
Associative processing of line drawings

by NEIL J. STILLMAN and CASPER R. DEFIORE

Rome Air Development Center (EMBIH)
Griffiss Air Force Base, New York

and

P. BRUCE BERRA

Syracuse University
Syracuse, New York

INTRODUCTION

The marriage of computer graphics and an associative
memory is a natural union. This is evidenced by the
widespread use of software simulations of associative
memories in today's most flexible graphical systems.
The content-addressability of a hardware associative
memory makes conventional addressing schemes super
fluous and eliminates the need for pointers required to
link related data, vastly reducing system overhead. The
parallel retrieval and update functions possible with a
hardware associative memory remove any need for
multiple storage which is so prevalent in current
systems and simultaneously increases processing speed.
The capability of implicitly storing relations between
data further decreases the storage requirements, while
increasing flexibility.

After examining current graphical data structures,
all of which rely on a maze of pointers or multiple
storage of information to represent the naturally
relational graphical data, and reviewing the funda
mentals of associative memories, a data structure
utilizing an associative memory to process line drawings
is presented.

BACKGROUND

One of the first systems to allow graphical communi
cation with a computer, SKETCHPAD,188 utilized
two-way pointers. The data about drawings were

actually structured in two separate forms. The first was
a table of display spot coordinates designed to make
display as rapid as possible, while the other was a ring
structure designed to contain the topology of the
drawing and facilitate its modification. Each entity
consisted of n consecutive storage locations, with
standardized locations for information about the various
properties of each entity type. All references to a
particular entity block were linked together by a string
of pointers originating within that block and pointing to
the succeeding and preceding members of the string.
Different rings thread through several levels in an
element providing several paths to the same informa
tion. Sutherland comments that his ring structure was
not intended to pack the required information into the
smallest possible storage space and that some redun
dancy was included in the ring structure to provide
faster running programs. SKETCHPAD placed a
higher priority on speed than on the ability to store
huge drawings.

Another ring-oriented data structure is CORAL,19,8

(Class Oriented Ring Associative Language). It stores
data in blocks of arbitrary but fixed length. The blocks
represent objects which can be connected by rings; each
object can belong to more than one ring allowing the
multi-dimensional associations required for graphical
data structures. Unlike SKETCHPAD, CORAL isn't
limited to two-way pointers; all ring elements have a
forward pointer to the next element in the ring, and
pointers to the ring start (type identifier) are alternated
with back pointers for all ring elements. By alternation

557

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1478786.1478864&domain=pdf&date_stamp=1971-05-18

558 Spring Joint Computer Conference, 1971

of the less useful pointers, CORAL retains the flexibility-
afforded by each pointer type, but requires only half the
space and does not incur a significant time loss. Since
efficiency was not a major consideration during the
system's development, storage space and processing
time produce a high overhead.

Similarly, DAC-111 and its successor APL6-8 at
General Motors use blocks of entity descripters, each of
which describes an entity and its properties, linking
blocks in current use together in a ring structure. By
decomposing a picture into entities a hierarchical
structure is obtained.

ASP12,8 (Associative Structure Package), is another
ring implemented data structure, but differs from the
others discussed in that it is a dual ring structure. All
elements belong to two rings; the "upper" ring being
those elements possessing the same property; and the
"lower" ring being a series of rings of elements related
to the master element by different properties. The ASP
structure allows interrogation in seven associative forms
(Feldman16). Lang concludes that the user, depending
upon his application, should determine how the rings
are to be implemented, i.e., with only forward pointers,
or with backward and/or ringstart pointers. If the rings
are small, forward pointers are probably sufficient while
if the rings are large other pointers should perhaps be
introduced.

A slightly different approach is the data structure of
GRAPHIC-2,3 basically a directed graph with no closed
loops. The structure contains four types of blocks; nodes
and branches of fixed length and leaf and data blocks of
arbitrary size. By convention, only the leaf blocks can
contain displayable material, while the other blocks
provide structural information. Because space is a
scarce resource in the GRAPHIC-2 computer, an
abbreviated pointer system is utilized, including neither
back pointers nor ringstart pointers. To quote Christen-
sen, "Tracing one's way through the structure therefore
may require more time, but time is a resource that is
more readily available in GRAPHIC-2." The directed
graph is used also by Cotton and Greatorex4 in their
remote computer graphics system, and serves as the
basis for the graphics data structure used at the
University of Utah.2

Van Dam and Evans,20 in an effort to reduce the size
of a given graphical item to the absolute minimum,
have kept their data structure as pointer-free as
possible. The general structure of an item is a block
containing (1) a set of "keys" which name or identify
the information within an item, (2) elements which may
contain any type of information, i.e., data, program, or
both, and (3) a table of contents which associates the
keys with their related items and thereby allows the

system to locate elements within an item. An item is
retrieved by providing a "description," a logical
expression combining keys, elements, and conditions on
the values of elements. Schemes for keeping part of the
picture in tree form and part in reduced form (points
and lines) are being considered for future implementa
tions. The fact that the points and lines form makes
lightpen pointing impractical but is nevertheless
considered implies that the storage space is at a great
premium.

The improvement of these systems centers about two
tasks regardless of the data structure discussed: the
processing of data at a faster rate, and the storing of
data in the smallest possible space. These two goals, to
date, have been incompatible, i.e., processing speed has
been gained at the expense of storage and storage can be
minimized only at the cost of processing time. With the
advent of an "associative memory," speed and storage
compression become compatible. The parallel search
capability speeds processing while the content-addressa
bility, which eliminates conventional addresses and
therefore data pointers and all housekeeping functions
associated with them, both increases speed and decreases
storage requirements.

FUNDAMENTALS OF ASSOCIATIVE
MEMORIES21

An associative memory has three main features not
possessed by conventional memories: (1) word-parallel
access of the entire memory, (2) word-parallel perform
ance of its basic operations in the entire memory, and
(3) the inclusion of comparison as a basic operation. In
addition, word operations may be performed either
bit-serial or bit-parallel. Bit-serial operation will com
pare sequentially against a 1 bit by n word slice of
memory (where n = number of words in AM) acrossxthe
word while bit-parallel operation will compare the
entire memory m bits by n words (m = number of bits
in a word) simultaneously. I t appears that this distinc
tion is of minor consequence, introducing only the
element of a time delay without affecting the three
prime features noted above.

The fundamental operations of any memory are
reading from, and writing into, any word or bit location.
An associative memory adds comparison to these two
universal requirements. I t is the parallel execution of
the primary operations that sets the associative memory
apart. A natural associative memory strategy is that of
two-block partitioning, i.e., in order to perform an
operation on some members of the associative memory,
the members that are not to be operated on must be

Associative Processing of Line Drawings 559

segregated. This is accomplished by an initial operation
performed in parallel on all locations of the associative
memory to flag the members of interest. Then, for
example, a parallel write could be used to zero out all
flagged words simultaneously, or a parallel read could
be used to read the contents of the flagged words
simultaneously into an external buffer. In the com
parison operation, the reference word (comparand) is
simultaneously compared with all flagged words. .The
comparand is not restricted to an entire word but may
be any arbitrarily specified field in the word.

The provisions of word-parallel access and simul
taneous comparison make the conventional concept of a
memory address obsolete. Formerly, when only one
word of a computer could be accessed at a time,
information was stored in an orderly fashion in uniquely
numbered storage locations. In the associative memory,
information is retrieved by content, not location, hence
the term "content-addressable memory." An associative
memory is ideally suited to cross-referencing because
unlike a conventional memory which must maintain a
separate index for each characteristic, information may
be retrieved on any combination of characteristics.

The instruction capabilities of associative memories
are usually grouped into two categories; search instruc
tions and arithmetic functions. The search instructions
allow simultaneous comparison throughout any portion
of memory (i.e., any number of words) and upon any
portion (field) of a word (i.e., any number of bits). The
search instructions9 include the following: equality,
inequality, maximum, minimum, greater than, greater
than or equal, less than, less than or equal, between
limits, next higher, and next lower. The Boolean
operations AND, inclusive OR, exclusive OR, and
complement may be performed between fields to provide
complex query capability. Arithmetic operations of
addition, subtraction, multiplication, division, incre
ment field, and decrement field are indispensable in such
graphical operations as scaling and translation.

In summary, an associative memory is ideally suited
to perform operations on large amounts of data since it
can operate on all members of the data simultaneously,
in the time of a single operation, the only constraint
being memory size. An associative memory therefore, in
theory, has a speed advantage in proportion to the
number of words of data to be processed.

GRAPHICS AND THE ASSOCIATIVE MEMORY

Ring structures yield answers to questions such as
"What are the coordinates of Square X?," and its
converse "(X1} Y{), (X2, F2), (X3, F3), (X4, F4) are the

coordinates of what square?" by virtue of their forward
and backward pointers. There are more than two ways
to pose a query however. Consider the question "What
is the relationship, if any exists, between point X and
point F?" or "What pairs of objects are associated by
the relationship SIDE OF?" In all, there are seven
associative forms16 of a query as shown in Figure 1.
Since the relation is not explicitly stored in any of the
previously discussed data structures, there is no way of
answering questions phrased in forms 4, 5, 6, or 7. In
order to answer questions in the last four ways, conven
tional concepts of data processing must be abandoned.
The new structure must store, in addition to the
objects, the relationship associating them. This task has
been accomplished in similar ways by Rovner and
Feldman,15 Ash and Sibley,1 and Levien and Maron.13 In
these approaches the "triple" (form 1) ATTRIBUTE
OF OBJECT = VALUE is the basic element of the data
structure. Levien and Maron add a fourth parameter by
giving each "triple" a name identifier. This parameter
may be used as an element in another "triple." In these
approaches, each "triple" is stored at least three times
to simulate an associative memory and enable queries in
all seven associative forms to be more efficient than in a
single listing.

Searching is minimized by using a hashed addressing
scheme which will translate the query directly into the
address of the answer (or linked to the answer). A
hashed addressing scheme does, however, produce conflict
situations, i.e., more than one pair of elements can hash
to the same address, producing a conflict that must be
resolved, for example, by a chained search of other
answers until the desired answer is identified. The
tradeoff is between tolerable conflict and the size of the
addressable space.

Two major improvements to the present-day simula-

(I)

(2)

(3)

(4)

(5)

(6)

(7)

ATTRIBUTE

SIDE OF

SIDE OF

SIDE OF

?

SIDE OF

?

?

OF OBJECT

SQUARE 1

SQUARE 1

?

SQUARE 1

?

?

SQUARE 1

=

»

=

=

=

=

a

=

VALUE

LINE 1

?

LINE 1

LINE 1

?

LINE 1

?

Figure 1—Associative forms of a query

560 Spring Joint Computer Conference, 1971

1 2 3 4 5 6 7 8 9 101112131M516171819202122232»25Z627t»29303132333»353<373839»O»l»2»J»H'ij'l6»7»8

FOIHT

1 0 o | POINT ID HUHBBB |

lO l l BEGIN FT. ID NUMBER

|lo|uc*. ID#|«[ilLJ

|II |TRI. iD#|SmoiJ

X COOBDIHATE |

END n . ID NDMBEB

COMPONENT 1
LIKE ID NUMBER I

ABEA I

I COOBDIHATE

LINE

| RECTANGLE OB
I TBIAHGLE ID #

BECTANQLE

COMPONENT
LIKE ID NUMBER

TBIAHSLE

COMPONENT 1
LIRE ID NUMBEB

| LIKE ID n m B l B

1 BECTAHOLE OB | . <
I TBIAHSLE ID # 1 x

1 COMPONENT
1 LIKE ID NUHBEB

1 COMPONENT 1
| LIKE ID NUMBER I

| LIME ID MOHBEB |

I LIKE ID HIHBEB 1

1 COMPONENT 1
1 LIKE ID MUHBEB |

1 COMPONENT I
1 LIKE ID KDKBEB 1

Figure 2—Multi-relational graphics data structure

tions of the associative memory would be the elimination
of multiple storage of all relations and the removal of
the conflict situation caused by hashing. Both are
provided by a true "associative memory," which
processes a random list of triples in any of the seven
query modes in the most efficient manner possible,
having stored it only once while not requiring an
addressing scheme. Even though the data triples are
stored only once, by the nature of the word-parallel,
bit-serial operation with masking of an associative
memory, all seven associative form questions can be
answered with equal ease.

In the above scheme each triple takes up one word in
the associative memory, i.e., the data are structured one
relation per word. Storing one relation per word,
however, doesn't even begin to take advantage of the
power of an associative memory. Utilizing a Control
Data 1604B computer interfaced with a prototype
associative memory built by Goodyear for Rome Air
Development Center9 and containing 2048 forty-eight
bit words, a complete two dimensional line-drawing
graphics system can be implemented. Imposing the
following constraints on the system will assure that any
drawing will fit completely in the associative memory.
The maximum number of points per drawing will be
1024, and the maximum number of lines will be 512.
Also, a maximum of 64 rectangles and 64 triangles can
be defined. Two bits of each word are required to specify
the entity type. Six bits defines a unique ID number for
each rectangle or triangle, while it takes nine bits and
ten bits to specify lines and points respectively with a
unique identifier. The four relations

SIDE OF SQUARE X = LINE W

SIDE OF SQUARE X = LINE X

SIDE OF SQUARE X = LINE Y

SIDE OF SQUARE X = LINE Z

which are stored three times (approximately 12 words)
in LEAP15 and similar systems, and once (four words)
in the same system using an associative memory can be
stored in one word by placing the nine bit codes of the
four lines in the word identifying the rectangle which
they compose. This particular example therefore re
quires about 10 percent of the storage requirement of any
system in existence today. Triangles, lines, and points
are defined similarly (See Figure 2). The limits specified
above provide for identification of all entities in 1664
words, leaving 336 words unused. A point may belong to
more than two lines but only space to specify two is
provided. At absolutely no overhead to the system
another word may be used, repeating the first 30 bits of
the point record, and specifying the identifiers of two
additional lines. This may also be done with a line which
belongs to more than two rectangles or triangles.
Exclusive of time factors external to the associative
memory (which would be incurred conventionally as
well) it would take, for example, less than 60 micro
seconds to retrieve the record of a specific rectangle.9

Possibly the most notable feature of the planned
implementation is its extremely fast update capability.
Scaling and translation, which are merely multiplication
by, and addition of, a constant respectively are
accomplished, in their entirety and regardless of the
complexity of the picture, in the same time that a
conventional memory processes one coordinate. This
fact that retrieval and update functions are completely
independent of picture complexity (as long as the
picture is contained completely in the AM) sums up the
greatest advantage of the associative memory. Another
notable feature is that the system overhead per picture,
again regardless of the complexity of the picture, is
always four words.

The update or modification of a picture is most
dependent on "pointers" or "relations" and it is
threading through all these that consumes most of the
time in conventional approaches. The elimination of
this maze due to the content addressing of the associa
tive memory provides, for example, the deletion of a
line and therefore all objects to which it belongs (i.e.,
rectangles, etc.) in about 140 microseconds.9

CONCLUSIONS

Feldman's simulator7 raised the question whether it
would pay to build hardware associative memories for
general purpose use since it should be feasible to build
a software system which loses a factor of about two in
storage, and three-to-five in time, against an associative
memory of the same basic speed.

Associative Processing of Line Drawings 561

I t should be noted, however, that according to
Minker,14 present day relational data systems tech
nology has emphasized retrieval to the exclusion of
maintenance, i.e., update capability. Maintenance
functions depend primarily on the "pointers" or
"relations" and therefore associative memories will
exert their maximum influence in this area.

In addition, the work of Sibley1-17 is patterned after
Rovner's15 "triples" using hashed addressing. His view
is that software simulations of associative memories
"for the moment . . . are a stopgap measure."

Feldman's estimate of a loss of a factor of two in
storage to an associative memory seems very conserva
tive in light of the new data structure introduced above.
Figures as to the time advantage of such a system will
have to await implementation of the data structure but
it is expected that timing results will show Feldman's
estimate of a saving of three-to-five in time to also be
very conservative.

The software simulated associative memory using
hashing is limited to an exact match operation, and all
other search strategies must be built on multiple use of
the exact match operation, due to the fact that hashing
requires a completely specified field on which to apply
the hashing algorithm. On the other hand, a hardware
associative memory has about a dozen different basic
search capabilities indicating that a hardware associa
tive memory is far more flexible than a software
simulation of an associative memory.

As an example, consider the problem of finding all
lines of length between four and six inches. Let the name
and length be specified for each line. In the simulated
associative memory if hashing is done by name only, or
by name and length, the question cannot be answered;
if hashing is by length only and the lengths are integral
then an exact match on lengths four, five, and six will
yield the answers. However, if the lengths are continuous
between four and six, then again, for all intents and
purposes, the simulated associative memory cannot
yield an answer. In contrast, a hardware associative
memory would do a single between limits parallel
search and arrive at a complete solution in less than
twice the time required for an exact match.

As integrated circuits come into widespread use and
the price of an associative memory drops to about twice
that of a conventional memory5 more and more people
will begin to examine its unique advantages.

REFERENCES

1 W L ASH E H SIBLEY
TRAMP—An interpretive associative processor with

deductive capabilities
Proceedings ACM National Conference 1968 pp 143-56

2 S CARR
Geometric modeling
University of Utah Technical Report 4-13 1969

3 C CHRISTENSEN E N PINSON
Multi-function graphics for a large computer system
Proceedings Fall Joint Computer Conference Vol 31 1967
pp 697-711

4 I COTTON F S GREATOREX J R
Data structures and techniques for remote computer graphics
Proceedings Fall Joint Computer Conference Vol 33 Par t I
1968 pp 533-544

5 C D E F I O R E
Fast sorting
Datamation Vol 16 No 8 August 1 1970 pp 47-51

6 G G DODD
APL—A language for associative data handling in PL/1
Proceedings Fall Joint Computer Conference Vol 29 1966
pp 677-684

7 J A FELDMAN
Aspects of associative processing
M I T Technical Note 1965-13 April 1965

8 J C GRAY
Compound data structure for computer-aided design—A survey
Proceedings ACM National Conference 1967 pp 355-365

9 Handbook of operating and maintenance instructions for the
associative memory
Vol II—Associative Memory Programming Manual
Goodyear Aerospace Corporation Akron Ohio
GER-13738 March 1968

10 A G HANLON
Content-addressable and associative memory systems—A
survey
I E E E Transactions on Electronic Computers August 1966

11 E L JACKS
A laboratory for the study of graphical man-machine
communication
Proceedings Fall Joint Computer Conference Vol 26 1964
pp 343-350

12 C A LANG J C GRAY
ASP-A ring implemented associative structure package
Communications of the ACM Vol 11 No 8 August 1968
pp 550-555

13 R E LEVIEN M E MARON
A computer system for inference execution and data retrieval
Memorandum RM-5085-PR Rand Corporation Santa
Monica California September 1966

14 J M I N K E R J D SABLE
Relational data system study
Auerbach Final Report—Contract F30602-70-0097
July 1970

15 P D ROVNER J A F E L D M A N
The leap language and data structure
January 1968

16 P D ROVNER J C F E L D M A N
An algol-based associative language
Communications of the ACM Vol 12 August 1969
pp 545-555

17 E H SIBLEY D G GORDON R W TAYLOR
Graphical systems communications—An associative memory
approach
Proceedings Fall Joint Computer Conference Vol 33 Par t I
1968 pp 545-555

562 Spring Joint Computer Conference, 1971

18 I E SUTHERLAND
Sketchpad—A man-machine graphical communication
system
Proceedings Spring Joint Computer Conference Vol 23
1963 pp 329-346

19 W R SUTHERLAND
On-line graphical specification of computer procedures
Tech Report 405 Lincoln Laboratory Cambridge
Massachusetts 1966

20 A VAN DAM D EVANS
A compact data structure for storing, retrieving, and
manipulating line drawings
Proceedings Spring Joint Computer Conference Vol 30
1967 pp 601-610

21 A WOLINSKY
Principles and applications of associative memories
Third Annual Symposium on the Interface of Computer
Science and Statistics Los Angeles California January 1969

