
The design of a meta-system' 

by A. S, NOETZEL 

The Moore School of Electrical Engineering of the University of Pennsylvania 
Philadelphia, Pennsylvania 

INTRODUCTION 

The design and implementation of multiprogrammed, 
time-sharing computer systems continues long after the 
system is put to use. A tool is needed that will measure 
and evaluate the computer system while it is in opera­
tion, as an aid to further development or optimization 
for a particular usage. Research into the possibility of 
developing this tool Was undertaken at the University 
of Pennsylvania's Moore School of Electrical Engineer­
ing. The research led to the design of the tool, which is 
presented in this report. It is called the Meta-system. 

The uniqueness of the Meta-system is due to the 
coalescing of two widely used techniques—on-line 
measurement, and simulation—into one system. Meas­
urement is performed by extracting raw representations 
of a computer system's operation (from that system) 
using software techniques only. Evaluation of the 
system is based on input of the measured performance 
characteristics to a simulation model that exercises 
modified hardware-software versions of the system. All 
the potential modifications to the system are evaluated 
in the context of the task load of the system, as extracted 
from the operational system. 

PRELIMINARY DESIGN 

Because of the novelty of the Meta-system, the 
description of the system will be preceded by a discussion 
of the design requirements of the system, and of the 
capabilities and limitations of various design alterna­
tives. This should also make clear the area of applic­
ability of the Meta-system. 

The Meta-system was first conceived of as a feedback 
loop on an operating computer system, in which the 
functions of measurement, evaluation, and modification 

take place. These functions are discussed in the following 
paragraphs. 

The measurement function of the Meta-system 

The study of measurement techniques of operational 
systems resulted in the following set of requirements for 
the measurement function of the Meta-system: 

1. 

4. 

5. 

I t should be implemented by software techniques. 
The recognition and measurement of the logical 
or decision-making functions of the operating 
system will require decision-making capabilities 
in the measurement devices. Also, the measure­
ment device must be capable of handling a 
variety of measurements and conditions of 
operation. A software device is therefore indi­
cated. To avoid the expense of an additional 
processor, the measurement software will be 
multiprogrammed with the system being 
measured. 
I t should introduce little artifact. 
I t should record all information of interest. The 
complete specification of the information of 
interest will not be achieved until the entire 
Meta-system, including the system modifications 
to be evaluated, is specified. 
It should be amenable to flexible off-line analysis 
(i.e., information must be detailed). 
It should be flexible, so that the same general 
approach could accommodate new and more 
specific areas of investigation. 

* The work reported here was partially supported by the In­
formation Systems Branch of the Office of Naval Research 
(Contract N0014-67-A-0216-0014). 

The choice of the measurement that meets all of these 
constraints is the event trace. This will be more precisely 
defined later. For the moment, the event trace is a record 
of the important occurrences in a computer systems 
operation. These occurrences are interrupts, activations 
of particular hardware devices within the system, or 

415 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1478786.1478847&domain=pdf&date_stamp=1971-05-18


416 Spring Joint Computer Conference, 1971 

calls on significant subroutines. The event trace is 
recorded at various points in the operating system by 
writing a small amount of data specifying the nature of 
the event, and the time at which the event occurs, into 
a buffer area in main memory. The buffer is written to 
external storage whenever it becomes full. 

If the events constituting the event trace are properly 
defined, the event trace may be an extensively detailed 
record of the system's operation. I t is, however, raw 
data, and will be processed by the evaluation function 
of the Meta-system. 

The evaluation function of the Meta-system 

Ultimately, the evaluation of the computer system 
will be provided by a system designer's response to the 
parameters of system performance obtained by 
measurement. And his response will depend upon the 
options available to him—which are determined by 
economic and political considerations. In order for the 
Meta-system to complete the evaluation of a system, it 
must include the system designer. Henceforth, 'evalua­
tion function' will refer to the automatic part of 
evaluation—the processing of measurement data to be 
more helpful to the system designer. 

The following possibilities for the evaluation function 
of the Meta-system are apparent: 

1. If the event trace is a record of the time of the 
beginnings and terminations of each interaction 
of the user tasks, the evaluation function may 
condense this data to obtain the response time 
distributions for the user tasks. 

2. If the event trace is a record of the activations 
and deactivations of the hardware devices, the 
evaluation function may condense this data to 
create a record of the utilization factor of each 
device. 

In either of these cases, the actual evaluation will be 
obtained by comparing the condensed data with some 
standard. Since the purpose of the evaulation is to 
determine the modifications that will improve the sys­
tem's performance, the standard for evaluation should 
be the same data taken from variant versions of the 
system, especially modified versions in which perform­
ance might be improved. 

The evaluation function should satisfy these two re­
quirements: (1) It should enable the system designers 
to identify potential performance improvements to the 
system, and (2) it should indicate the performance of 
the modified systems without the expense of perform­
ing the modifications. 

The Meta-system described thus far has the form 
indicated in Figure 1. The evaluation function contains 
a 'trial modification' loop in which measurements of 
variant versions of the system are obtained. Another 
possibility for the evaluation function suggests itself: 

3. The evaluation function may be a simulation 
model of the system, or modified versions of the 
system. Condensed data, such as (1) and (2) 
above, may be obtained from the model. 

Selection of the simulation model as the evaluation 
function imposes special requirements on the measure­
ment function. Consider the measurements of one 
system that are useful for simulating another system. 
The measurements must not be the final results, such as 
the utilization factors of various hardware components, 
since these will be obtained from the simulation model. 
Rather, they will be measurements that can be in­
terpreted by the simulation model—frequencies of 
occurrence of the operations, for example. The simula­
tion model may then allocate a different time interval 
for each operation, and different utilization factors will 
be obtained. New resource allocation techniques, as well 
as other system algorithms that influence the resource 
allocation, may be investigated in the simulation model. 

The measurements taken from the operational 
system will therefore be measurements of the user task 
demand for various system resources, which is related to 
the allocation of the resources through the operation of 
the system. 

Next, it must be noted that a task's demand for 
system hardware resources cannot be represented 
independently of the system on which the task is run, 
for two reasons. First, because the hardware resources 
(as well as the other resources—macros, algorithms, 

USER . 
TASKS 

A 
TIME-SHARING SYSTEM 

MEASUREMENT 

OUTPUT 

MODIFICATIONS 

SYSTEM 
IDESIGNERS! EVALUATION 

I 
TRIAL MODIFICATIONS 

Figure 1—The Meta-system 



Design of a Meta-System 417 

tables, etc.) vary from system to system. Second, 
because it is the system as well as the user that generates 
the demand. Only at the highest level of demand 
specification—the level of machine-independent lan­
guages—is the demand purely due to the user. But even 
in this case, the demand for the execution of a program 
written in a high-level language cannot be correlated in 
a system-independent fashion, to the demand for 
hardware resources. 

The result that is important to the theory of 
execution-simulation, is that it is possible to find 
representations of user task demand that are relatively 
independent of the system on which the task was run. 

Relatively independent demand representations are 
representations which remain valid for a system that is 
within a specified class of modifications of the system 
from which the representations were taken. One concrete 
example may help make the concept of relative inde­
pendence clearer. A task may be represented as a series 
of I /O operations. The number and frequency of the I/O 
operations are functions of the size of the data block 
that is involved in a single I /O operation. Then the 
sequence of demands for the I/O operations is a valid 
representation of the task's demand in every system 
which has the same block size in its external storage. It 
will remain valid even if the speed of the I/O device is 
changed, or if the configuration of the system or the 
scheduling of the device is altered, changing the wait 
time for the I/O operations. 

I t has been found possible to extract representations 
of user task demand for system resources from several 
different levels of operation. In each case, it is necessary 
to preprocess the event trace as taken from the system, 
before using the trace in the simulator. The preprocessor 
and the remainder of the Meta-system is described in 
the next section. 

OVERVIEW OF THE META-SYSTEM 

The Meta-system that was developed in detail was 
designed for operation on a hypothetized system which 
has the characteristics of three large time-sharing 
systems—TSS on IBM 360, TSOS on the RCA Spectra 
70/46, and the Multics system on the GE 645. Specifi­
cally, it includes the features of recursive and reentrant 
operating system routines, demand paging, multi­
programming, multiple-I/O paths, multitasking and a 
Virtual Access Method. Reference to the details of the 
computer system in this overview of the Meta-system 
will be reference to the common, and commonly-known 
features of these systems. 

An outline of the Meta-system is shown in Figure 2. 
The three parts of the Meta-system—the recording 

USER 
TASKS 

TIME-SHARING SYSTEM 

RECORDING 
MECHANISMS 

•OUTPUT 

MODIFICATIONS 

SYSTEM 
EVENT 
TRACE 

n \ 
SIMULATION 
MODEL 

PRE­
PROCESSOR 

PERFORMANCE 
DATA J TASK 

EVENT TRACES 

TRIAL MODIFICATIONS 

Figure 2—The developed Meta-system 

mechanisms, the preprocessor, and the simulation 
model—are described in the following paragraphs: 

The recording mechanisms 

Measurement of the system's operation is performed 
by small open subroutines embedded within the 
operating system. The subroutines record the significant 
events in the system's operation. An event is composed 
of the following data items: 

1. the time 
2. an identification of the task (task number) for 

which the event occurred 
3. the identification of the type of event 
4. data associated with the event 

A few examples of event types are the following: 
(In each case the time and type are recorded. Task 
number is recorded for each event type except 'idle.' The 
data field may or may not be recorded, depending upon 
the event type.) 

The 'on' event, signifying a task gaining 
control of the processor. No data is associated 
with this event. 

The 'idle' event indicating the beginning of a 
processor idle period. No task number or data 
need be recorded with this event. 

The T/O-req' event, which is recorded when a 
task (or a system routine) requests a physical 
I /O operation. The data associated with this 
event is a unique representation of the physical 
address (e.g., device, cylinder, track) involved in 
the operation. An T/O-req' event is not synony­
mous with the initiation of an I/O device 
because the system may delay the actual 
operation. 



418 Spring Joint Computer Conference, 1971 

The page fault of 'pf event, indicating the 
necessity for a demand paging operation. The 
data, in this case, is the virtual address of the 
page required. 

The event of a request for a Logical I /O 
operation, or 'LI/O.' This event is recorded when 
a task calls on a system routine to perform a 
Logical I /O operation. The data associated with 
this event is the logical specification, of the 
record required (e.g., file name, record name). The 
data is, essentially, the input parameters to the 
LI/O routine. 

Other events complete the specification of the 
system's operation. The set of all events that occur 
during the operation of the system, recorded in the 
order they occur, is known as the system event trace. 

The preprocessor 

The system event trace is first preprocessed before 
becoming the input to the simulation model. Both the 
preprocessor and the model are run off-line. 

The preprocessor accepts the system event trace in 
mass storage as input. The preprocessor has two 
functions: 

1. To decompose the system event trace into event 
traces representing the resource demand of each 
task. 

2. To 'purify' the task event trace. Since the task 
event traces will become input to a simulator of 
part of the system, the effects of that part of the 
system in those traces should be removed before 
the traces are used as simulator input. The 
preprocessor does this. Several examples of 
'system' influence (i.e., the system to be 
simulated) in the representation of 'system' 
demand, will be shown later. 

The output of the preprocessor is a set of task event 
traces—one for each task that was active during the 
period the event recording mechanism was operating. 
The events in the task event traces are much like those 
of the system event trace except that: 

(a) The task numbers are not recorded in the events, 
since each event in a trace is of the same task. 

(b) The time of each event is adjusted to be relative 
to the operation of that task only. 

An example of the second function of the preprocessor 
—removing system influence in the event trace—is as 

follows: One event in a system event trace is a call on a 
Logical I /O (LI/O) routine. The LI/O routine calls on 
a Physical I /O (PI/O) routine, and the Physical I /O 
event is recorded. This call on the P I /O routine is not 
due to the task, because the task specified its I /O 
demand at the Logical level. The Physical I /O call must 
be considered due to the system, and is removed by the 
preprocessor of the system event trace. 

The simulator 

The simulator accepts the task event traces as input. 
The simulation model includes the operation of the 
system, from the level at which the events in the trace 
are recorded, to the hardware. The simulator consists of: 

(a) A Clockworks, which selects the next event from 
the task traces and increments the simulation 
time. 

(b) An Event Analyzer: the analog of the interrupt 
analyzer in the actual system. 

(c) The Event Response Routines: models of the 
operating system routines. 

(d) The Hardware Section: representations of the 
system hardware devices. 

The output of the simulation model is the data that 
allows evaluation of the system and isolation of areas of 
possible improvement. This data consists of: 

1. Utilization factors of the various devices. 
2. Response time characteristics for the task 

interactions. 

The utilization data is recorded in the simulation 
model by summing the simulated operating and idle 
times of each hardware device. Response times are 
calculated by the difference between the simulator time 
at which the first 'on' event of the task is accepted by 
the model, and the simulator time at which the 
'terminate' event is accepted. 

This data, obtained from the model, may be compared 
with the same data taken directly from the operating 
systems. 

Levels of Meta-system awareness of system operation 

It is obvious that the level of detail of the simulation 
will depend upon the class of modifications that is being 
contemplated. 

Since the event trace, after some preprocessing 
becomes the input to the simulation model, the defini­
tion of the events in the trace will depend upon the 



Design of a Meta-System 419 

extent of the simulation model. If the events in the 
trace are representations of some aspect of the original 
system's operation (such as the operation of a hardware 
device), and that aspect of the system is altered in the 
simulation model (i.e., the device characteristics are 
changed), then the event trace is irrelevant and useless 
to the simulation. To be useful, the events must rather 
be representations of the user tasks' requirements or 
demand for that aspect of the system's operation. The 
term 'system resource' which usually indicates the 
hardware devices of the system, may be extended to 
include any aspect of the system's operation that may 
be of interest—specifically, the system service macros, 
the scheduling routine, the loader, or a compiler. 
Therefore, the definition of the events in the trace are 
seen to depend upon the definition of system resource 
that is used for the specification of resource demand. 

Lastly, the parts of the system that are of interest, 
and considered to be resources, will be included in the 
simulation model. 

Thus, it can be seen that all of the following are 
inter-related: 

• the definition of system resource used to specify 
resource demand. 

• the class of trial modifications 
• the extent of the simulation model 
• the definition of the events in the trace 

In the course of the design of the Meta-system it 
became apparent that these four entities Could be 
specified at several different levels, which could best be 
differentiated by calling them different levels of 
Meta-system awareness of the system operation. 

At the lowest level of awareness, only changes in 
speed or configurations of the hardware devices are 
potential modifications, and only the hardware and the 
scheduler of the hardware devices need be included in 
the simulation model. Any program calling for a 
hardware operation will be considered a user program, 
and the user programs' demand for system resources is 
the demand for hardware operations. The events in the 
trace, in this case, will be occurrences of the requests 
for hardware operations. 

At the highest level of Meta-system awareness—total 
awareness of system and user programs—any modifica­
tion to the real system may be made to the simulation 
model, since the simulation will be total—and the model 
as complex as the entire system. The events in the trace 
will be defined in terms of instructions or commands 
written at the terminals, and the system resource defined 
as all of the programs that respond to these commands. 

Between these two levels, several more practical levels 

USER TASKS 

i_Li_i 
PRE­

PROCESSOR 

POSSIBLE 
META-SYSTEM 
LEVELS 

HARDWARE 

Figure 3—Conceptualization of Meta-system levels 

of Meta-system awareness have been demonstrated in 
the detailed design of the Meta-system. 

Meta-system levels of awareness are represented 
graphically in Figure 3. The representation of the 
time-sharing system in this figure is quite arbitrary. It 
roughly corresponds to the levels of logical complexity 
of the information-processing capabilities of the system, 
which are greatest for the parts of the system that 
directly communicate with the user, and least at the 
level of the hardware. Representations of system 
operation taken from one level are used as the input to a 
simulator of all parts of the system below that level, 
including the hardware. Several such levels of measuring 
and simulating the system are possible. 

The design of any one particular Meta-system 
includes the determination of the Meta-system level. 
The factors determining the Meta-system level, listed 
above, must be selected to be mutually compatible. 

DESIGN PROBLEMS OF THE META-SYSTEM 

The analysis of the operation of time-sharing systems 
for purposes of implementing the Meta-system centered 
on isolating representations of user task demand for 
system resources that are independent of the allocation 
of the resources. 

The representation of task demand taken from within 
the system are obtained by viewing the execution of any 
program above the Meta-system level to be due to the 
'user,' even though the instructions being executed may 
have been coded by a system's programmer (as would 
occur during compilation of a user program) and the 
rest as the 'system.' The user task demand is given by 
the calls on the system functions. 

These representations of task demand, however, are 
not easily separated from the operation of the system 



420 Spring Joint Computer Conference, 1971 

(below Meta-system level). Inhere are feedbacks from 
system to task: allocation of system resources to the 
task modifies the task demand for system resources. 
Most of the problems encountered in the design of the 
Meta-system are due to the system influence in the 
'pure' or system-independent representations of user 
task demand. The system influence is removed, in each 
case, by one or a combination of the following 
techniques : 

(a) Construction and placement of the event record­
ing mechanisms in the system to either exclude 
the system influence, or include supplementary 
information so that it may be removed later. 

(b) Removing the system influence in the prepro­
cessor of the event trace. 

(c) Carrying the system influence into the simulator, 
but designing the simulator to neutralize its 
effect. 

The following paragraphs outline some of the 
problems encountered in defining, extracting, and using 
representations of resource demand, and the solutions to 
them. Other problems, relating to the efficiency and 
practicality of the technique are also discussed. 

Task identifications in the event trace 

A basic function of a multiprogramming operating 
system is the scheduling of each task's use of system 
resources. Thus, the way in which the events of each 
task are intermingled in time is due solely to the 
influence of the system. 

In another instance of system operation—specifically, 
the one provided by the simulator—one task may run 
faster or slower, relative to the performance of the 
others. The simulator must therefore view the repre­
sentations of each task's demand separately. 

The first way in which the representation of resource 
demand is purified, then, is to separate the resource 
demand of each task, into 'task event traces,' in a 
preprocessor of the simulator input. In order to do this, 
each event in the system event trace must be identified 
with a task. 

The event recording mechanisms are therefore placed 
in positions within the operating system at which an 
identification of the task is known. This is no great 
obstacle to the implementation of the measurement 
portion of the Meta-system. In most cases, the Task 
Control Block for the task being operated on is 
immediately available to the operating system routine. 
When it is not, some unique representation of the task 
such as task number or TCB address, is always main­

tained by the system, and may be used as the task 
identification. 

Some events are caused by the system only, and yet 
must be recorded in order to complete specification of 
task demand information. For example, the event of the 
processor beginning to idle need not be associated with 
any task, when it is recorded. Later, the 'idle' event will 
be used as a 'task relinquishes processor' event. The 
preprocessor of the event trace, having knowledge of 
which task is on the CP, will complete the specification 
of the event. 

Representation of processor time requirements 

A task's demand for the processor is given by the 
number and type of instruction executions it requires. 
Since it is neither practical nor necessary to count and 
simulate the execution of the individual instructions* 
a task's processor demand is taken to be the processor 
time required by the task. 

The measurement of the time a task spends in the 
processing, however, is influenced by the amount of 
memory interference due to I/O operations into memory, 
taking place simultaneously with processing. Therefore, 
the task's processor demand will be defined to be the 
time the execution of the task would take if no memory 
interference were present. The system influence due to 
simultaneity is eliminated in the preprocessor of the 
event trace. The preprocessor calculates the 'pure' 
processing time, as follows: Let m be the memory speed 
(cycles per second) and c be the average fraction of 
memory cycles needed by the processor. Then with no 
memory interference, processing for a period of t seconds 
will spend ct seconds utilizing the memory. 

Now suppose I/O operations taking k bytes per 
second are being performed in the background. The time 
for the processors use of memory will be expanded by a 
factor of m/(m—k). The total time f taken to perform 
the original t seconds of processing is: 

, / cm \ 
t' = [l-c+ -)t 

\ m—k/ 

The quantity {1 — c-\-[cm/(m—k]} will be called the 
memory interference factor / . 

Each of the event traces taken from the system will 
contain the actual time taken on the processor, t'. But, 
in order to isolate the task requirement for processor 
t'me — t —, the trace must also contain an indication of 
the amount of I/O being performed simultaneously with 
processing, so that / may be known during each interval 

* Modifications internal to the processing unit will not be 
considered here. 



Design of a Meta-System 421 

of processing time. Each event trace is constructed to 
contain some account of the I /O activity and the 
calculation of t from t' and / is performed in off-line 
processing of the event trace. 

Specification of memory requirements 

The specification of the hardware resource require­
ments made by the user programs—either directly or 
via a call on a system routine—are generally quite 
unambiguous. The specification of memory requirements 
is an exception. 

A task's memory requirement is actually one word— 
instruction or data—at a time. For obvious reasons, 
memory must be allocated in larger units—in paging 
systems, one page or block at a time. The requirement 
for a page of memory—when the page is not allocated, 
will result in an unambiguous specification of demand: 
the page fault. But the system cannot know whether the 
demand still exists one memory cycle after the page has 
been allocated. Hence, the system itself specifies when 
pages should be de-allocated. It will generally do this by 
assigning a probabilistic value to the demand for the 
page and deallocating the block when either one of these 
conditions is met: 

(a) When it becomes known that the page is no 
longer needed; 

(b) When some other task has a demand for the 
memory block occupied by the page, which is 
greater than the probabilistic demand for the 
page; 

(c) When it is known that the page will not be needed 
for a period, and it is likely that condition b) 
will be met before the end of the period. 

If these deallocation judgments are made optimally, 
a page fault for a particular page will not occur soon after 
the deallocation of that page. 

The record of page allocations and deallocations, 
then, is an inexact specification of the task's demand for 
memory: it shows a large degree of system influence. 
However, it is the only record of memory demand 
available without special hardware to monitor memory 
utilization. This example of s}rstem influence is not 
removed during preprocessing of the event trace, but is 
removed by the simulation model, and removed only 
when necessary. 

The simulator will, in general, handle' memory 
allocation differently from the allocation shown in the 
event trace. If, during the simulation, the task trace 
shows a page fault for a page that the simulator has 
already allocated, the page fault event is simply skipped. 

On the other hand, if the simulation model deallocates a 
page when it was not deallocated in the real system, the 
simulator must impose a potential page fault on itself. 
I t replaces the page fault by evaluating the page re-use 
time as a random variable. The specification of the 
random variable is made from the average value of the 
page re-use times of the previous and next re-use times 
for the page that are available in the event trace. 

Entrances and exits to system routine 

Higher levels of specification of user demand for 
system resources are demands for system functions. The 
events indicating these functions are recorded at the 
entrances to the routines performing the functions. The 
operating system is written as a set of recursive 
subroutines so that a call on one system routine may 
result in calls on several others. If the original call on a 
system routine is taken to be an indication of user 
program demand, then these secondary calls, which are 
not made directly by the user program, may not be 
considered user demand. The events corresponding to 
these calls are system-contributed data, and must be 
eliminated from the event trace. A method of distin­
guishing user program calls from system program calls 
is required. 

In order to distinguish system program calls from 
user program calls on the system functions, both the 
entrances to and exits from the system routines are 
recorded as events. Off-line processing of the event 
traces will remove the secondary calls that occur 
between the entrance event and exit event of a particular 
routine. 

In order to place these event recording mechanisms in 
the system, the entry and exit points of the system 
routine of interest must be identified. The identification 
of entry points is straightforward. The identification of 
the exit points of system routines is, in general, a 
difficult problem. Each transfer of the following types 
must be analyzed to determine whether it should be 
considered an exit from the subroutine: 

(a) Transfer to the return address provided by the 
standard subroutine call. 

(b) Transfer to any address provided as a parameter 
to the subroutine. 

(c) Transfer to an address taken from the pushdown 
stack of subroutine calls. 

(d) A non-subroutine type transfer to another 
system function. 

The methodology outlined in the design specifies at 
which of these transfers the event recording mechanism 



422 Spring Joint Computer Conference, 1971 

a) SUBROUTINE STRUCTURE b) CLASSES OF 
OF OPERATING SYSTEM SUBROUTINES 

c) DEFINITION OF META-SYSTEM LEVELS 

Figure 4—Meta-system levels due to subroutine structure 

(in some cases, a conditional recording mechanism) 
should be placed. 

Volume of data recorded: the concept of class of subroutines 

As the representation of user resource demand is 
refined, it becomes more a specification of logical 
functions to be performed than a specification of 
physical operations. 

Because of the subroutine structure of the operating 
system, it may be necessary to record many sub-
functions of one logical function. Also, it is necessary to 
carry some representation of the physical operations 
even at logical level of user demand specifications. 
Hence, high-level specifications of user demand require 
more events than lower-level specifications. 

In order to generalize the technique of recording the 
event trace at higher levels of demand specification, the 
number of events must be somewhat independent of the 
level of specification—it cannot increase indefinitely as 
the specification level increases. 

The generalization of the definition of higher level 
event traces must be made in such a way that the events 
indicating the operation of routines that are always 
called as the consequence of higher-level routines, are 
not included in the higher level traces. This requires 
analysis of the set of routines making up the operating 
system to identify classes of subroutines, that have a 
partial ordering imposed upon them by the nature of 
their calls. 

The classes of subroutines are defined as follows: 
Routine A is in a class greater than or equal to Routine 
B if A calls on B, either directly or through another 
routine. If, in addition, routine B calls on routine A, 
then A and B are in the same class. 

As an example, applying the definition of class to the 
subroutine structure of Figure 4a, in which the sub­
routine calls are indicated by arrows, yields 5 classes, 
whose partial ordering is shown in Figure 4b. The user 
programs are always a class by themselves, and always 
the highest class, since they are never called by the 
system as subroutines. From the fact that the user 
programs call on routines A, F and G, the class of user 
programs call on the classes ABCEF and GHJ. 

Once the classes of the operating system routines are 
established, as in Figure 4b the set of levels at which the 
resource demand of the system may be measured (the 
level of Meta-system awareness of system operation), 
may be selected. The level is represented by the 
interface between the classes of routines that are 
considered user programs (higher in the ordering) by the 
Meta-system, and the classes of routines that are 
considered part of the system (the lower part of the 
ordering). A level is chosen by simply drawing a line 
across the arrows representing the calls on the sub­
routine classes. 

Only the entrances and exits to the subroutines of the 
classes that are adjacent to the Meta-system level of 
awareness need be recorded as events.* The routines 
that are called only from higher-level routines within the 
Meta-system awareness need not be recorded, even 
though they may have been recorded in a previous, 
lower-level Meta-system. 

The set of levels of Meta-system awareness that may 
be chosen for the subroutine structure of the example is 

* This does not imply tha t the entrances and exits to every 
subroutine of such a class must be recorded, because a finer 
analysis (e.g., the operating system structure of Figure 4a) may 
show tha t only several of the routines of a class are called from 
above the Meta-system level. The analysis by class is a first 
approximation to specify a set of routines tha t need not be 
recorded. I t is true, however, t ha t if one routine of a class is 
included within the model, then each routine of the class, and all 
classes below it, must be included in the model. 



Design of a Meta-System 423 

the following: 

(a) any of the 7 subsets of {K, I, D}, the lowest classes 
(excluding the empty set) 

(b) {GHJ, 1} or {GHJ, I, D} 
If the class GHJ is chosen, then the lower class, 

K, need not be recorded since it occurs only as a 
consequence of GHJ. The other lower class, I, 
must be recorded, since it is called from above 
GHJ. 

(c) {ABCEF, GHJ} 
The user programs call on this set of system 

program classes. All other classes result from calls 
on this set; therefore, calls on these other classes 
need not be recorded. 

It must be remembered, however, that the Figure 4b 
is a structural representation of Meta-system classes, 
and therefore provides only an estimate of the number 
of events which will actually be recorded. The volume 
of recorded data will depend upon the frequency with 
which control passes through the Meta-system level. 
Also, the calls on the subroutine classes are recorded at 
the entrance to the subroutines. Thus, if the Meta-
system level crosses one arrow leading into a class, the 
level will in fact cross the other arrows into that class as 
well, whether or not this is intended in the definition of 
the level. For example, in Figure 4c, two levels are 
shown. One, the higher level, is inefficient, since some 
of the calls on the GHJ class result from the previously-
recorded ABCEF class. In this case, a call sequence 
from the user program to F to G is recorded twice. The 
lower Meta-system is efficient. 

Modeling system routines 

The simulation model will include the models of some 
of the system routines. In order to preserve the economy 
inherent in simulation (as opposed to implementation 
and testing) the models of these routines are simplified. 
Yet the important aspects of their operation—in 
particular, the decisions that ultimately result in 
hardware resource allocation—must be duplicated 
within the model. 

Simplified versions of system routines have been 
developed in the design of the Meta-system. It has been 
estimated that 60 percent of the code in the executive 
of a multi-programmed operating system exists for the 
purpose of error checking. It is assumed in the Meta-
system design that the paths resulting from the error 
checks are taken rather infrequently, therefore, they are 
not a great influence on the resource allocation process. 
These error checking paths are omitted from the 

versions of the system routines in the model. Likewise, 
security considerations, in file operations, do not 
determine the location or identification of a particular 
data item. It may be assumed that the frequency of file 
operations being blocked for security reasons is small 
enough not to influence the utilization data obtained in 
the simulation. Security data has been omitted from the 
model. 

SUMMARY 

This report has been a summarization of the concept 
of the Meta-system, and a review of the problems that 
are encountered in the design of such execution-simula­
tion systems, rather than simply a recounting of the 
details of the design. 

The completion of the design of the Meta-system and 
successful trial runs of the system (insofar as they are 
possible on an unimplemented system) provide strong 
evidence that the Meta-system is technologically 
feasible, and will be an aid in the development of a 
time-sharing system. The question of its economic 
feasibility still remains since the implementation will be 
a considerable task. However, simulation models are 
employed during the development of most new computer 
systems. Development of the simulation model to 
operate in the Meta-system at the outset of the design is 
probably a feasible approach, since the full benefit of the 
Meta-system will be obtained in the later stage of 
design, and it may then be given to the user to optimize 
the system for his particular usage. 

ACKNOWLEDGMENTS 

The author is considerably indebted to his dissertation 
supervisor, Dr. Noah S. Prywes, for his aid, advice and 
encouragement during the period of the research. Also, 
many thanks are due to Dr. David Hsiao, who gener­
ously contributed his insight, experience and 
enthusiasm. 

REFERENCES 

1 G M AMDAHL B BLAOUW 
Architecture of IBM S/S60 
IBM Journal of Research and Development Vol 8 No 2 
April 1964 

2 P CALINGAERT 
System performance evaluation: Survey and appraisal 
CACM Vol 10 No 1 pp 12-18 January 1967 

3 D J CAMPBELL W J H E F F N E R 
Measurement and analysis of large operating systems during 
system development 
AFIPS Proc FJCC Vol 33 pp 903-914 1968 



424 Spring Joint Computer Conference, 1971 

4 C T GIBSON 
Time-sharing in the IBM System/360: Model 67 
AFIPS Proc SJCC Vol 28 p 61 1966 

5 R C DALEY J B D E N N I S 
Virtual memory processes, and sharing in MULTICS 
CACM Vol 11 No 5 p 306 May 1968 

6 P J D E N N I N G 
Equipment configuration in balanced computer systems 
I E E E Transactions on Computers Vol C-18 No 11 
pp 1008-1012 November 1969 

7 J R D E N N I S 
Segmentation and the design of multiprogrammed computer 
systems 
J ACM Vol 12 No 4 pp 589-602 October 1965 

8 E W D I J K S T R A 
Structure of THE multiprogramming system 
CACM Vol 11 No 5 May 1968 

9 G H F I N E P V McISAAC 
Simulation of a time-sharing system 
Management Science Vol 12 No 6 pp B180-B194 February 
1966 

10 D FOX J L KESSLER 
Experiment in software modeling 
Proc AFIPS F J C C 1967 

11 IBM System/860 time sharing system, concepts and facilities 
I B M Document C28-2003-3 

12 IBM System/360 time sharing system, dynamic 
loader—Program logic manual 
I B M Document Y28-2031-0 

13 IBM System/360 time sharing system, resident 
supervisor—Program logic manual 
I B M Document Y28-2012-3 

M A S L E T T W L KONIGSFORD 
TSS/360—A time-shared operating system 
AFIPS FJCC 1968 pp 16-28 

15 R A MERIKALLIO 
Simulation design of a multiprocessing system 
AFIPS Proc F J C C Vol 33 P t 2 1968 

16 N R NIELSON 
The analysis of general purpose computer time-sharing 
systems 
Document 40-10-1 Stanford University Computation 
Center December 1966 

17 G O P P E N H E I M E R N WEIZER 
Resource management for a medium scale time sharing 
operating system 
CACM Vol 11 No 5 p 313 May 1968 

18 E L ORGANICK 
A guide to multics for subsystem writers 
Project MAC Doc March 1967 

19 70/46 processor reference manual 
RCA Corp Document 70-46-62 March 1968 

20 TSOS executive macros and command language reference 
manual 
RCA Document 70-00-615 June 1969 

21 J H SALTZER J W GINTELL 
The instrumentation of multics 
CACM Vol 13 No 8 August 1970 

22 F D SCHULMAN 
Hardware measurement device for IBM System/360 time 
sharing evaluation 
Proc ACM National Conference pp 103-109 1967 

23 V A VYSSOTSKY F J CORBATO R M GRAHAM 
Structure of the multics supervisor 
Proceedings F J C C pp 203-212 1965 




