
PORTS—A method for dynamic interprogram 
communication and job control* 

by R. M. BALZER 

The RAND Corporation 
Santa Monica, California 

INTRODUCTION 

Without communication mechanisms, a program is 
useless. I t can neither obtain data for processing nor 
make its results available. Thus every programming 
language has contained communication mechanisms. 
These mechanisms have traditionally been separated 
into five categories based on the entity with which 
communication is established. The five entities with 
which programs can communicate are physical devices 
(such as printers, card readers, etc.), terminals (al
though a physical device, they have usually been 
treated separately), files, other programs, and the 
monitor. Corresponding to each of these categories are 
one or more communication mechanisms, some of which 
may be shared with other categories. 

The "alphabet soup" in the following example is 
used only to indicate how diverse communication 
mechanisms have become. In IBM's OS/360,1 communi
cation with physical devices is through either BSAM 
(Basic Sequential Access Method) or QSAM (Queued 
Sequential Access Method); terminals use BTAM 
(Basic Telecommunications Access Method), QTAM 
(Queued Telecommunications Access Method), or 
GAM (Graphics Access Method); files utilize BSAM, 
QSAM, BDAM (Basic Direct Access Method), BISAM 
(Basic Indexed Sequential Access Method), or QISAM 
(Queued Indexed Sequential Access Method); com
munication to other programs is through subroutine 
calls, and to the monitor through Supervisor Calls. 
There are ten different mechanisms for the five cate-

* This study is par t of RAND's ARPA sponsored research to 
improve man-machine interaction under contract DAHC 
15-67-C-0141. 

gories; each mechanism has different commands for 
the utilization of the communication mechanism. 

We propose that Ports offer a single unified mecha
nism for communicating with any of the five entities. 
Besides simplifying communications, this unification 
allows the dynamic specification of the entity being 
communicated with at execution time. This delayed 
binding can be effectively utilized for both debugging 
and building more flexible programs, and as a means 
for creating modular programs that can be easily 
plugged together to form systems. The remainder of 
this Report is devoted to defining Ports, explaining 
their use, and justifying the above claims. 

EVOLUTION OF PORTS 

The concept of Ports evolved several years ago 
from work on a somewhat mistitled paper called 
"Dataless Programming."2 In that effort, we tried to 
develop a programming language that would enable 
representation for data structures to be selected after 
a program was completed rather than before it was 
begun. Selection of a representation after a program is 
written is much more appropriate because at that 
point the programmer knows exactly how the data are 
used; beforehand he must predict the actual usage. The 
different syntactic forms used in common programming 
languages for the different representations force the 
decision to be made at coding time. "Dataless Pro
gramming," by using a common syntactic form and 
by extending the operations across all the representa
tions, allows the decision to be delayed until after 
coding is completed. In addition to the chosen set of 
standard representations, the user could create his own 

485 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1478786.1478855&domain=pdf&date_stamp=1971-05-18


486 Spring Joint Computer Conference, 1971 

JOINER 

1 
n PROGRAM B 

Figure 1—JOINER example 

representations by supplying the necessary manipula
tive routines for use by the compiler in accessing, up
dating, adding, deleting, or inserting an element from 
the representation, or obtaining the next or previous 
one. 

Because "Dataless Programming" was never imple
mented as a system, we tried other ways to test its 
ideas. The key concept was the ability to invoke a 
routine, either standard or supplied by the programmer, 
whenever a data structure was used. Not desiring to 
write a compiler, we looked for a centralized mechanism 
that could be controlled to invoke the proper manipula
tive routines. Such a mechanism exists in IBM's 
OS/360,3 the Data Control Block (DCB) used for 
files. Whenever an action is required on the file, such 
as read or write, the address of the appropriate routine 
is obtained from the DCB. These addresses are placed 
in the DCB at the time the file is opened. The open 
process was modified so that for selected files, the 
address of an interface program, JOINER, was placed 
into the DCB rather than the address of a standard 
OS access method. 

The JOINER program acted as an interface and con
troller between two DCBs that it had logically con
nected together. Thus, the output of one program was 
available as input to another program. Each program 
acted as the access method for the other. Consider 
Figure 1. Program A has a DCB, called OUT, used for 
output that has been joined to a DCB, called IN, used 
for input in Program B. 

Assume JOINER has loaded Programs A and B, 
and has started A. Program A will open DCB OUT, 
and the address of JOINER will be placed in the DCB. 
Eventually, A will try some output through the OUT 
DCB, invoking JOINER. JOINER now starts B, and 
when B performs an input operation on its IN DCB, 
JOINER gives B the output from Program A. When B 
asks for the next input, JOINER suspends the program 
and restarts A to obtain more output to give B as input. 
JOINER thus coordinates the two programs and 
allows each to be used as the access method for the 
other. Notice that a type of co-routine4 relationship is 

established between the programs. This relationship is 
called Data-Directed Co-Routines because control is 
switched back and forth between the two programs as 
data are produced and required. Also note that the 
connection between the two programs exists outside 
of each of them, and that they are unaware of who they 
are communicating with. 

The JOINER system described contains the key 
elements of Ports (defined in the next section). How
ever, we need to demonstrate some practical uses for 
this system because it tests the ideas in "Dataless 
Programming." 

We first add some macros to IBM's assembly lan
guage, which gives it a control block structure. These 
macros are IF, ELSE, and ENDIF.5 The IF macro 
begins a control block that is executed if and only if 
the condition tested by the macro is true. This control 
block is ended by either an ELSE or ENDIF macro. 
The ELSE macro ends the IF control block and starts 
an ELSE control block that is executed if and only if 
the condition tested by the IF macro is false. These 
macros can be nested, and hence a non-interactive 
control structure analogous to those of PL/1 or ALGOL 
is created. We find that these macros are very heavily 
used and that the nesting levels often extend ten levels 
and beyond. Hence, to make the program more read
able, we build a formatting program that names the 
levels and indents the listing according to these levels. 

Then, with JOINER, we connect the output of the 
assembler with the input of the format program. The 
connection is specified to JOINER and neither program 
is altered. By joining these two programs, we reduce 
both our CPU and I/O charges and the elapsed time 
needed to run the job. 

The second application is even more important as it 
is the basis for an entire time-sharing system built 
under O/S. The RAND-built system is called Simul
taneous Graphics System (SGS).* When a job is to be 
started, SGS joins the input of an O/S reader to the 
output of a spool program. The spool program is neces
sary because the source files are kept on the disc in 
compressed form as a linked list so that they can be 
very rapidly updated. The spool program follows the 
linked list and converts the file to the required se
quential set of 80-character card images. When the job 
is running and requires input from or output for the 
SGS file system, its DCBs are joined with the spool 
program to provide the needed conversions. In this 
way, we are able to run, unmodified, standard OS/360 
programs that utilize the SGS file system, including 
such IBM processors as the PL/1 compiler and the 
assembler. 

* SGS is an internal RAND time-sharing system. 



PORTS 487 

DEFINITION AND IMPLEMENTATION count is decremented by one, and if the result is 
non-negative, the requestor continues. Otherwise, 
the requestor must wait until the resource is made 
available. The V operation makes a resource 
available. I t increments the semaphore's count 
by one and if the result is non-positive, one of the 
waiting requestors is reactivated. The conditional 
P operation performs a P operation only if the 
requested resource is available, and returns an 
indication of whether the resource was obtained or not. 
Semaphores may, in addition, have a datum as
sociated with the available resource. Such semaphores 
are called data semaphores, and the legal opera
tions for these semaphores are V-data, Y-data, 
and conditional V-data, which are like their non-
data counterparts except that the V-data operation 
must also supply the data to be associated with 
the available resources, and the P data and con
ditional V-data operations must specify a variable 
to which the data associated with the requested resource 
will be assigned. The data can be any item in the 
language to which the assignment operator applies, 
or a structure of such items. The data can be buffered 
in a stack or a queue, providing respectively, LIFO 
and FIFO availability. They may also be stored 
unbuffered for those data semaphores whose count 
is never greater than one. 

As presented in the preceding sections, Ports can be 
defined as a data element used for communication with 
files, terminals, physical devices, other programs and 
the monitor. Four basic operations can be performed 
on Ports. They can be CONNECTed to or DISCON-
NECTed from another Port, and data can be sent 
(SENDed) or RECEIVEd through a Port. One com
pound operation, REQUEST, consisting of a SEND 
followed by a RECEIVE, and used for requesting 
certain data, also exists. The reverse sequence, RE
CEIVE followed by a SEND, used for replying to a 
REQUEST, does not exist as a single operation be
cause an arbitrary amount of processing may be done 
between the RECEIVE and the answering SEND. 

This definition, although containing the essence of 
Ports, does not answer many questions about Ports 
and the way they operate. We need to know how data 
are passed through a Port; when control is transferred 
to the co-routine; what happens if two SENDs occur 
before the first one is processed by the co-routine; if 
two Ports can be connected to a third; and how Ports 
are connected to a terminal, physical device, or file; 
etc. Ports can be logically implemented in many differ
ent ways, each providing different answers to the above 
and similar questions. Each way is a logical implementa
tion—one that produces logically different behavior 
as a result of the operations. We describe Ports in 
terms of one such logical implementation, ISPL,7-8 

rather than JOINER, in which we are severely limited 
by the environment. 

Incremental System Programming Language (ISPL) 
is both a language and an environment for program
ming. The ISPL language is an incrementally compiled 
PL/1-like language designed to run on the ISPL ma
chine, which is designed specifically to run programs 
written in the ISPL language, and is intended for im
plementation through micro-code. As of this writing, 
the ISPL system is being implemented by a RAND 
development team. All further discussion of Ports is 
in terms of this logical implementation. 

In this implementation, Ports are defined in terms 
of "data semaphores," an extension we have made to 
Dijkstra's semaphores8 allowing data to be associated 
with such semaphores. We have extended his definition 
as follows (the extensions are in italics): 

Semaphores are a basic language data type used for 
synchronization. A semaphore logically consists 
of a count of the available resources of a particular 
type. The only legal operations on a semaphore are 
the P, V, and conditional P operations. The P 
operations request one resource. The semaphore's 

Using the definition for data semaphores, we define 
Ports as a basic language data type used for com
munication. They consist logically of a pointer to the 
Port to which the connection is made, and a data 
semaphore representing the availability of and the 
actual data being passed through the Port. The only 
legal operations on Ports are CONNECT, DISCON
NECT, SEND, RECEIVE, conditional RECEIVE, 
and REQUEST. 

Because Ports are used for a type of co-routine call, 
we feel the same mechanism used for transmitting data 
to a subroutine should be used for Ports. Thus, the 
data physically passed through the Port and its data 
semaphore is a pointer to an actual parameter list, 
the contents of which are accessed by the receiver 
through a formal parameter list. As with subroutines, 
the data logically passed through a Port and its inter
pretation are established as a convention between the 
communicating programs. 

The CONNECT command interconnects two Ports 
by setting their pointers to reference each other. 
DISCONNECT sets the two pointers to NULL. 

When two Ports are connected, the Port specified in 
a SEND, RECEIVE, or REQUEST command is 
referred to as the local Port, and the Port it is connected 
to as the remote Port. 



488 Spring Joint Computer Conference, 1971 

The SEND command builds an actual parameter list 
from the data specified in the command, and performs 
a F-data operation on the remote Port's data sema
phore with a pointer to the actual parameter list as the 
data. The data in the actual parameter list is now 
available to be received through the remote Port. The 
RECEIVE command performs a P-data operation on 
the local Port's data semaphore specifying an internal 
cell to which the parameter-list pointer will be assigned, 
and which will be used by the language's standard 
mechanism for accessing formal parameters. If no data 
is available, then the requestor is suspended until one 
is available. The conditional RECEIVE is similar, 
except that a conditional P operation is used. The 
REQUEST command is simply a SEND followed by an 
unconditional RECEIVE. 

We have, so far, described the operations on Ports 
in situations where two Ports are interconnected, but 
have not handled the cases where a Port is connected 
to a terminal, physical device, or file. Terminals and 
physical devices are handled by connecting the Port 
to a Port in a device-dependent system program for 
the terminal or physical device that transforms the 
communication into I/O commands appropriate for 
the device, and which then requests the supervisor to 
perform the I/O through the MONITOR Port (see 
the following section). 

Files are handled similarly, except that the deter
mination of the program to which the connection should 
be made is based on the type of file specified. The ISPL 
file system9 is based on the "Dataless Programming" 
principle that representation-extension capabilities 
should be provided by allowing the user to supply the 
manipulative routines necessary to implement the new 
representation. Thus, corresponding to each type of 
file, there exists a set of manipulation routines for 
creating, destroying, connecting, disconnecting, and 
communicating with files of that type. When the 
CONNECT command is issued, the file name is found 
in the master directory and its file type is used to access 
and execute the connect routine, and to access the com
munication routine that is connected to the specified 
Port. Ports are thus always connected to other Ports. 
For terminals, physical devices, and files, the remotely-
connected Port is in a program selected by the system 
on the basis of the characteristics of the terminal, 
physical device, or file. 

The questions on detailed Port behavior posed in 
this section have now been answered except for specify
ing when control is transferred to the co-routine. To 
provide the flexibility we require, the control structure 
of ISPL is necessarily complex. Scheduling decisions 
are made at three levels. First is the process level. In 
ISPL, a process is a set of independent tasks that 

share a separate, unique, addressing space. It roughly 
corresponds to a job. Processes are scheduled by their 
supervisors that are informed via an interrupt when 
one of their processes, which is waiting for some re
source, is again able to run. Nothing more can be said 
about process scheduling because each supervisor can 
use its own arbitrary scheduling algorithm. All schedul
ing within a process is controlled by the ISPL machine. 
Each task within a process is a logically independent 
flow of control that could be executed simultaneously 
with other tasks if multi-processors were available. 
Each task has a relative priority, and the task with 
the largest relative priority that is not waiting is 
scheduled by the ISPL machine. Tasks, in turn, are 
composed of exclusive-execution blocks that are sepa
rate flows of control, but only one of which can logically 
be executing at once, even in a multi-processor system. 
As with tasks, the ISPL machine schedules exclusive-
execution blocks within a task on the basis of their 
relative priority among those not waiting. The im
portant difference between the two is that if an ex
clusive-execution block is interrupted by a higher 
priority one, it will not be resumed when the higher 
priority one waits for some resource, as is the case for 
tasks, but must wait for the higher priority exclusive-
execution block to exit. This control structure is re
quired for the implementation of co-routine and the 
on-units of PL/1.10 An exit occurs when a program com
pletes or does a P operation on a synchronous sema
phore—one which will not asynchronously be Fed. 
Because it will not be Fed asynchronously, it must be 
an exit so that some other exclusive-execution block 
in the task can cause it to be Fed. In ISPL, each sema
phore and Port can be either synchronous or asyn
chronous. Thus, the control flow resulting from SEND 
and RECEIVE operations on Ports depends upon 
whether the remote Port is in the same process or 
same task, and what its priority is relative to the 
executing exclusive-execution block. This structure 
enables us to build control structures ranging from 
completely asynchronous execution to those that switch 
control every time a SEND or RECEIVE is executed. 

USAGE 

Ports can obviously be used to communicate between 
programs. But the capability to externally specify the 
connection, and the arbitrary nature of the program to 
which the connection is made, enable the Port mecha
nism to be utilized for a variety of other purposes. 

Since batch and multiprogrammed monitors, job 
control has traditionally been handled through a special 
language. This job control language has two main func-



PORTS 489 

tions, allocation of resources and fitting the job into 
an environment. Fitting the job into an environment 
consists of setting up the communication paths between 
the job and the files, terminals, physical devices, pro
grams, and monitor with which it is to communicate. 
This function is precisely what Ports are designed for, 
and is specified via the CONNECT command. In ISPL, 
each job has a Port named MONITOR, and it is used 
for all communication with the job's monitor. Because 
any program can be connected to this Port, this design 
allows for a hierarchical system of monitors, each con
trolling the jobs running under it. Naturally, ISPL's 
hierarchical design relies on much more than the Port 
mechanism (see Reference 7 for a full description), but 
Ports solved the communications requirements of the 
system. 

Communication with the monitor through a Port 
provides the mechanism for handling the other main 
function of job control, allocation of resources. The 
creation and deletion of files, the allocation of file 
space, the allocation of core space for the job, and the 
specification of the central processor requirements are 
all transmitted to the supervisor through the MONI
TOR Port. The format of these specifications is a con
vention established by the supervisor. 

Ports can also be used for debugging and simulation 
purposes. Output from a program can be routed to a 
terminal, and input obtained from the terminal so that 
a user can dynamically supply test data based on the 
program's performance. The user can also simulate the 
behavior of part of the system while observing and de
bugging the rest. A TEST program can be written to 
implement data breakpoints. That is, whenever the 
data transmitted through the Port to which the TEST 
program is connected satisfy the test condition, a 
'break' occurs and the user at a terminal is notified or a 
printout occurs. The output of the TEST program is 
the same as its input so that it does not affect the 
logical processing of the program being debugged. A 
SPLITTER program, whose two outputs are the same 
as its one input, can be used to monitor, copy, or pro
vide an audit trail of the data transmitted through a 
Port. 

The last two programs mentioned, TEST and 
SPLITTER, offer examples of what we hope will be 
the major impact of the Port concept—a mechanism 
for the construction of systems from small general-
purpose "plugable" programs. 

Perhaps the single most important problem facing 
the computer industry today is our inability to generate, 
cheaply and quickly, debugged software systems. Many 
people have proposed modularity as the solution, but 
such systems have been hard to construct because of 
the strict hierarchical nature of subroutine calls—the 

only common method of linking together such a set 
of programs. 

The Port concept improves the construction of 
modular systems in three important ways. First, the 
entity to which the connection of a Port is made need 
not be specified within that program, and can be dy
namically decided at execution time. Second, the 
linkage is co-routine rather than subroutine. As others 
have suggested, this simplifies the construction of 
many programs, enables retention of context, and re
moves the strict hierarchical organization dictated by 
subroutine linkage. Finally, connection of a Port can 
be made not only to Ports in other programs, but also 
to terminals, files, and physical devices. Thus, the 
same system can, with different connections, be used 
in a variety of ways: on-line, off-line, audit-trailed, 
data-breakpointed, or partial-user simulation. 

The effectiveness of the Port concept results from 
the combination into a single mechanism of three 
powerful software techniques: co-routines, indirect 
specification, and communications commonality. We 
expect to extensively test the concept, especially its 
modularity potential, through its implementation in 
ISPL. 

REFERENCES 

1 IBM System/360, Supervisor and data management services 
Form C28-6646 I B M Corporation Poughkeepsie N Y 1967 

2 R M BALZER 
Dataless programming 
AFIPS Conference Proceedings FJCC 1967 Vol. 31 
Thompson Book Co. Washington D C 1967 pp 535-545 

3 IBM System/360, System control blocks 
Form C28-6628 I B M Corporation Poughkeepsie N Y 1967 
pp 21-78 

4 M CONWAY 
Design of a separable transition-diagram compiler 
Communications of the ACM Vol 6 No 7 July 1963 pp 
396-398 

5 R M BALZER 
Block programming in OS/360 assembly code 
The RAND Corporation P-3810 May 1968 

6 R M BALZER 
The ISPL language specifications 
The RAND Corporation R-563-ARPA (In process) 

7 R M BALZER 
ISPL Machine: Principles of operation 
The RAND Corporation R-562-ARPA (In process) 

8 E W DIJKSTRA 
The structure of the 'THE'-multiprogramming system 
Communications of the ACM Vol 11 No 5 May 1968 pp 
341-346 

9 E HARSLEM J H E A F N E R 
The ISPL basic file system and file subsystem for support 
of computing research 
The RAND Corporation R-603-ARPA (In process) 

10 IBM System/360, PL/I reference manual 
Form C28-8201 I B M Corporation Poughkeepsie N Y 1968 






