
Character generation from resistive
storage of time derivatives

by MICHAEL L. DERTOUZOS

Massachusetts Institute of Technology
Cambridge, Massachusetts

INTRODUCTION

Recent advances in man-machine communication
have stimulated increased interest in techniques and
special circuits that generate characters, for graphical
and alphanumeric Cathode-Ray-Tube (CRT) display
terminals, at the display site. The primary advantage
in employing such local character generation is com­
pression of the data that is required to store and com­
municate a character from the computer to the dis­
play—a single binary word of length n is all that is
required to instruct the character generator to dis­
play one of 2n possible characters. The primary dis­
advantage of local character generation is display
cost, for it is generally considerably less expensive
to generate characters from a longer sequence of more
elementary commands—for example commands that
cause the CRT beam to move right, left, up or down
by a minimum resolvable increment. Besides these
conflicting costs of data storage and transmission
versus local-display generation, several other less
tangible criteria such as character stability and fi­
delity (aesthetics), are instrumental in the design and
evaluation of a local character-generation approach.

This paper discusses a character-generation tech­
nique which requires, for each character, the storage
in a resistive memory of the time derivative functions
for the horizontal and vertical CRT deflection signals.
The first section of the paper describes specific geometri­
cal primitive segments that can compose a large class
of characters and symbols; the choice of such primi­
tives is important, since it affects directly the quality
of the displayed characters and the display cost. Also

given in this section is a complete list of primitive
sequences for the 94-character ASC-II set. The second
section of the paper describes a character-generation
system that stores the above primitives in a resistor
matrix, and uses them to compose desired characters
on a CRT display. In the third section, this approach
is evaluated and compared to more conventional
methods of dot intensification, in terms of cost, speed,
and fidelity.

Character primitives

Characters and symbols, generated on CRT dis­
plays, are made up of certain elementary graphical
segments. Character primitives over a character set
will be called those segments which are (i) atomic or
indivisible to smaller segments, and (ii) sufficient in
number and quality to compose within acceptable
accuracy every character in that set. At one extreme,
the points of a uniformly spaced grid are adequate
character primitives (Figure la); however, as the
number of these points is reduced (Figures lb and c),
it becomes progressively more difficult to recognize
the displayed characters. At the other extreme, the
set of all characters may be considered itself as a set
of character primitives. This set, however, is not very
useful, for while it is generally easy to construct a
system capable of implementing the primitives of
Figure 1, it is considerably more difficult and expen­
sive to implement the primitives at the other extreme.
Conversely, it takes only seven bits to specify one
of the 94 characters of the ASC-II set, while it takes
49 bits to specify every one of the possible subset of

561

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1478559.1478627&domain=pdf&date_stamp=1969-11-18

562 Fall Joint Computer Conference, 1969

169 POINTS
• • • • • •

49 POINTS 16 POINTS
• • •

• •

• • •
(c) (a) (b)

Figure 1—Points as character primitives

dots of Figure lb . These simple observations on the
above two extremes are characteristic of the problems
of character generation and of the objectives in the
design of an effective character generator"—that is
the, desirability for a small number of primitives which
can be economically implemented.

The primitives used in the character generation
technique of this paper are continuous strokes which
are either (i) straight lines or (ii) so-called "cusps".
A straight-line primitive is specified relative to a
point P by increments Ax, Ay which are real numbers;
in our notation each such primitive! is denoted, when
visible, by (Ax, Ay) or, when invisible by an under­
score G ^ A j . Figure 2a shows twO such primitives.
The equation of primitive (Ax, Ay) is relative to a
coordinate center at point P as follows:

L = * for 0 < J- < 1, 0 < ~ < 1 (1)
A„ Ax ~AV ~ — Ax

 - v '

where x and y are the horizontal and vertical coordinates
of every point on that primitive.

P _ ^ £

(2,3)

(3,-1)

(a) (b)

Z

*K

n

^

/^ (3,3)

(1,-3)

Zy t f n
\

0 i 2 1
3 3

X

(c) Ax

The cusp primitive, on the other hand, is specified
relative to a point P by increments Ax, Av, which are
real; moreover, one of these increments is overscored,
and is called the cusp increments; that is either (A*,
Ay) or (Ax, Ay) are valid cusp primitive notations.
Geometrically, a cusp primitive is, as shown in Figure
2b, contained in a rectangle of dimensions Ax, Av\
the curved segment corresponding to the overscored
increment is obtained by dividing the other increment
into three equal parts, fitting a straight line in the
middle section and a parabola in each of the other two
sections so that the parabolas are tangent to the above
straight line. More precisely, the cusp, (A*, A J , shown
normalized in Figure 2c, is given, relative to a coor­
dinate center at point P, by

In Region I (0 < •%• < I) ;

JL= 1 - (1 - 3~)
Ay Ax

(a)

I n Region I I (i < - < 2) ;
o AX 6

= 1
Ay

In Region III (§ < — < 1);

(b) (2)

I = l _ (3 ± - 2)2 (c)
Av Ax

The cusp (Ax, A„) is obtained from Equations (2) by
interchanging literal x with literal y everywhere in
these equations. A cusp is always visible. These ap­
parently mysterious primitives are justified on two
counts: (i) ability to represent a large class of charac­
ters and symbols with a small number of primitives,
as discussed immediately below and (ii) ease of im­
plementation, as discussed in the following section.

A character or symbol is composed from a sequence
of these two types of primitives; here the first primitive
is specified relative to the lower left corner of the
character field, and each subsequent primitive is
specified relative to the terminating point of the
preceding primitive. For example, capital letter A
is formed in Figure 3a by the primitive sequence

S4 = (-45, 1.2)(.45, - 1 . 2 H - -788, .3)(.676, 0)

Figure 2—Straight/cusp primitives

Observe that the first segment is a visible straight
primitive which starts at the lower left corner and

Character Generation from Resistive Storage of Time Derivatives 563

Here, the first four primitives are straight with the
third primitive invisible. The fifth primitive however
is a cusp which starts at the point [.4, .7] and ends at
the point [.4, 1.2].

Figure 4 shows the primitive sequences corresponding
to all 94 alphanumeric characters and symbols of the
ASC-II code. This Table is arranged exactly as the
table of the ASC-II code for reference purposes. Some
statistics of interest here are as follows:

1. The average number of primitive segments per
character is 4.43.

2. The maximum number of primitives per charac­
ter is eight.

3. The total number of different magnitudes for
the primitive increments is 13.

4. No character uses more than two cusp primi­
tives; these primitives occur (intentionally) either
at the fifth, at the seventh, or at both the fifth
and seventh segments of that character's primitive
sequence.*

Of the above observations, 1, 2, and 3 indicate that
a relatively small number of primitives can form a
relatively large class of symbols. The fourth as welJ

* or they can be made to occur at these segment positions by
introducing primitives (0,0) anywhere in the sequence.

1
1.4,12)10,-10)10,-4) 10.-.1)

13,1.01(0, 2)1,2,-2)10,2)

*
(B,0)U4,2Kj!OH-i,-U)l25..4)l-.T,Om,.«H.T,0)

1.44.4)(Q,-L6)1.4,11)1-6,3)1.6,.S)l-.6,-.4)

%
t4.O)l,64.2)t-6,O)(0,-.2)(.6.-.6jlO,-.2)

a
«,QH-.»,»(.5,.ai-.a,-.«n .•,-.*)

1,4.1.8)10. -02)

(
1.6,0)1- 2,1.2)

)
1.2,0)1.24.2)

*
1.2,7)(,4,.4)(,l,-,2)(-.6,0)(,l,2)(.4,-,4)

+
10. 6H.6,0)(-.4,.4)(0.-.a)

1A0K-.1.-.2)

(0.8)18.0)

1.4.01(0.0)

/
1.6,1.2)

0
l.»,.9i(-.a,3)(0,-.s)(,»,-.4U0,.a)

1
1.2.1.0)12,2)10.-1.21

2
10,.9)(.7,iU-.7,-.9)1.6,0)

3
U 4 2)U,0)(.5,-.5)1.6,-.7)(-.2,01

4
(.7,0H0,12)(-.7,-9)[.8,0)

5
It..7)1.1, 511.6,0)

6
1.6,l.2K-2,0H-.^,-l^)(.*..7)l-.4,-.2)

7
10.t.2)16.0)(-.6,-12)

8
li»>t-.e,.Sn.«.-.5i(-.»,-.*)(*,.5)

9
1.2.0)1.2.0)1 >,12)1- 4,- TH.4, 2)

1.4,6)10,0)10,-6)10.0)

(.4.6H0.0K0.-.6H-I.-.2)

<
1.7,0)1-.6,.6)1«. 6)

10,W.6;OtlO,-.4X-«jO)

>
1.1.0)1.6,6)1-6,6)

14,0)10,1)10, 0(0. iX».9H-4.3)

(3,.3K3,.6)(0,-.6)(-.3,.6l(-.3,-.6)(.l,-.3H-.5il.2)1.2,-3)

A
14S,tZ)(.4»,-1.2)l-.79a,.aH.676,0l

B
10,1.2«.4,0X-.4,-.5H.4,0)(.5,S)<0,-.5X.4,-.7)(-.4,0l

c
i.e,.9)(-.»,i)(0,-i)(e,-.4)

D
(0,l.2](.4,0ll.4,-l 2)1-4,01

E
104.2)1.7,0)1-7,-.» 116,0)1- 6,- 7)1.6,0)

F
(0,1.2)1 .T.OH-.T.- 9)1.6,0)

G
(6,9K-6,i)(0,-»)U,-.<M-i,0)

H
104 2H0,- 9)(»0)t0, »)t0.-t2)

I
(20l(.4X»l-mWOX2H-1,0)14.0)

J
HJJ14.0M-1.0H0.-10)1- 4,- II

K
IQJPtOL- TXT, TK-.V »)!«.- T)

L
aMKOJJs}M*4»

M
(04IX4,-6K4.4M0.-l-tl

N
104 1)16,-l.tltOJ 21

0
l»6K-»..iM0,-a)U,-.<H0,.9)

P
10,1.2H.4.0)l-.4,-.9)(.4.0l(.i„5)

0
[.8,0>(-.2,.2)(.2,.7)(-.8,.3)(0,-.5K.8,-.4)(0,.S)

R
(0,1.2)(.4,OI(-.4,-.5l(.4.0l(.3,.5l(0.-.5)l.4-7)

s
i1e1.9)i-.e,.3)(.e.-.»!(-a,-^)
T
l.4,0)10,I.ZH-.4,0)[.B,0l

U
104 21(0.-61(6,- *)(0,.6>

V
(04.2>(.4,-1.2)< .4,1.2)

w
W.2)(.2,-1.2)(-i»,6)l.2S,-.61(24.2)

X
(0,t.2)l.6.l 2)1-.6,0)1.64 2) .

Y
IO,12)1.4,-.6H.4..6)l-.4,-.6HO,-6)

z
(04 2)164W-.6.I 2)1.6,0)

[
(.74i)(-.4,0H0,-U)(.4,0)

\
(04 21(4-121

]
1.1.0)IA0)(ftl2X-.4,0)

104.4K4,»<4,-il

10,-2)1.6,0)

(Ali0)(-2,2)

a
1.6,0)[0,.9)[0, -.6)1-6, • . S m . a H i . l l

b
(0,l2)(0ll6)(.e..X)10,-.5)(-.6,-.J)

c
(.6„3)l-.6,-.3)(0„3)(«,.5)

d
(6,0)10,1 2)10, -,9)(-.6,-.S)(0,.3K.6„3)

e
(0tM.e,0](0,.ll(-.8,.S>(0,-.3>(.6,-.S>

f
l.».0)(0.10)(.2.-.l)(-.3,0)(.l..l)(.4„8)

g
l.l,-.3)l.S,0)[.2.2)10,.7)l-.8,.i)(0,-.3)l.6,-3)

h
(0.1.2)(0.-.6)(6,.3)(0,-.6)

1
l.4,0)(0,.9)(0,.3)(0,0)

i
(.6,1.2KO,OKO,-3)(0,-.9H-.6,-.!)

k
(0.12)(a-6)i«. aw-.«.-.4n.».-.3)

1
(*£) 104.2)

m
10,9)1.4,-3) (0,-,6)(0„6)(-4,3)(.4,Q)(.4,.3)

n
(0.»}(0,-jx»,.5><o,-.e>

0
10E»C,.J)(.6,S)10,-.5)l-.6,-.l)

P
(0J-:3)1042)10,-.6)lJ,-.3)10,.3)l-.8..3)

q
(.e.-.3Ko,i2)(o,-.6K-.e.-.5)io,.3)(.6..S)

r
1.1,0)(0,.9)(0,-.2)1.7,2)

I

(0 , . 3) (6 , - . 3 K - 6 , . 3 H . 6 , 3)

t
(.6,0)1-1,0H-4J)I0.1.I)1-.I.-.3)(.4.Q)

U
1.6,0)10,9KO,-.6)(-.6.-.iMO,.6l

V

<0,,9)(.4,-.M(4„9)

W

10.9)1.2,-9H.2,.9)(,2,-.9M.2..9)

X
(7,.9)(-.6.0)(.T,-.»)

y
(l ,-3)U.0H.l.l)[»4lll-».0)(.4.-»)

Z

(•7,.9)[-.60)[-.l,-.t)U.0)

{

(4^)1-2,a)(0,9X-.l. l)(.l. l)(0,.9)l.l,2)

1
(^^11(04*1

)
(2.-»U,2H0,5)11,-1)1-l,.l)(0r3K-2,.2)

IO,j)C6,OH-.2.0)

1.2

1.0

.8

.6

.4

.2

0

1 1 1 i IAI 1 1 1 1 L2| | d H / TNl I I
I \ 10 /

7 5 ^% -iS
r ' n >' i J

ff3 S^&u Z r-' W \z , sr 1 > G \2 /

1 Ay t A*9
/ —* \

>**•«. ^

7 ~*S^ V
t -1® ^ - 3 o

0 .2 .4 .6 .8
(a)

.2 .4 .6 .8
(b)

Figure 3—Character composition by straight/cusp
primitives

terminates at the point [.45, 1.2]. The second segment
is again a visible straight primitive, which starts as
point [.45, 1.2] and terminates .45 units to the right
and 1.2 units below that point. Observe further that
the third segment is invisible, and that the direction
and order in the sequence of each primitive is shown
adjacent to each segment in Figure 3a. Capital letter
P of Figure 3b is formed by the primitive sequence

SP = (0, 1.2) (.4, 0) (- -4, - .5) (.4, 0)(.2, 5)

Figure 4—Straight/cusp primitive sequences for 94-character ASC-II set

564 Fall Joint Computer Conference, 1969

as the other observations above will be used in the
following section in connection with the implementa­
tion of this character generation technique.

The character generator

A local character generator for: a CRT display is
generally a system (Figure 5) witji input a seven-bit
word, denoting a character, and output two deflection
and one beam-intensification waveforms (functions
of time), which when applied to the CRT deflection
and beam controls, respectively, display that character
relative to beam position, xp and! y^. Character and
line spacing is usually accomplished by a control unit
external to the generator, which varies xp and yp upon
completion of each character and line, respectively.
If the CRT display module is of the refresh type, then
the codes of characters to be displayed are stored in
a local storage medium, usually a delay line, and are
presented periodically, usually every 1/30 to 1/40
sec to the character generator. If the CRT display
module is of the storage type, then the character
generator generates the waveforms x, y and b only
once for each character to be displayed, and the cor­
responding character is stored on the screen of the CRT.

Any given character primitive y = f(x) can be
generated by such a system in an infinite number of
ways, since for every one of many possible choices
for a horizontal deflection waveform x(t), where t
is time, there is always a vertical deflection waveform
y(t) = f(x(t)) which when applied simultaneously with
x(t), causes the CRT beam to trace the primitive y =
f(x). Two particular types of waveforms, s(t) and
c(t) were chosen to implement the primitives of the
preceding section; they are shown in Figure 6a, and
their time derivatives in Figure 6b.

A straight-line primitive about any point is generated
by applying waveform s(t), appropriately scaled, to
both the horizontal and vertical axes. Thus, setting

x(t) = Ax s(t) + Xi (a)

y(t) = Ay s(t) + y i (b)

(3)

where Ax and Ay are real numbers, results in a straight
line primitive from [xx, y j to [xi +
by

x - xi = y - yi

Ax Ay

Ax, yi + Ay] given

(4)

7-bit
input

CHARACTER
GENERATOR

b ^ B E A M

DISPLAY
MODULE

irf
o y

Figure 5—Local character generator

and shown in Figure 6c. This is the desired primitive
of Equation (1).

A cusp primitive about any point, is generated by
applying waveform s(t) to one axis and waveform c(t)
to the other, after each waveform has been appro­
priately scaled. Figure 6d shows the resulting segment
when s(t) is applied to the horizontal axis, and c(t)
to the vertical axis, and Figure 6e shows a segment
obtained with different scaling and interchange of the
two waveforms. More generally, setting

x(t) = Axs(t) + xi (a)

y(t) = Ayc(t) + yi (b)
(5)

where Ax and Ay are real numbers, yields a cusp
primitive, about-point [xi, yd described as follows:

for

0 < £ Z _ * < 1
Ax o

,-n + «[i-(i-*'-^f]
for

k < — — <% y = yi + Ay
o AX o

(a)

(b) (6)

for

2 <
 x ~ xi < i

Ax

y = yi + A y [1 - (3 X - ^ - 2)] (, !)

Equation (6) is identical in form to the desired cusp
primitive, given by Equation (2). Since Equations
(4) and (6) implement exactly all the primitives of
the previous section, about any point (xi, yi), it re­
mains only to provide means for forming a string of

Character Generation from Resistive Storage of Time Derivatives 565

4S(t)

(a)

tds
dt (t)

0

2 T

3 T T
0

*

(b)

• t

y
A

y^Ay

Z/i
\ \+Ax

• x

y+Ay

x, x,+Ax

(e)

Figure 6—Waveforms for straight/cusp primitives

primitives, so that all the characters of Figure 4 may enating the derivative waveforms of Figure 6b, for
be implemented. each primitive segment, after they have been scaled

The formation of strings of primitives, that is of by Ax and Ay. Such waveforms, denoted by (l/T)dx/dt
characters and symbols, is accomplished by concat- and (l/T)dy/dt, (T constant) are shown for letter P

566 Fall Joint Computer Conference, 1969

(•)»!
mi

....J.—I—J—rprp
.5

-.9

12

.7

^

/ /

— r — ; — T ~ - |
-r.--r--i—i 1 ' ! ! I I 1 i

i i i
i i |
i l l
' i ' '

/ i ' ' i i / l l l
/ i i i i i

\ i i i I .

Figure 7—Composition of CRT deflection and beam
waveforms

on the top half of Figure 7; subsequent integration
in time of these waveforms yields! the deflection wave­
forms x(t) and y(t), shown on the lower half of Figure
7. Also shown in Figure 7 is the beam waveform b(t)
which turns the beam off in the third time segment
2T < t < 3T. The character resulting from simul­
taneous application of these x(t): and y(t) waveforms
on the CRT is the letter P of Figure 3b, specified by
the primitive string:

SP = (0, 1.2)(.4, 0) (- .4 , - .5)(.4, 0)(.2, .5)

Observe that these five primitives correspond to and
are ordered as the five time segments of Figure 7.

One way of implementing this i character-generation
approach is shown in Figure 8.; Here, sixteen lines
carry eight rectangular constant-amplitude voltage

:U=t

p, f, P, P.

S / i i i I | * v ; i : i

} % % -v % < v — ' ! J , U X W
I-P. I-P. I-P. I -P-I -P. I-C. I -C, . ' I ' 2 ' 3 4 5 6 7 fl'

• H
• t f - j

•conductance valuei

/ ^analog switching devices

INPUT
(7-blt
Charocttr Codi)

g — - 1 | OUTPUTS
(loCRT)

Figure 8—Character generator implementation

pulses Pi, and their negatives and four lines carry
two cusp-derivative pulses C, and their negatives.
Waveforms and relative timing of these pulses are
shown on the top center of Figure 8. Operation of
the system is as follows: a character to be displayed
is specified to the decoder shown on the right side of
Figure 8, by, a seven-bit binary word. This word is
"decoded", so that one of the 128 output lines of the
decoder, say the line marked P, becomes energized.
That line, turns "on" the three analog switching devices
to which it is connected, and starts the timing sequences
of the Pi and Ct pulses. The dx/dt, dy/dt and b wave­
forms for the selected character are formed by resistive
mixing of the above pulses in three groups, respectively.
For the case under discussion, letter P is "stored" in
the values and manner of interconnection of eight
resistors shown enclosed by dashed lines. Here, the
top four resistors mix pulses P2, — P3 and P4, all equally
weighted by a conductance of .4 units; the fourth
resistor in that group weighs waveform C6 by .2. As
a consequence of this mixing, the resulting current in
the so-called xbus is the weighted sum of all these
waveforms and is identical to the dx/dt waveform of
Figure 7. The next group of three resistors having
conductances 1.2, .5 and .5 respectively forms, in a
similar manner a current in the ybus which is the dy/dt
waveform of Figure 7. Finally, the complement of the
beam waveform of Figure 7 is formed by the last group
consisting of one resistor of unit conductance, as a
current in the b bus. The dx/dt and dy/dt currents are
subsequently amplified by low-input-impedance ampli­
fiers A and integrated in time to yield the x^(t) and
yA(t) waveforms of Figure 8. These are identical to
the desired x(t) and y(t) waveforms of Figure 7.
These waveforms are, in turn, summed with the con­
stants xP, yP and the beam waveform is inverted
resulting in a display of character P about point
[xp, y>]. At the end of this sequence, the integrators
are reset to zero output and the analog switching
devices are turned off, thereby making the character
generator ready for display of the next requested sym­
bol. Also shown in Figure 8 is the resistor "memory"
for character 1; the reader may verify that when this
character is selected, the system does indeed generate
the primitive sequence for that character, shown in
Figure 4. Observe finally that the system of Figure
8 has two rather than eight cusp lines, Ci, which are
active at timing positions five and seven. The reason
for this choice is one of economics, since as we discussed
in connection with Figure 4 it has been established over
a large class of characters and symbols that these
pulses at such relative positions are quite adequate.

Character Generation from Resistive Storage of Time Derivatives 567

NEKAL
"^U^ 1* 8?* 0 0 CRT Display System is a oraphic and alphanumeric mon-moonlne
communication terminal. System configurations in this series range fro* o
r*r!25.t0? computer display to o self-contained, full-Qrophic, remote termJnoJ.

I mterchanoeabiIity of system nodules.

-~» . .k .
) l ? ? 0 0 0 characters per second; and o stoeage CRT display

moduie that maintains over 800.000 points of fMoker-free information on the
display. The system blook diagram is shown in Figure I, on the next page.

Examples of the Series-400 oharaoter set:

t234S67890-(|qwrtyuiop* -,}asdfQhJkl; rzxovbnm,./

I •#*•/.&• no=fOWERTYUlOf«\3ASDFGHJKL*#ZXCVBNM<>?

UWXYZ oocdefohijklmnopqrstuvixyz 1234567890-{ [*0>('&'/.$#" ;:•+/... <>M]\#f •#«*!«•

Figure 9—Implemented characters (Courtesy of Computek Inc., Cambridgs, Mass.)

A photograph of characters and symbols generated
by such a system is shown in Figure 9.

An alternative realization of the above character-
generation technique would be to store for each charac­
ter k bits in a digital read-only memory. These bits
would, in turn, control a common, over all characters,
resistive mixing network, by varying in discrete steps
the conductances of this network. Such an implemen­
tation, however, requires approximately k = 90 bits
of storage per character and is considerably less
economical than the system of Figure 8.

COMPARISONS AND CONCLUSIONS

Ultimately, the merits and disadvantages of a character
generator rest on economic and aesthetic criteria. The
former are very strongly dependent on technology and
are subject to rapid change, while the latter are, beyond
a certain point, quite subjective. Nevertheless, certain
conclusions can be drawn.

First, the use of stroke primitives such as straight
lines and cusps results in more economical character

storage than the use of points; and the relative advan­
tage of such storage increases, over a certain range,
with finer resolution. Consider for example that every
character is formed on a grid of n2 points. A straight­
forward point-intensification or incremental-stroke
scheme on such a "dot-matrix" would require the

14

12

10

8
log2(memory size)

6

4

2

0

i

-

-

-
/ resistive memory

1 1 1 1 1 1 1 1 ! 1 .
0 4 10 20 40 60 60 100

n

Figure 10—Memory growth versus resolution

568 Fall Joint Computer Conference, 1969

storage of n2 bits per character, indicating the points
"which must be intensified—the corresponding memory
growth curve, giving the number of diode components
per character, is shown in Figure 10 and is labeled
read-only memory". From Figure 4, however, we
know that the average number of segments per
character, over the 94 character ASC-II set, is 4.43
for the approach of this paper. Each segment, in turn
requires two resistors, for x and y. We also know from
Figure 4 that there will be of the order of 1.4 resistors
per character for the beam. Hence, the average number
of resistors per character is constant or

3 - 6-
• •

2 7

• •
1 # . .

(a) dot intensification
7 dots

5| X

A1' !
, (b) 7small vectors;

some resolution

1
% • ~J.

(c) 2 straight 8 cusp
primitives; same
resolution

Figure 11—Comparison of straight/cusp and point
intensified characters of same resolution

2(4.4) + 1.4 a* 10

In addition, each character requires three analog
switching devices (FETS) and; their driver, or the
order of five components. Thusj the total number of
components is 1.5 per character, remaining constant
within the limit of analog resolution, or n < 100, as
shown by the graph labeled "resistive memory" in
Figure 10. With present technology, it is more eco­
nomical to construct the character generator out of
discrete components; the resulting cost, is for an ac­
ceptable resolution n2 = 240, lower than that of a
read-only memory of 34 the resolution. With forth­
coming technology, the above ten resistors and five
active components, should cost; each about as much
as a diode, hence an even better cost advantage can
be expected. Observe however, as was indicated above,
that resolution cannot exceed that of analog circuitry,
since the storage and generation of characters is analog
in nature. On the other hand, the CRT is an analog
device, on which resolutions higher than analog can­
not be effectively used. The above savings in character
storage, result in lower generator cost, and reduced
generator size.

Second, the speed of character generation of such
a stroke technique is of the same order as that of dot-
intensified character generation, since the current
through resistors will generally change over its mini­
mum resolvable increment as rapidly as, or faster,
than the full current swing through a diode.

Third, the mixing of time-derivative waveforms, and
the subsequent integration of these waveforms pro­
vides good character appearance through suppression
of spurious noise and continuity of the integrated
waveforms.

Finally, the fidelity of continuous-stroke characters

with the above primitives is considerably higher than
that of dot-intensified, or incremental-vector charac­
ters of comparable resolution. Such a comparison can
be made visually by the reader on Figure 11 for a
resolution of n = 4, or a grid of 16 points.

The approach discussed in this paper can be further
extended to a more complete hardware "grammatical"
structure, through a straightforward extension. That
is, characters can be constructed from primitives and
other simpler constructs which are themselves com­
posed of primitives and/or other constructs of the
same class. For example, as seen from Figure 4, the
primitive sequence, S8, for numeral 8 contains the
primitive sequence S^ for capital S. That is, S8 = S,s
(.8, .5) It is not yet clear whether such a hardware
structure will result in even lower cost, without sacri­
fice of performance.

Finally, we would like to close with the philosophical
observation that the use of sizable straight-line and
cusp primitives is well suited to character generation,
since characters and symbols were generated, on the
first place, through such strokes, by pen or stick, on
paper or sand, rather than by dots or by infinitesimal
straight-line segments.

ACKNOWLEDGMENTS

I wish to thank Dr. H. L. Graham of Computek In:;.,
for his contributions to the design and construction
of a prototype generator; Mr. Ben Simpson of Compu­
tek Inc., for the design and development of a practical
generator, and Mr. L. Dounias of Ashely Meyer &
Associates for his aesthetic design of the character set.
This work was performed on a consulting basis for
Computek Inc., 143 Albany Street, Cambridge, Mas­
sachusetts.

