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INTRODUCTION 

The marriage of computer graphics and an associative 
memory is a natural union. This is evidenced by the 
widespread use of software simulations of associative 
memories in today's most flexible graphical systems. 
The content-addressability of a hardware associative 
memory makes conventional addressing schemes super
fluous and eliminates the need for pointers required to 
link related data, vastly reducing system overhead. The 
parallel retrieval and update functions possible with a 
hardware associative memory remove any need for 
multiple storage which is so prevalent in current 
systems and simultaneously increases processing speed. 
The capability of implicitly storing relations between 
data further decreases the storage requirements, while 
increasing flexibility. 

After examining current graphical data structures, 
all of which rely on a maze of pointers or multiple 
storage of information to represent the naturally 
relational graphical data, and reviewing the funda
mentals of associative memories, a data structure 
utilizing an associative memory to process line drawings 
is presented. 

BACKGROUND 

One of the first systems to allow graphical communi
cation with a computer, SKETCHPAD,188 utilized 
two-way pointers. The data about drawings were 

actually structured in two separate forms. The first was 
a table of display spot coordinates designed to make 
display as rapid as possible, while the other was a ring 
structure designed to contain the topology of the 
drawing and facilitate its modification. Each entity 
consisted of n consecutive storage locations, with 
standardized locations for information about the various 
properties of each entity type. All references to a 
particular entity block were linked together by a string 
of pointers originating within that block and pointing to 
the succeeding and preceding members of the string. 
Different rings thread through several levels in an 
element providing several paths to the same informa
tion. Sutherland comments that his ring structure was 
not intended to pack the required information into the 
smallest possible storage space and that some redun
dancy was included in the ring structure to provide 
faster running programs. SKETCHPAD placed a 
higher priority on speed than on the ability to store 
huge drawings. 

Another ring-oriented data structure is CORAL,19,8 

(Class Oriented Ring Associative Language). It stores 
data in blocks of arbitrary but fixed length. The blocks 
represent objects which can be connected by rings; each 
object can belong to more than one ring allowing the 
multi-dimensional associations required for graphical 
data structures. Unlike SKETCHPAD, CORAL isn't 
limited to two-way pointers; all ring elements have a 
forward pointer to the next element in the ring, and 
pointers to the ring start (type identifier) are alternated 
with back pointers for all ring elements. By alternation 
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of the less useful pointers, CORAL retains the flexibility-
afforded by each pointer type, but requires only half the 
space and does not incur a significant time loss. Since 
efficiency was not a major consideration during the 
system's development, storage space and processing 
time produce a high overhead. 

Similarly, DAC-111 and its successor APL6-8 at 
General Motors use blocks of entity descripters, each of 
which describes an entity and its properties, linking 
blocks in current use together in a ring structure. By 
decomposing a picture into entities a hierarchical 
structure is obtained. 

ASP12,8 (Associative Structure Package), is another 
ring implemented data structure, but differs from the 
others discussed in that it is a dual ring structure. All 
elements belong to two rings; the "upper" ring being 
those elements possessing the same property; and the 
"lower" ring being a series of rings of elements related 
to the master element by different properties. The ASP 
structure allows interrogation in seven associative forms 
(Feldman16). Lang concludes that the user, depending 
upon his application, should determine how the rings 
are to be implemented, i.e., with only forward pointers, 
or with backward and/or ringstart pointers. If the rings 
are small, forward pointers are probably sufficient while 
if the rings are large other pointers should perhaps be 
introduced. 

A slightly different approach is the data structure of 
GRAPHIC-2,3 basically a directed graph with no closed 
loops. The structure contains four types of blocks; nodes 
and branches of fixed length and leaf and data blocks of 
arbitrary size. By convention, only the leaf blocks can 
contain displayable material, while the other blocks 
provide structural information. Because space is a 
scarce resource in the GRAPHIC-2 computer, an 
abbreviated pointer system is utilized, including neither 
back pointers nor ringstart pointers. To quote Christen-
sen, "Tracing one's way through the structure therefore 
may require more time, but time is a resource that is 
more readily available in GRAPHIC-2." The directed 
graph is used also by Cotton and Greatorex4 in their 
remote computer graphics system, and serves as the 
basis for the graphics data structure used at the 
University of Utah.2 

Van Dam and Evans,20 in an effort to reduce the size 
of a given graphical item to the absolute minimum, 
have kept their data structure as pointer-free as 
possible. The general structure of an item is a block 
containing (1) a set of "keys" which name or identify 
the information within an item, (2) elements which may 
contain any type of information, i.e., data, program, or 
both, and (3) a table of contents which associates the 
keys with their related items and thereby allows the 

system to locate elements within an item. An item is 
retrieved by providing a "description," a logical 
expression combining keys, elements, and conditions on 
the values of elements. Schemes for keeping part of the 
picture in tree form and part in reduced form (points 
and lines) are being considered for future implementa
tions. The fact that the points and lines form makes 
lightpen pointing impractical but is nevertheless 
considered implies that the storage space is at a great 
premium. 

The improvement of these systems centers about two 
tasks regardless of the data structure discussed: the 
processing of data at a faster rate, and the storing of 
data in the smallest possible space. These two goals, to 
date, have been incompatible, i.e., processing speed has 
been gained at the expense of storage and storage can be 
minimized only at the cost of processing time. With the 
advent of an "associative memory," speed and storage 
compression become compatible. The parallel search 
capability speeds processing while the content-addressa
bility, which eliminates conventional addresses and 
therefore data pointers and all housekeeping functions 
associated with them, both increases speed and decreases 
storage requirements. 

FUNDAMENTALS OF ASSOCIATIVE 
MEMORIES21 

An associative memory has three main features not 
possessed by conventional memories: (1) word-parallel 
access of the entire memory, (2) word-parallel perform
ance of its basic operations in the entire memory, and 
(3) the inclusion of comparison as a basic operation. In 
addition, word operations may be performed either 
bit-serial or bit-parallel. Bit-serial operation will com
pare sequentially against a 1 bit by n word slice of 
memory (where n = number of words in AM) acrossxthe 
word while bit-parallel operation will compare the 
entire memory m bits by n words (m = number of bits 
in a word) simultaneously. I t appears that this distinc
tion is of minor consequence, introducing only the 
element of a time delay without affecting the three 
prime features noted above. 

The fundamental operations of any memory are 
reading from, and writing into, any word or bit location. 
An associative memory adds comparison to these two 
universal requirements. I t is the parallel execution of 
the primary operations that sets the associative memory 
apart. A natural associative memory strategy is that of 
two-block partitioning, i.e., in order to perform an 
operation on some members of the associative memory, 
the members that are not to be operated on must be 
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segregated. This is accomplished by an initial operation 
performed in parallel on all locations of the associative 
memory to flag the members of interest. Then, for 
example, a parallel write could be used to zero out all 
flagged words simultaneously, or a parallel read could 
be used to read the contents of the flagged words 
simultaneously into an external buffer. In the com
parison operation, the reference word (comparand) is 
simultaneously compared with all flagged words. .The 
comparand is not restricted to an entire word but may 
be any arbitrarily specified field in the word. 

The provisions of word-parallel access and simul
taneous comparison make the conventional concept of a 
memory address obsolete. Formerly, when only one 
word of a computer could be accessed at a time, 
information was stored in an orderly fashion in uniquely 
numbered storage locations. In the associative memory, 
information is retrieved by content, not location, hence 
the term "content-addressable memory." An associative 
memory is ideally suited to cross-referencing because 
unlike a conventional memory which must maintain a 
separate index for each characteristic, information may 
be retrieved on any combination of characteristics. 

The instruction capabilities of associative memories 
are usually grouped into two categories; search instruc
tions and arithmetic functions. The search instructions 
allow simultaneous comparison throughout any portion 
of memory (i.e., any number of words) and upon any 
portion (field) of a word (i.e., any number of bits). The 
search instructions9 include the following: equality, 
inequality, maximum, minimum, greater than, greater 
than or equal, less than, less than or equal, between 
limits, next higher, and next lower. The Boolean 
operations AND, inclusive OR, exclusive OR, and 
complement may be performed between fields to provide 
complex query capability. Arithmetic operations of 
addition, subtraction, multiplication, division, incre
ment field, and decrement field are indispensable in such 
graphical operations as scaling and translation. 

In summary, an associative memory is ideally suited 
to perform operations on large amounts of data since it 
can operate on all members of the data simultaneously, 
in the time of a single operation, the only constraint 
being memory size. An associative memory therefore, in 
theory, has a speed advantage in proportion to the 
number of words of data to be processed. 

GRAPHICS AND THE ASSOCIATIVE MEMORY 

Ring structures yield answers to questions such as 
"What are the coordinates of Square X?," and its 
converse "(X1} Y{), (X2, F2), (X3, F3), (X4, F4) are the 

coordinates of what square?" by virtue of their forward 
and backward pointers. There are more than two ways 
to pose a query however. Consider the question "What 
is the relationship, if any exists, between point X and 
point F?" or "What pairs of objects are associated by 
the relationship SIDE OF?" In all, there are seven 
associative forms16 of a query as shown in Figure 1. 
Since the relation is not explicitly stored in any of the 
previously discussed data structures, there is no way of 
answering questions phrased in forms 4, 5, 6, or 7. In 
order to answer questions in the last four ways, conven
tional concepts of data processing must be abandoned. 
The new structure must store, in addition to the 
objects, the relationship associating them. This task has 
been accomplished in similar ways by Rovner and 
Feldman,15 Ash and Sibley,1 and Levien and Maron.13 In 
these approaches the "triple" (form 1) ATTRIBUTE 
OF OBJECT = VALUE is the basic element of the data 
structure. Levien and Maron add a fourth parameter by 
giving each "triple" a name identifier. This parameter 
may be used as an element in another "triple." In these 
approaches, each "triple" is stored at least three times 
to simulate an associative memory and enable queries in 
all seven associative forms to be more efficient than in a 
single listing. 

Searching is minimized by using a hashed addressing 
scheme which will translate the query directly into the 
address of the answer (or linked to the answer). A 
hashed addressing scheme does, however, produce conflict 
situations, i.e., more than one pair of elements can hash 
to the same address, producing a conflict that must be 
resolved, for example, by a chained search of other 
answers until the desired answer is identified. The 
tradeoff is between tolerable conflict and the size of the 
addressable space. 

Two major improvements to the present-day simula-
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Figure 1—Associative forms of a query 
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Figure 2—Multi-relational graphics data structure 

tions of the associative memory would be the elimination 
of multiple storage of all relations and the removal of 
the conflict situation caused by hashing. Both are 
provided by a true "associative memory," which 
processes a random list of triples in any of the seven 
query modes in the most efficient manner possible, 
having stored it only once while not requiring an 
addressing scheme. Even though the data triples are 
stored only once, by the nature of the word-parallel, 
bit-serial operation with masking of an associative 
memory, all seven associative form questions can be 
answered with equal ease. 

In the above scheme each triple takes up one word in 
the associative memory, i.e., the data are structured one 
relation per word. Storing one relation per word, 
however, doesn't even begin to take advantage of the 
power of an associative memory. Utilizing a Control 
Data 1604B computer interfaced with a prototype 
associative memory built by Goodyear for Rome Air 
Development Center9 and containing 2048 forty-eight 
bit words, a complete two dimensional line-drawing 
graphics system can be implemented. Imposing the 
following constraints on the system will assure that any 
drawing will fit completely in the associative memory. 
The maximum number of points per drawing will be 
1024, and the maximum number of lines will be 512. 
Also, a maximum of 64 rectangles and 64 triangles can 
be defined. Two bits of each word are required to specify 
the entity type. Six bits defines a unique ID number for 
each rectangle or triangle, while it takes nine bits and 
ten bits to specify lines and points respectively with a 
unique identifier. The four relations 

SIDE OF SQUARE X = LINE W 

SIDE OF SQUARE X = LINE X 

SIDE OF SQUARE X = LINE Y 

SIDE OF SQUARE X = LINE Z 

which are stored three times (approximately 12 words) 
in LEAP15 and similar systems, and once (four words) 
in the same system using an associative memory can be 
stored in one word by placing the nine bit codes of the 
four lines in the word identifying the rectangle which 
they compose. This particular example therefore re
quires about 10 percent of the storage requirement of any 
system in existence today. Triangles, lines, and points 
are defined similarly (See Figure 2). The limits specified 
above provide for identification of all entities in 1664 
words, leaving 336 words unused. A point may belong to 
more than two lines but only space to specify two is 
provided. At absolutely no overhead to the system 
another word may be used, repeating the first 30 bits of 
the point record, and specifying the identifiers of two 
additional lines. This may also be done with a line which 
belongs to more than two rectangles or triangles. 
Exclusive of time factors external to the associative 
memory (which would be incurred conventionally as 
well) it would take, for example, less than 60 micro
seconds to retrieve the record of a specific rectangle.9 

Possibly the most notable feature of the planned 
implementation is its extremely fast update capability. 
Scaling and translation, which are merely multiplication 
by, and addition of, a constant respectively are 
accomplished, in their entirety and regardless of the 
complexity of the picture, in the same time that a 
conventional memory processes one coordinate. This 
fact that retrieval and update functions are completely 
independent of picture complexity (as long as the 
picture is contained completely in the AM) sums up the 
greatest advantage of the associative memory. Another 
notable feature is that the system overhead per picture, 
again regardless of the complexity of the picture, is 
always four words. 

The update or modification of a picture is most 
dependent on "pointers" or "relations" and it is 
threading through all these that consumes most of the 
time in conventional approaches. The elimination of 
this maze due to the content addressing of the associa
tive memory provides, for example, the deletion of a 
line and therefore all objects to which it belongs (i.e., 
rectangles, etc.) in about 140 microseconds.9 

CONCLUSIONS 

Feldman's simulator7 raised the question whether it 
would pay to build hardware associative memories for 
general purpose use since it should be feasible to build 
a software system which loses a factor of about two in 
storage, and three-to-five in time, against an associative 
memory of the same basic speed. 
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I t should be noted, however, that according to 
Minker,14 present day relational data systems tech
nology has emphasized retrieval to the exclusion of 
maintenance, i.e., update capability. Maintenance 
functions depend primarily on the "pointers" or 
"relations" and therefore associative memories will 
exert their maximum influence in this area. 

In addition, the work of Sibley1-17 is patterned after 
Rovner's15 "triples" using hashed addressing. His view 
is that software simulations of associative memories 
"for the moment . . . are a stopgap measure." 

Feldman's estimate of a loss of a factor of two in 
storage to an associative memory seems very conserva
tive in light of the new data structure introduced above. 
Figures as to the time advantage of such a system will 
have to await implementation of the data structure but 
it is expected that timing results will show Feldman's 
estimate of a saving of three-to-five in time to also be 
very conservative. 

The software simulated associative memory using 
hashing is limited to an exact match operation, and all 
other search strategies must be built on multiple use of 
the exact match operation, due to the fact that hashing 
requires a completely specified field on which to apply 
the hashing algorithm. On the other hand, a hardware 
associative memory has about a dozen different basic 
search capabilities indicating that a hardware associa
tive memory is far more flexible than a software 
simulation of an associative memory. 

As an example, consider the problem of finding all 
lines of length between four and six inches. Let the name 
and length be specified for each line. In the simulated 
associative memory if hashing is done by name only, or 
by name and length, the question cannot be answered; 
if hashing is by length only and the lengths are integral 
then an exact match on lengths four, five, and six will 
yield the answers. However, if the lengths are continuous 
between four and six, then again, for all intents and 
purposes, the simulated associative memory cannot 
yield an answer. In contrast, a hardware associative 
memory would do a single between limits parallel 
search and arrive at a complete solution in less than 
twice the time required for an exact match. 

As integrated circuits come into widespread use and 
the price of an associative memory drops to about twice 
that of a conventional memory5 more and more people 
will begin to examine its unique advantages. 
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