
lation is.done in double precision to reduce roundoff-
error effects. 

With suitable interrupts from a real-time clock, a 
DARE II simulation could be readily linked to a 
hybrid-computer setup and/or to real system hardware 
(autopilot, operator positions). Note, in this connec­
tion, that the macro-assembler system would cir­
cumvent the reentrancy problems usually encountered 
in attempts to service multiple system interrupts with 
FORTRAN programs.3 

A look into the future: DARE III and DARE IV 

The DARE I and DARE II systems are expected 
to be completed in 1969. A useful and readily feasible 
next step could employ a modern 24 to 36 bit machine 
somewhat larger than our PDP-9 (e.g., SEL 840B, 
SDS Sigma 5, DEC PDP-10) to speed DARE I exe­
cution, or to add floating-point capability to DARE II . 
Such a system would cost between $120,000 and 
$200,000, which still matches the cost of a comparable 
analog-hybrid computer. Far more interesting from 

the point of view of economy as well as computing 
speed, however, is the possibility of time-sharing a 
substantially larger central digital computer, such as 
a CDC 6400. In fact, economical operation of even 
a medium-sized digital machine mainly intended for 
simulation should provide for time sharing with a 
"background" batch-processing program. 

Our proposals for follow-on projects, then, envisage 
implementation of DARE I- and DARE II-like simu­
lation systems with the University's CDC 6400, using 
the existing PDP-9/console combination as a remote 
user's station. 6400 activity would be restricted to 
very fast and efficient compiling and execution of 
differential-equation-solving programs, while the string-
processing CRT editor, data entry and display, and 
also some iterative and statistics routines in slow 
simulations, would be performed by the small proces­
sor associated with the user's console. I t is interesting 
to note that the simulation programs and data sent 
to the central computer involve only character strings 
transmitted at type-in rates. Alphanumerical data 
from the central computer do not require much higher 
rates; extensive numerical tables could be line-printed 
at the central installation. Each DARE CRT display, 
which is refreshed by the console processor, involves 
at most 2400 9-bit data samples. For typical 10 sec 
flight simulations, this would require transmission of 
21,600 bits every 10 sec, or less than 2500 bits/second, 
so that a telephone line would do. Such operation is thus 
ideally suitable for remote time-sharing, provided 
that the 10-second-plus-overhead computer runs can 
be made available without excessive delays. 

Based on initial DARE II experience, smaller simu­
lation problems would be solved much more rapidly, 
say in 0.1 sec of central-processor time. Repetitive 
console displays demonstrating parameter-change ef­
fects would not be possible with reasonable data-trans­
mission rates (nor would many such demonstrations 
be economically feasible)! Our proposed time-sharing 
scheme is, however, ideally suited to fast iterative 
simulation or statistics-taking by the central processor 
In this type of operation, only successive criterion-
function values, accumulated statistics, or similar 
numbers, need to be transmitted and displayed during 
the iteration runs, and low transmission rates would 
again suffice. 

In a console simulation system specifically designed 
for remote time sharing, our PDP-9 is really unneces­
sarily elaborate and could very effectively be replaced 
by the less costly 8K PDP-15, with DECtape but 
without extended arithmetic. Such a system, including 
very reasonable display facilities, would cost well 
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under $50,000. An even less expensive system could 
be readily based on an even smaller 12-to 16-bit com­
puter. This would save another $10,000; but the 18-
bit word length of the PDP-15; is especially efficient 
for display-refreshing purposes and adds to the stand­
alone capabilities of the console. Note, in this con­
nection, that our own PDP-9-based console could 
employ DARE I for complete problem debugging 
before ever using CDC 6400 time.: 

With the large central computer and its relatively 
efficient compiler available, the proposed DARE III 
and DARE IV systems corresponding the the FOR-
TRAN-based DARE I and the assembler-based DARE 
II, may well merge into each other. The multiple 
indexing needed for efficient implementation of inte­
gration routines may well be done best by the CDC 
6400 FORTRAN compiler, while derivative computa­
tions would probably still be executed more efficiently 
by an assembler-based system employing conditional 
assembly, as in the DARE II scheme. 

Digital vs. analog /hybrid simulation: Computing-speed 
considerations 

Table II lists detailed estimates for various digital 
computation times required in1 a typical medium-
sized aerospace simulation. Our example involves 12 
state-variable-derivative integrations, 100 three-
term additions, 140 products, and 18 functions of one 
variable. The DARE I and DARE II systems are 
implemented on a Digital Equipment Corporation 
PDP-9 (one jusec cycle time). This machine was chosen 
because it has an 18-bit rather than a 16-bit word 
length, although some of the newer 16-bit machines 
have much better instruction sets. The PDP-9 FOR-

Figure 2—DARE console in operation with the PDP-9 

TRAN compiler appears to be designed mainly to 
save core storage and produces relatively very slow 
execution. At a reasonably conservative 25 frames 
(time increments DT) per period, the resulting 616-
msec frame time for our aerospace simulation would 
permit the DARE I system to produce sinusoidal 
oscillations at 0.07 Hz. Speedwise, we see that the only 
differential analyzer our DARE I system replaces 
is an old-fashioned Bush or General Electric mechanical 
differential analyzer! 

A notable and inexpensive improvement in this 
situation is afforded by the fact that several PDP-9-
sized digital computers are already available with 
hardware floating-point arithmetic. No such option 
is available with the PDP-9, but we ourselves have 
designed a current-mode logic, floating-point arith­
metic unit for the PDP-9 which, if and when installed, 
would yield a speed improvement by a factor of at 
least 15 for the DARE I system, so that our simulated 
aerospace vehicle could wiggle at about 1 Hz, floating­
point. 

Our block-oriented DARE II system, also running 
on the PDP-9, was specifically designed to demonstrate 
relatively high-speed, real-time flight simulation on 
the inexpensive computer. The price paid for this is 
fixed-point operation, but DARE II's efflicient execu­
tion and 11-msec frame time permits about 4 Hz in the 
aerospace-simulation example. 

An improved 18- to 24-bit stand-alone computer 
of the future could probably produce comparable 
floating-point simulation at 4 Hz. As we have noted, 
though, the DARE III /IV systems will implement 
the economically much more important goal of time-
shared operation with a large central digital computer, 
in this case the CDC 6400. As we have seen, very 
efficient and still relatively machine-independent exe­
cution will be obtained by FORTRAN integration 
and macro-assembler implementation of derivative 
computations, although many operators may prefer 
an entirely equation-oriented approach. In either 
case, Table I indicates estimated frame times of the order 
of 5.7 msec, thus permitting about 7 Hz operation at 
25 frames per cycle. Note that this system would provide 
floating-point aerospace-vehicle simulation in real time. 

The last column of Table II extrapolates the DARE 
III / IV system to a hypothetical 1970X digital com­
puter permitting an approximately fivefold increase 
in computing speed through faster hardware and/or 
multiprocessing, instruction look-ahead, or hard-wired 
subroutines. This is in no sense a way-out extrapolation, 
since digital-computer projects now on the drawing 
boards already plan for a fifty-fold speed increase. Proba-
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bly the most time to be gained in simulation calcu­
lations would be through the availability of fast scratch­
pad memories or multiple registers, which would per­
mit derivative computations with as few core-memory 
references as possible; this will already be approximated 
in the assembler version of our CDC-6400 simulation 
program. Additional computing bandwidth would 
readily be obtained with computer systems employing 
parallel multiple processors, which would fit nicely 
into differential-equation solving schemes. Note, how­
ever, that no manufacturer of large digital computers 
would even consider a special design for continuous 
system simulation, so that all improvements must 
make, as it were, incidental usage of developments 
in large-scale scientific and business computers. 

Let us now consider the computing-speed situation 
on the analog/hybrid computer side. One or two ana­
log computers available for sale in 1970 will offer not 
only 0.02 percent of half-scale static accuracy, but 
also 0.1 percent of half-scale error in linear compu­
tations at frequencies up to 1 KHz; multiplication 
and function generation are somewhat less accurate. 
In applications where such component accuracies 
suffice, even existing analog computers are thus seen 
to have a 20:1 speed advantage over the fastest 
digital-simulation systems. This bandwidth advantage 
is moreover, not likely to decrease within the next ten 
years; since 1965, improved ± 10-V hybrid computers 
developed in our laboratory have operated with errors 
below 0.2 percent for linear and one percent for non­
linear operations up to 10 KHz, at perfectly reasonable 
cost.11-12 

Digital versus analog /hybrid: Economics 

Our DARE system is implemented on about $90,000 
worth of PDP-9 and simulation console; another 
$25,000 could be very advantageously spent on a 
disk to speed compilation. When implementing the 
fixed-point DARE II language, our stand-alone system 
is roughly comparable to a modest 150-amplifier hy­
brid computer of 1960 vintage, say, an Electronic 
Associates 231-R together with a small digital com­
puter used for potentiometer setup, static checking, 
and some function generation. 

At a more or less comparable price, the on-line 
digital system is incomparably more convenient to 
program, check out, and operate (this is, of course, 
doubly true of the floating-point system). We also 
have, of course, all the possibilities of the 16K PDP-9 
with dual display and can produce floating-point check 
solutions with DARE I. 

Our PDP-9 installation is, however, mainly intended 

as a demonstration. A more useful stand-alone instal­
lation, based perhaps on the SDS Sigma 5, would 
roughly double our cost, but would permit real-time 
floating-point flight simulation, plus some foreground-
background time sharing. Although such a system 
would be economically competitive with a 1970 ana­
log/hybrid computer in many applications, the full 
economic potential of on-line digital simulation will be 
realized only in a time-sharing system. The tremendous 
advantage of the time-sharing system is, simply, 
that the central processor is free for other business 
while the simulation user looks at his console-refreshed 
display, or simply scratches himself. We have already 
seen that the communication requirements for time-
shared simulation are quite small. 

I believe that the foregoing considerations clearly 
indicate the area of future analog/hybrid vs. digital 
simulation competition. In applications where analog/ 
hybrid and digital simulation systems compete at equal 
computing speeds, i.e., in most real-time or "slow" 
simulation, the new digital systems will win overwhelming­
ly both on economic and on human-engineering grounds. 
Since, on the other hand, reasonably complex nonlinear 
digital simulations will not be able to run at frequencies 
much in excess of 100 Hz, faster simulation will still 
belong on analog/hybrid computers. 

A crucial question confronting the simulation com­
munity (and specifically the analog-computer industry) 
is, then, this: where, and how large, are the application 
areas of really fast analog/hybrid computation? The 
most immediately important would seem to be: 

1. Parameter and functional optimization, including 
trajectory optimization. 

2. Random-process simulation, including optimi­
zation of statistics, communication-system sim­
ulation, and parameter-tolerance studies. 

3. Solution of partial differential equations, in­
cluding vtechniques requiring multiplexing of 
analog computing elements. 

I t is in precisely these applications that the very 
large number of computer runs needed may give the 
analog/hybrid computer a measure of economic ad­
vantage even over digital batch processing. Even 
here, only important and frequent applications could 
tilt the balance away from time-shared digital simu­
lation, which saves much analog-computer scaling, 
setup, checkout, and "head-scratching" time, not to 
speak of computer amortization. Cost estimates for 
different simulation methods sometimes omit these 
"hidden" costs. 

I wronder, finally, how much practical high-speed 
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analog/hybrid computation is really done in the aero­
space, chemical and nuclear-energy industries, which 
are, at this time, the principal consumers of continuous-
system simulation. Our own laboratory's work on the 
design and applications of very fast analog/hybrid 
computers,11,12 for instance, has always elicited much 
polite interest, but very little imitation. By contrast, 
much current aerospace work involves "slow" or real­
time hybrid simulation of aerospace systems, with the 
digital computer doing housekeeping functions such 
as static checking, plus function generation and, per­
haps, some accurate trajectory integration. The re­
sulting accuracy and software problems combine all 
the worst features of both analog and digital compu­
tation; the main reason for employing hybrid simula­
tion at all is either the existence of actual hardware 
in the loop or some 20- to 50-Hz components due to 
hydraulic servos and/or aeroel$sticity. This type of 
hybrid simulation can be swallowed by future on-line 
digital systems like Jonah by the whale. For the 1970s, 
the simulation community would be well advised to 
include on-time digital simulation in its planning, 
together with some careful reconsideration of faster 
analog/hybrid techniques. 
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