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INTRODUCTION 

The past few years have seen a significant increase in 
the number of computers with segmented memories, 
i.e., computers in which executable memory is divided 
into a fixed number of fixed length segments. A com
puter so organized can offer significant advantages over 
the more conventionally organized machine, the fore
most advantage being that such an organization facili
tates running a job with only a portion of that job in 
executable memory. This can be done in other com
puters but the determination of what portions of the 
program must be in executable memory at any given 
point in the process is then the responsibility of the 
person writing the program, i.e., the programmer must 
schedule the overlaying himself and reflect this schedule 
in the program. 

In most segmented memory computers such decisions 
are made by the executive or operating system. The 
programmer need not even be aware of these decisions. 
This is made possible by the fact that in such computers, 
any reference from within one segment to something 
outside that segment (whether a fetch, store or transfer) 
causes a trap to the executive. The executive then 
determines whether the segment containing the refer
enced item is in executable memory. If it is, the action 
takes place as desired; if not, the desired segment is 
moved from peripheral storage to executable storage 
and then the action takes place. Thus the advantages 
of such machine organization arise from this latter 
action but the price of these advantages lie in the 
executable action required even when the desired seg
ment is already in executable memory. Techniques 
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have been developed to minimize this cost but it cannot 
be eliminated completely.1,2,3 The main thrust of these 
techniques has been devoted to making the executive 
action as efficient as possible. 

However, Lowe4 has shown that in a heavily loaded 
system of this type, even a small reduction in the inter
segment activity results in a significant increase in 
efficiency of the system. Ramamoorthy5-6 made the 
observation that the paths of possible control flow may 
be represented by a directed graph. Furthermore he 
presented a method for reduction of inter-segment 
references which was based on the principle that the 
instructions represented by a maximal strongly con
nected subgraph (i.e., a strongly connected subgraph 
that is not a proper subset of any other strongly con
nected subgraph) should not be split into two or more 
segments. The difficulty in this technique is that an 
entire program could be a maximal strongly connected 
subgraph and be larger than a segment. 

This article presents an algorithm for partitioning a 
program into some number of pieces (called pages) 
such that none of the pages exceeds segment size and 
the number of interpage (inter-segment) references is 
reduced. This algorithm operates solely on connec
tivity and size data describing the program, data readily 
available from a compiler or assembler with relatively 
modest modification. As mentioned above, inter-page 
references can be a fetch or store of data or a transfer 
of control. For simplicity of presentation, only the 
latter are considered in this article. However, in the 
research project on which the article is based, both 
constant and variable data were treated in like manner.7 

OVERVIEW OF ALGORITHM 

The basic premise of the algorithm is that one should 
first optimize loops and then optimize the linear por
tions of the program. This is simply a recognition of 
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LINEAR STRING TREE STRUCTURE 

LATTICE STRUCTURE LOOP 

Figure 1—Types of structures 

the fact that the code in a loop is executed many more 
times than the code in a linear portion of the program. 
Thus any inefficiency in a loop is paid for many times 
over. The algorithm operates in three phases. In phase 
1, loops are detected and their component instructions 
are identified. The smallest loops are found first, fol
lowed by successively larger loops. The size of a loop 
is measured in terms of the number of program units 
(to be defined later) that comprise the loop. Size is a 
measure of the estimated time required for execution 
of the loop.* As soon as a loop has been detected the 
program units comprising the loop are merged and 
thereafter treated as a single unit. Phase 1 is finished 
after the largest loop that could fit in a single segment 
has been considered. 

When phase 2 begins, the program consists of a 
collection of program units forming a linear string, a 
tree structure, a lattice structure, loops larger than a 
segment, or some combination(s) of these (see Figure 
1). In this phase, a particular path is traversed and the 
program units along that path are identified and merged 
until segment size is exceeded or the end of path is 
encountered. In either event a new path is then selected 

* Lowe8 defines the timing estimates available at this stage of 
analysis as event, time. He then goes on to develop the concept 
of unit time and shows a transformation from event time to 
unit time. Unit time provides a more accurate means of estimat
ing running time than does event time but event time suffices 
for our purposes. 

and traversed in like manner. Phase 2 is complete 
when all such paths have been traversed and all merging 
based on connectivity accomplished. However, there 
may yet remain merged units of less than segment size. 
Such units are identified in phase 3 and merged to 
minimize waste space. 

PROGRAM DECOMPOSITION AND 
REPRESENTATION 

The program to be analyzed is considered to consist 
of "units." Units are defined by Lowe8 in the following 
manner. Let the smallest executable part of a program 
be called an instruction element, frequently consisting 
of a single word. An instruction unit is an ordered collec
tion of instruction elements ei, e2, • • . e/ ( / > 2) such 
that: 

1. Each instruction element of the program appears 
in exactly one unit; 

2. For l<i<f, the set of successors of e» consists 
of the single element e,-+i 

3. For Ki<f, e,% is the successor of exactly one 
element and that element is e;_i 

4. The total volume of the unit (i.e., number of 
words of storage required) is not greater than 
some fixed maximum. (This maximum, for our 
purposes, will be segment size.) 

5. There exists no f>f for which the above four 
conditions are true. 

A special case is made for any element which has mul
tiple predecessors and multiple successors and whose 
volume is less than the fixed maximum. Such an ele
ment is considered to be a unit. 

Lowe has suggested that if a program is known to 
consist of m such units, an mXm Boolean connectivity 
matrix, A = [a,ij], can be constructed where aa=l if 
the ith. unit (called a*) can transfer control to the yth 
unit (called a}). Otherwise a;>=0. If a tJ = l there is 
said to be a path of length 1 from a ; t o a.j. In addition 
it is possible to construct a row vector G=(gi, g2, . . . , 
gm) where gi is the volume requirement of a,-. 

LOOP DETECTION 

Figure 2 shows the algorithm used for identifying 
and merging units forming loops. The basic tool used 
in the detection of loops is the connectivity matrix, A, 
raised to some power. Lowe has developed a fast, 
simple technique for multiplying Boolean matrices.9 

If D=An and da=l, there is a path of length n from 
a.i to ctj. In particular, if da = l, there is a loop of path 
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length n involving a;. Furthermore, for all other mem
bers, aj, of this loop containing an, du=l. However, 
there may be more than one loop of path length n and 
therefore there may be more than n values for i such 
that da = l. Thus one cannot always uniquely identify 
the members of a loop by merely inspecting D. If An, 
An~l, and A are all simultaneously available, this 
problem is solved. 

Let C=An~1 and let D=An. Choose some i such that 
da = l. Then a; is a member of a loop of path length n. 
If there exists some j such that Cu = l, dj3 = l and 
a,ji = l, then a}- is a member of the same loop. Further
more, if one were to start at a; and traverse the loop, 
the last unit encountered before returning to a* would 
be ay. The process could be repeated, looking for k such 
that Cjk = 1, dkk = l, and akj = 1, etc., until all n members 
of the loop have been identified. It should be noted 
that in addition to identifying these units, this tech
nique also yields information regarding their sequence 
of execution; i.e., they are detected in reverse order of 
that in which they would be executed although at this 
point one cannot tell which will be the initial unit of 
the loop.* 

After a loop has been completely identified, the units 
comprising the loop are merged in execution order into 
the first unit detected for this loop. To merge aj into 
on the following steps must be performed: 

1. Replace the ith. row of A by the logical sum of 
itself and the jth. row of A. 

2. Replace the ith column of A by the logical sum 
of itself and the j th column of A. 

3. Replace a\j, a<n, . . . amf, a^, a^, . . . a,jm and an 
by zero. 

4. Replace gi by gi+gj. 
5. Replace gj by zero. 

I t is to be noted that mergers are reflected in A but not 
in the higher powers of A. If, when it is time to merge 
some member of the loop, say ak, into on, gi is such that 
gi~\-gk exceeds segment size no further mergers are 
made into a*. Instead the remaining mergers for the 
loop are made into ak. This reflects the situation where 
the volume requirement of the loop is such that it 
exceeds segment size and the loop must be split between 
two or more pages. 

I t is clearly not necessary to consider loops with 
path length of one as no merging of units is necessary 
in such cases. Therefore if one examines An and An~x 

for values of n = 2, 3, . . . , m (where m is the dimension 

* If it were desired to detect units of a loop in order of execution 
rather than reverse order one need only use Cj» and at-j in place 
of c»-j and &$ respectively. 

Figure 2—Loop merging 

of A) one finds successively loops of path length 2, 3, 
. . . , m. If the segment size is n and the size of the 
smallest unit is t\ (both measured in some common unit 
such as words or instructions), then it is obvious that 
LMAJ* is the largest number of units that could be 
merged without exceeding segment size. Thus it 
suffices to limit the above examination to values of 
n< min (TO, |jx/r?J). 

NON-CYCLIC CONNECTIVITY 

As stated earlier, at the start of phase 2 the program 
consists of units forming a linear string, a tree structure, 
a lattice structure, loops larger than a segment, or 
some combination thereof. For illustrative purposes 
the example shown in Figure 3 suffices. 

Figure 4 shows the approach used in phase 2 which 
is as follows: Find the smallest i such that <7;>0. Find 
the smallest j such that a,-,- = l, gj>0 and g%-\-gj is not 
greater than segment size. Similarly find the smallest k 
such that ajk = l, gk>0 and gi-\-gj-\-gk is not greater 
than segment size. In this manner one continues to 
move along some path from on to some unit <xp where 

[X2 is the largest integer less than or equal to X 
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Figure 3—Program structure to be merged 

either apq = 0 for l<q<m (i.e., ap is terminal) or gq, 
when added to gi+gj-\ \-gp is greater than segment 
size. If ap is not terminal, all units along the path from 
aj to ap are merged into on, a{ is put into a Last-In, 
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Figure 4—Non-cyclic merging 
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Figure 5—Merged program 

First-Out list, and the path is explored further using 
the initial unit. Finally a terminal unit must be 

encountered. When that happens this unit is merged 
into the unit which preceded it in this path. If, after 
the merger, the resultant unit is not terminal, the next 
branch from that unit is selected as the path to be 
traversed. If, however, the resultant unit after merger 
is terminal, it is merged into the unit that preceded it 
in the path. The procedure will finally result in an initial 
unit which is terminal. This unit is then marked as 
having been processed and the last unit in the LIFO 
list is reselected. A branch from this unit is selected in 
the above described manner and the resultant path is 
traversed using the same rules as before. In all the 
above processes, if ever a branch is selected which 
leads to a unit that has already been processed (re
gardless of whether it was actually merged), this fact 
is recognized and a different branch is selected. 

When the LIFO list is finally empty the entire struc
ture emanating from the originally selected unit, on, 
will have been merged on a connectivity basis, subject 
to segment size constraints. However aj might not be 
the unit which contains the entry point for the program 
and the program might even have multiple entry points. 
Therefore there might be units which were not en
countered in the above process. For this reason the 
units are scanned to determine whether any were not 
processed. If any such unit is found, the process is 
repeated starting with that unit. Note however that 
there will be no repetition of analysis of units that were 
already processed. Only when all units have been pro
cessed will this phase terminate. 
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The result of applying phase 2 to the example shown 
earlier, assuming each unit was of equal size and seg
ment capacity was four units, is shown in Figure 5. 

inspection algorithm is now being incorporated into a 
JOVIAL compiler specially built for experiments in 
segmentation. 

CLEANUP 

At this point all packing based on connectivity is 
complete. However, note that there might be units 
which are less than segment size, such as units 10 and 
15. Phase 3 is a clean-up process which attempts to 
minimize total required storage. In this phase only 
the unit size vector, G, is examined. The algorithm is 
as follows: 

1. Find smallest i such that <7;>0. 
2. For i-\-l<j<m, if g3>0 and gi-\-gj is not 

greater than segment size, merge otj into a8-. 
3. Find smallest i' such that i-\-l<i'<m and 

g/>0. 
4. If i' can be found go back to step 2; otherwise 

the process is complete. 

At this point each unit of non-zero size is assigned to 
some page. 

CONCLUSIONS 

The algorithm presented above provides a simple means 
for partitioning programs into pages in such a manner 
as to reduce the number of inter-page references and 
therefore amount of inter-segment activity. I t is based 
solely on information about the program that is ob
tainable by automatic inspection of the program such 
as could be preformed in a compiler or assembler. The 
inspection and packing algorithms are not very com
plex and thus should require very little time for their 
execution. The packing algorithm has been implemented 
as a post-compilation operation. It has been tested 
with a wide variety of program structure models and 
has been found to give the anticipated packings. The 
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