
Automatic program segmentation based on boolean
connectivity*

by EDWARD W. VER HOEF

Ocean Data Systems, Inc.
Rockville, Maryland

INTRODUCTION

The past few years have seen a significant increase in
the number of computers with segmented memories,
i.e., computers in which executable memory is divided
into a fixed number of fixed length segments. A com
puter so organized can offer significant advantages over
the more conventionally organized machine, the fore
most advantage being that such an organization facili
tates running a job with only a portion of that job in
executable memory. This can be done in other com
puters but the determination of what portions of the
program must be in executable memory at any given
point in the process is then the responsibility of the
person writing the program, i.e., the programmer must
schedule the overlaying himself and reflect this schedule
in the program.

In most segmented memory computers such decisions
are made by the executive or operating system. The
programmer need not even be aware of these decisions.
This is made possible by the fact that in such computers,
any reference from within one segment to something
outside that segment (whether a fetch, store or transfer)
causes a trap to the executive. The executive then
determines whether the segment containing the refer
enced item is in executable memory. If it is, the action
takes place as desired; if not, the desired segment is
moved from peripheral storage to executable storage
and then the action takes place. Thus the advantages
of such machine organization arise from this latter
action but the price of these advantages lie in the
executable action required even when the desired seg
ment is already in executable memory. Techniques

* The work presented here was performed at Informatics, Inc.
(Washington, D . C. Division). I t was supported by the U.S. Air
Force Systems Command, Research and Technology Division,
Rome Air Development Center, Griffiss Air Force Base, New
York, under contract F30602-68-C-0285.

have been developed to minimize this cost but it cannot
be eliminated completely.1,2,3 The main thrust of these
techniques has been devoted to making the executive
action as efficient as possible.

However, Lowe4 has shown that in a heavily loaded
system of this type, even a small reduction in the inter
segment activity results in a significant increase in
efficiency of the system. Ramamoorthy5-6 made the
observation that the paths of possible control flow may
be represented by a directed graph. Furthermore he
presented a method for reduction of inter-segment
references which was based on the principle that the
instructions represented by a maximal strongly con
nected subgraph (i.e., a strongly connected subgraph
that is not a proper subset of any other strongly con
nected subgraph) should not be split into two or more
segments. The difficulty in this technique is that an
entire program could be a maximal strongly connected
subgraph and be larger than a segment.

This article presents an algorithm for partitioning a
program into some number of pieces (called pages)
such that none of the pages exceeds segment size and
the number of interpage (inter-segment) references is
reduced. This algorithm operates solely on connec
tivity and size data describing the program, data readily
available from a compiler or assembler with relatively
modest modification. As mentioned above, inter-page
references can be a fetch or store of data or a transfer
of control. For simplicity of presentation, only the
latter are considered in this article. However, in the
research project on which the article is based, both
constant and variable data were treated in like manner.7

OVERVIEW OF ALGORITHM

The basic premise of the algorithm is that one should
first optimize loops and then optimize the linear por
tions of the program. This is simply a recognition of

491

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1478786.1478856&domain=pdf&date_stamp=1971-05-18

492 Spring Joint Computer Conference, 1971

LINEAR STRING TREE STRUCTURE

LATTICE STRUCTURE LOOP

Figure 1—Types of structures

the fact that the code in a loop is executed many more
times than the code in a linear portion of the program.
Thus any inefficiency in a loop is paid for many times
over. The algorithm operates in three phases. In phase
1, loops are detected and their component instructions
are identified. The smallest loops are found first, fol
lowed by successively larger loops. The size of a loop
is measured in terms of the number of program units
(to be defined later) that comprise the loop. Size is a
measure of the estimated time required for execution
of the loop.* As soon as a loop has been detected the
program units comprising the loop are merged and
thereafter treated as a single unit. Phase 1 is finished
after the largest loop that could fit in a single segment
has been considered.

When phase 2 begins, the program consists of a
collection of program units forming a linear string, a
tree structure, a lattice structure, loops larger than a
segment, or some combination(s) of these (see Figure
1). In this phase, a particular path is traversed and the
program units along that path are identified and merged
until segment size is exceeded or the end of path is
encountered. In either event a new path is then selected

* Lowe8 defines the timing estimates available at this stage of
analysis as event, time. He then goes on to develop the concept
of unit time and shows a transformation from event time to
unit time. Unit time provides a more accurate means of estimat
ing running time than does event time but event time suffices
for our purposes.

and traversed in like manner. Phase 2 is complete
when all such paths have been traversed and all merging
based on connectivity accomplished. However, there
may yet remain merged units of less than segment size.
Such units are identified in phase 3 and merged to
minimize waste space.

PROGRAM DECOMPOSITION AND
REPRESENTATION

The program to be analyzed is considered to consist
of "units." Units are defined by Lowe8 in the following
manner. Let the smallest executable part of a program
be called an instruction element, frequently consisting
of a single word. An instruction unit is an ordered collec
tion of instruction elements ei, e2, • • . e/ (/ > 2) such
that:

1. Each instruction element of the program appears
in exactly one unit;

2. For l<i<f, the set of successors of e» consists
of the single element e,-+i

3. For Ki<f, e,% is the successor of exactly one
element and that element is e;_i

4. The total volume of the unit (i.e., number of
words of storage required) is not greater than
some fixed maximum. (This maximum, for our
purposes, will be segment size.)

5. There exists no f>f for which the above four
conditions are true.

A special case is made for any element which has mul
tiple predecessors and multiple successors and whose
volume is less than the fixed maximum. Such an ele
ment is considered to be a unit.

Lowe has suggested that if a program is known to
consist of m such units, an mXm Boolean connectivity
matrix, A = [a,ij], can be constructed where aa=l if
the ith. unit (called a*) can transfer control to the yth
unit (called a}). Otherwise a;>=0. If a tJ = l there is
said to be a path of length 1 from a ; t o a.j. In addition
it is possible to construct a row vector G=(gi, g2, . . . ,
gm) where gi is the volume requirement of a,-.

LOOP DETECTION

Figure 2 shows the algorithm used for identifying
and merging units forming loops. The basic tool used
in the detection of loops is the connectivity matrix, A,
raised to some power. Lowe has developed a fast,
simple technique for multiplying Boolean matrices.9

If D=An and da=l, there is a path of length n from
a.i to ctj. In particular, if da = l, there is a loop of path

Automatic Program Segmentation 493

length n involving a;. Furthermore, for all other mem
bers, aj, of this loop containing an, du=l. However,
there may be more than one loop of path length n and
therefore there may be more than n values for i such
that da = l. Thus one cannot always uniquely identify
the members of a loop by merely inspecting D. If An,
An~l, and A are all simultaneously available, this
problem is solved.

Let C=An~1 and let D=An. Choose some i such that
da = l. Then a; is a member of a loop of path length n.
If there exists some j such that Cu = l, dj3 = l and
a,ji = l, then a}- is a member of the same loop. Further
more, if one were to start at a; and traverse the loop,
the last unit encountered before returning to a* would
be ay. The process could be repeated, looking for k such
that Cjk = 1, dkk = l, and akj = 1, etc., until all n members
of the loop have been identified. It should be noted
that in addition to identifying these units, this tech
nique also yields information regarding their sequence
of execution; i.e., they are detected in reverse order of
that in which they would be executed although at this
point one cannot tell which will be the initial unit of
the loop.*

After a loop has been completely identified, the units
comprising the loop are merged in execution order into
the first unit detected for this loop. To merge aj into
on the following steps must be performed:

1. Replace the ith. row of A by the logical sum of
itself and the jth. row of A.

2. Replace the ith column of A by the logical sum
of itself and the j th column of A.

3. Replace a\j, a<n, . . . amf, a^, a^, . . . a,jm and an
by zero.

4. Replace gi by gi+gj.
5. Replace gj by zero.

I t is to be noted that mergers are reflected in A but not
in the higher powers of A. If, when it is time to merge
some member of the loop, say ak, into on, gi is such that
gi~\-gk exceeds segment size no further mergers are
made into a*. Instead the remaining mergers for the
loop are made into ak. This reflects the situation where
the volume requirement of the loop is such that it
exceeds segment size and the loop must be split between
two or more pages.

I t is clearly not necessary to consider loops with
path length of one as no merging of units is necessary
in such cases. Therefore if one examines An and An~x

for values of n = 2, 3, . . . , m (where m is the dimension

* If it were desired to detect units of a loop in order of execution
rather than reverse order one need only use Cj» and at-j in place
of c»-j and &$ respectively.

Figure 2—Loop merging

of A) one finds successively loops of path length 2, 3,
. . . , m. If the segment size is n and the size of the
smallest unit is t\ (both measured in some common unit
such as words or instructions), then it is obvious that
LMAJ* is the largest number of units that could be
merged without exceeding segment size. Thus it
suffices to limit the above examination to values of
n< min (TO, |jx/r?J).

NON-CYCLIC CONNECTIVITY

As stated earlier, at the start of phase 2 the program
consists of units forming a linear string, a tree structure,
a lattice structure, loops larger than a segment, or
some combination thereof. For illustrative purposes
the example shown in Figure 3 suffices.

Figure 4 shows the approach used in phase 2 which
is as follows: Find the smallest i such that <7;>0. Find
the smallest j such that a,-,- = l, gj>0 and g%-\-gj is not
greater than segment size. Similarly find the smallest k
such that ajk = l, gk>0 and gi-\-gj-\-gk is not greater
than segment size. In this manner one continues to
move along some path from on to some unit <xp where

[X2 is the largest integer less than or equal to X

494 Spring Joint Computer Conference, 1971

Figure 3—Program structure to be merged

either apq = 0 for l<q<m (i.e., ap is terminal) or gq,
when added to gi+gj-\ \-gp is greater than segment
size. If ap is not terminal, all units along the path from
aj to ap are merged into on, a{ is put into a Last-In,

MERGE STACK(k)
INTO STACK <k-l)

i — » STACK (k)
SIZE + 91

« SIZE
| STACK <k) — » l |

^ - ©
FIND SMALLEST
J SUCH THAT
l <] < m . a ^ x l
AND 9 j > 0

MERGE UNITS
IN STACK INTO
1st UNIT IN
STACK

I

Figure 4—Non-cyclic merging

PAGE 1 /
PAGE

Figure 5—Merged program

First-Out list, and the path is explored further using
the initial unit. Finally a terminal unit must be

encountered. When that happens this unit is merged
into the unit which preceded it in this path. If, after
the merger, the resultant unit is not terminal, the next
branch from that unit is selected as the path to be
traversed. If, however, the resultant unit after merger
is terminal, it is merged into the unit that preceded it
in the path. The procedure will finally result in an initial
unit which is terminal. This unit is then marked as
having been processed and the last unit in the LIFO
list is reselected. A branch from this unit is selected in
the above described manner and the resultant path is
traversed using the same rules as before. In all the
above processes, if ever a branch is selected which
leads to a unit that has already been processed (re
gardless of whether it was actually merged), this fact
is recognized and a different branch is selected.

When the LIFO list is finally empty the entire struc
ture emanating from the originally selected unit, on,
will have been merged on a connectivity basis, subject
to segment size constraints. However aj might not be
the unit which contains the entry point for the program
and the program might even have multiple entry points.
Therefore there might be units which were not en
countered in the above process. For this reason the
units are scanned to determine whether any were not
processed. If any such unit is found, the process is
repeated starting with that unit. Note however that
there will be no repetition of analysis of units that were
already processed. Only when all units have been pro
cessed will this phase terminate.

Automatic Program Segmentation 495

The result of applying phase 2 to the example shown
earlier, assuming each unit was of equal size and seg
ment capacity was four units, is shown in Figure 5.

inspection algorithm is now being incorporated into a
JOVIAL compiler specially built for experiments in
segmentation.

CLEANUP

At this point all packing based on connectivity is
complete. However, note that there might be units
which are less than segment size, such as units 10 and
15. Phase 3 is a clean-up process which attempts to
minimize total required storage. In this phase only
the unit size vector, G, is examined. The algorithm is
as follows:

1. Find smallest i such that <7;>0.
2. For i-\-l<j<m, if g3>0 and gi-\-gj is not

greater than segment size, merge otj into a8-.
3. Find smallest i' such that i-\-l<i'<m and

g/>0.
4. If i' can be found go back to step 2; otherwise

the process is complete.

At this point each unit of non-zero size is assigned to
some page.

CONCLUSIONS

The algorithm presented above provides a simple means
for partitioning programs into pages in such a manner
as to reduce the number of inter-page references and
therefore amount of inter-segment activity. I t is based
solely on information about the program that is ob
tainable by automatic inspection of the program such
as could be preformed in a compiler or assembler. The
inspection and packing algorithms are not very com
plex and thus should require very little time for their
execution. The packing algorithm has been implemented
as a post-compilation operation. It has been tested
with a wide variety of program structure models and
has been found to give the anticipated packings. The

REFERENCES

I R C DALEY P G NEUMAN
A general-purpose file system for secondary storage,
AFIPS Conference Proceedings Vol 27 Fall Joint Computer
Conference Spartan Books Washington DC pp 213-229

2 E L GLASER J F COULEUR G A OLIVER
System design of a computer for time sharing applications
AFIPS Conference Proceedings Vol 27 Fall Joint Computer
Conference Spartan Books Washington DC pp 197-202

3 V A VYSSOTSKY F J CORBATO R M GRAHAM
Structure of the MULTICS supervisor
AFIPS Conference Proceedings Vol 27 Fall Joint Computer
Conference Spartan Books Washington DC pp 203-212

4 T C LOWE J G VAN D Y K E R A COLILLA
Program paging and operating algorithms
RADC Final Report TR-68-444 November 1968
Rome Air Development Center AFSC Grifnss AFB
New York

5 C V RAMAMOORTHY
Analysis of graphs by connectivity considerations
J ACM 13 2 April 1966 pp 211-222

6 C V RAMAMOORTHY
The analytic design of a dynamic look-ahead and program
segmenting scheme for multi-programmed computers
Proc ACM 21st Na t Conf 1966 Thompson Book Co
Washington D C pp 229-239

7 E W VER HOEF D L SHIRLEY
Block file and MULTICS systems interface investigation
and programming
Final Report Vol I I RADC Final Report TR-69-40 April
1970
Rome Air Development Center AFSC Griffiss AFB
New York

8 T C LOWE
Analysis of boolean models for time-shared paged
environments
Comm ACM 12 4 April 1969 pp 199-205

9 T C LOWE
An algorithm for rapid calculation of products of boolean
matrices
Software Age 2 March 1968 pp 36-37

