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INTRODUCTION 

The prime goal of the SYMBOL research project was to 
demonstrate, with a full-scale working system, that a 
very high-level, general-purpose, procedural, "state of 
the art" language and a large portion of a time-sharing 
operating system could be implemented directly in 
hardware and achieve a significant increase in overall 
computational rates. A further objective was to create 
hardware design and construction techniques which 
could be easily applied by a small number of people 
to implement such a system in a reasonable time and 
at a relatively low cost. Although this was a research 
project, there was a high dedication to developing auto­
mation, hardware, test equipment and documentation 
to support the project. The name SYMBOL was chosen 
to signify direct hardware symbolic addressing. 

Another goal of the project was to develop hard­
ware/software algorithms which directly aid a casual as 
well as a professional user working with non-numeric 
data. Particular attention was given to the manipula­
tion of data structures for file maintenance coupled 
with powerful field and character manipulating in­
structions. 

The general-purpose SYMBOL language1 was de­
veloped after studying a large number of modern lan­
guages including ALGOL, FORTRAN, PL/1 LISP 
and EULER. It was decided early that the new lan­
guage had to perform all useful operations on applica­
tion problems without being cluttered with machine-
dependent operators; also, since it was a research 
project there was no strong necessity to be compatible 
with available programs written in other languages. 
On the hardware side it was decided that no appreciable 
restriction to the language would be permitted and 
that hardware would have to be invented to match 
the language. As the project progressed it became 
desirable to include conversational-mode multiproces­

sing and multiprogramming as well as source language 
text editing. 

The architectural philosophy of the SYMBOL sys­
tem led to hardware implementation of a variety of 
features which have been and are software functions of 
current systems. Some of the interesting features di­
rectly implemented in hardware in SYMBOL are: 

Dynamic Memory Allocation 
Dynamic Memory Reclamation 
Dynamically Variable Field Lengths 
Dynamically Variable Structures 
Automatic Virtual Memory Management 
Automatic Data Type Conversion 
Automatic Time-Sharing Supervision 
Direct Symbolic Addressing 
Precision-Controlled Arithmetic Processing 
Direct Hardware Compilation 
Alphanumeric Field Manipulation 
Direct Text Editing 

PROJECT HISTORY 

From the beginning, this research project was com­
mitted to producing a real and functioning system 
rather than a simple simulation. A brief outline of the 
project history appears below. It should be noted that 
considerable emphasis was placed on hardware design 
and implementation techniques. In fact, the complete 
project was treated as a "closed system" where no item 
(such as a user with his application) was considered 
separately from the language, operating system, or 
hardware. 

1963-64: Hardware Technology Development 
Fairchild CT/xL Family for Circuits 
Power Distribution Techniques 
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Large Two-Layer Printed Circuit Boards 
Dual In-Line Package Invented 

1964-65: Data Flow Model2 Process Unit Construction 
Two-Layer Printed Circuit Board System Inter­

connections 
Cam-Operated, Zero Insertion Force Contacts 
High-to-Low Order Variable Length Arithmetic 

Processing 
Use of CTML 

1964-67: Language Development for SYMBOL 
Dynamically Variable Field Length Data 
Structured Data Literally Represented 
Complete Syntax and Semantics 
Source Text and Program Editing 
Definition of Operating System Hardware/ 

Software 

1965-69: Computer-Aided Engineering Design Package 
Development 

Equation Expansion and Checking 
Timing, Loading and Offset Checking 
System Logic Function Factoring 
System Interconnections 
Placement 
Wire Routing 

1964-70: Hardware Development for SYMBOL 
December, 1967—Logic Flow Charts Complete 
December, 1968—Partial Construction and Testing 

Started 
December, 1969—Fabrication Complete and 

Debugging Started 
June, 1970—SYMBOL Hardware Operational 
January, 1971—SYMBOL Delivered to Iowa 
. State University 

SYMBOL FROM A USER'S VIEWPOINT 

Much of the written or printed communication in our 
society is conducted on what may be described as 
"Typewriter English." We communicate with upper 
and lower case alphabet, decimal numbers and a group 
of commonly accepted special symbols. These com­
munications are generated in all sorts of forms and may 
vary from handwritten, to typewriter produced or to 
automatic computation output, etc. Several features 
become evident on examination of the preferred com­
munication forms. 

Variable field length 

People use a free flowing written communication 
style which requires a complete variability in the num­

ber of characters in a word (English that is). The in­
formation contained in groupings of characters or words 
(i.e., fields) is also of variable length and can change 
as manipulation upon that field occurs. Although past 
computing practice has developed abbreviated mne­
monics and codes to fit fixed word machines and to 
reduce writers cramp, it may be noted that deciphering 
one's program or data base a year later is often labori­
ous and is especially difficult for a third party. To ease 
this problem in SYMBOL, techniques were developed 
which allow complete and dynamic variability in the 
length of a string of characters used as a name, a word 
or a field. Each user is under no software/hardware 
constraint and may use any word or field size he wishes. 
He never needs to predetermine field size by declara­
tions., In both the source program and in the data base 
this variability is provided. 

A new character called a Field Mark was introduced 
to define the start and end of a variable length field in 
the data base and for non-numeric literals in the pro­
gram. The Field Mark is a long vertical line and was 
chosen so as to be easy to see and not to conflict with 
commonly used characters. The field mark is entered 
from keys, or automatically generated by the system, 
as the data base is developed. 
Examples: 

I 123 I 
| This is a field | 
| A field may be as long as desired | 
| A field may be short | 
| A field may be short and then expanded | 
| or contracted | 

Decimal arithmetic 

People have been raised with the decimal system. 
Even though they adapt to computers and the use of 
the hex/binary system, it is unnatural. The SYMBOL 
system accepts either fixed or floating point decimal 
numbers with positive or negative mantissas varying 
from one to ninety nine digits with or without a decimal 
point. Exponents, if any, may contain a plus or minus 
sign and may have up to two decimaj digits. The oper­
ands for arithmetic may be both fixed, both floating or 
mixed. The system hardware automatically converts 
them to an internal floating point form and computes 
a left justified floating point decimal result. Since arith­
metic computations on variable, field length numbers 
can produce even longer results a LIMIT register is 
provided to truncate the resulting computations at a 
desired number of significant digits. The LIMIT value 
may be dynamically changed by the user's program as 
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he explores the effect of precision versus computing 
time on his solution. The machine identifies truncated 
results with an automatically generated symbol " E M " 
following the number. 

Examples: 

Limit = 5 
3^ = .33333EM 

Limit = 25 
\i = .3333333333333333333333333EM 

Limit = 10 
- 7000.00EM/ - .3i0l = 2333.33EM 

All numbers without the EM tag are assumed to be 
exact with an unlimited number of trailing zeros. Note 
that in the last example the first operand limited the 
precision of the result in contrast to the LIMIT register 
limiting the first two cases. 

Character manipulation 

In a string and character oriented environment out­
put for human consumption is of paramount impor­
tance. The easy and efficient manipulation of data 
within fields both for data base computations and for 
efficient report generation must be provided. SYMBOL 
includes direct hardware implementation of two opera­
tors to reconfigure string fields into desired formats. The 
FORMAT operator is used to manipulate numeric 
operands by applying a "pictorial string" mask against 
the operand field. The operation proceeds on a charac­
ter by character basis from left to right (i.e., high order 
to low order). Zero suppression, left justification, right 
justification, decimal point alignment, floating dollar 
sign, check protection and comma insertion are some 
of the operations provided. The MASK operator pro­
vides a similar manipulation capability for alphanu­
meric string fields. Literal string insertion, character dele­
tion, character insertion, field length counts, carriage 
control and space insertions, are some of the operations 
provided. The hardware implemented FORMAT and 
MASK operators have demonstrated exceptional per­
formance when compared to conventional software 
procedure controlled character manipulation. 

FORMAT examples follow for 12471.2342 which is 
the operand field: 

MASK examples follow for | 6N491-XMT | which is the 
operand field: 

FORMAT 
Pictorial String 
DDDDDDD.DDD 
SZZZCZZZCZZZ.DD 
'$'B***C***C*** DD 
+D.5D 1 0 +DD 

Result Field 
0012471.234 

$12,471.23 
1*****12,471.23 
+ 1.2471210+04 

MASK 
Pictorial String 

IISSS 
SBSBSSSBISSS 
FC 
5F' PART TYPE' 

Result Field 

491 
6 N 4 9 1 X M T 
0009 
6N491 PART TYPE 

The first FORMAT example illustrates control of the 
number of digits (D) in the result. The next uses zero 
suppression (Z), floating dollar sign ($), and conditional 
comma insertion (C). The next shows check protection 
(*) with conditional comma insertion and the last shows 
floating point notation do) and picture replicator usage. 
The MASK examples illustrate character ignore (I), 
blank insertion (B), field length counting (FC), and 
literal insertion ('—'), 

Data structure manipulation 

In both manual and in automatic record handling 
the difficulty of generation and maintenance of data 
bases determines the usefulness and efficiency of the 
total process. In this area SYMBOL departs further 
from tradition and places all field, group and structure 
delineation directly in the data base. This is in contrast 
to having most delineation present in the addressing 
portions of object codes in more conventional systems. 
Complete dynamic variability (at execute time) of field 
size, vector size and structural configuration is provided. 
This is directly implemented in hardware to provide 
for competitive execution rates and more importantly 
to relieve the programmer from any necessity of de­
claring data base sizes and attributes. Early work in 
this area was reported in a research study on a system 
called ADAM.3 SYMBOL extends these concepts to 
allow open-ended dynamic data base flexibility and to 
our knowledge, for the first time, resulted in full scale 
hardware for supporting these features. 

Group marks (i.e., ( )) are added to the character set 
to provide field grouping (i.e., vectors) in the data 
base. The following examples illustrate the use of field 
and group marks in the data base. These delimiters are 
also used in the instruction stream to define various 
items such as constants, literals, structures, etc. Con­
sider the following examples of data structures. 
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String Fields : 

| Joe Doaks | 
| Flight No. 306, SFO to JFK | 
| Cape Code House, 2 Bedroom, 1 Bath, Living Room, Dining Room, Fireplace, Basement, 2 Car Attached 
Garage | 

Numeric Fields: 

| 374.1279536844879310-72 | 
J -1234.5 | 
| 1*****1,576,265.46 | 

Dynamically Varying Structures (Time Sequence) 

(123 | 456 | 789) _ .INITIAL Structure 
(123 (456 | ABC )789) _ .Modified Once 
(123(456 J ABC(DEF | GHI | JKL))789) ..Modified Twice 

The last sturcture above can be visualized as: 

(123 789) 
(456 | ABC > 

< D E F | G H I | JKL) 

Few limits are placed on data structures. Fields may 
grow to the size of main memory. No restriction is 
placed on the depth of nesting in a structure. 

Operating system complexity 

SYMBOL directly implements almost all of a time­
sharing and multiprogramming system directly in 
hardware. Further, the internal machine language is 
the source language. This direct implementation of 
source language significantly reduces the layers of soft­
ware normally found between source and object codes. 
This in turn reduces the "hidden rules" or system de­
pendent constraints which plague the casual or pro­
fessional user of the system. These features combine to 
make the system exceptionally easy to use for problems 
where data base manipulation on alphanumeric data 
is of prime consideration. Since the system provides 
powerful arithmetic operations on variable field decimal 
data it is also excellent for most engineering and 
scientific uses. 

A valid point can be made that if all language is 
"hard wired" then error correction, extensions, new 
language elements, etc., are difficult to achieve. This 

need was recognized in SYMBOL and features are 
provided in the hardware/software interface to allow 
expansion or extension. First, interrupts are provided 
for traps at hardware compile and/or execution time. 
These interrupts allow a break-out from the high-level 
language and may call a "system program" to perform 
some desired task. Second, privileged memory opera­
tions are provided which allow a privileged program to 
initiate directly any memory operation available to the 
hardware. A combination of regular and privilege 
operations may be used to create new language ele­
ments and/or new macro instructions. 

Facilities for "file management," for example, are 
supported with software that uses a combination of 
ordinary language and privileged instructions. These 
algorithms could have been directly implemented using 
SYMBOL techniques, but they were not sufficiently 
clear to be stabilized and did not need the higher per­
formance of direct implementation. Further research 
evaluating th's type of tradeoff would prove most 
interesting. 

The objective in SYMBOL was to support the high 
duty cycle and basic features of the operating system 
in hardware. Many of the algorithms are hardware 
executed with software established parameters so as to 
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obtain higher performance without loosing the needed 
flexibility. This support provides a significant simplifi­
cation in the overall operating system. 

SYMBOL FROM THE ARCHITECTURAL 
VIEWPOINT 

Studies of modern large computer systems have 
shown that a large portion of the logic in the main 
frame hardware is idle most of the time. Some of the 
largest systems have achieved more parallelism using 
a main CPU and several auxiliary smaller computers to 
handle input and output tasks, etc. (i.e., CDC 6600 
and 7600). The GAMMA 60 developed earlier by the 
Bull Company in France departed from tradition by 
exploring the running of several problem segments in 
small units each containing sufficient registers and logic 
to operate autonomously for short computation se­
quences. The matrix-type systems such as the ILLIAC 
IV allow many identical, or nearly identical, programs 
to operate simultaneously on the same type of large 
problem. 

The SYMBOL system architecture shares some s'mi-
larities to and has some differences from these systems. 
SYMBOL achieves parallelism and execution efficiency 
by using time-sharing with multiprogramming and 
multiprocessing done through seven simultaneously 
operating autonomous processing units sharing a com­
mon virtual memory. The hardware contains a large 
main memory, used as a virtual memory buffer, and the 
"Autonomous Functional Units" (AFU). In the tradi­
tion of GAMMA 60 the autonomous units have suffi­
cient logic registers, control, etc., to perform sequences 
of operations without being under control of a conven­
tional CPU. SYMBOL departs from previous systems 
at this point. Each AFU is dedicated to a portion of the 
computing process and its logic (i.e., instruction se­
quences) is hard wired so that source language is es­
sentially machine language.1'4 The gross block diagram 
in Figure 1 shows the common communication bus 
structure of the system. Each AFU is a special purpose 
processor. 

The architecture is designed so that the time-sharing 
supervision is managed by the System Supervisor (SS). 
Provided the job load permits, each AFU can be per­
forming its tasks on a different users job while simul­
taneously sharing virtual memory with other AFUs, 
The SS maintains queues of jobs ready for each AFU 
and schedules the system tasks. Communication is 
conducted along the main bus and by several local 
buses. 

A unique feature of the system is automatic and 
dynamic hardware memory management. The assign­

ment, and access of memory is done by the Memory 
Controller (MC). With memory control as a service 
function the logic for generating and manipulating data 
is distributed to the various other AFUs. 

Figure 2 presents a summary of the functions hard 
wired into each of the AFUs. The Interface Processor 
(IP) provides source text editing without use of the 
Central Processor (CP). The Translator (TR) converts 
the source language into a reverse Polish string form 
ready for processing by the CP. Below each box a 
number gives the count of large printed circuit cards, 
each containing 160 to 200 integrated circuits, used 
for the AFU. This gives the reader a rough feel for the 
relative sizes of the units. 

SYMBOL FROM THE PHYSICAL VIEWPOINT 

At the start of the SYMBOL project it was decided 
to use a functionally-factored, bus-oriented system. 
Preliminary studies showed that large printed circuit 
boards (i.e., 12"X17") with about 200 integrated cir­
cuit packages (providing the equivalent of about 800 
two-input gates) would be sufficient to minimize sys­
tem interconnections (Figure 3).5 

It was also obvious that two-layer printed circuit 
boards were much less expensive than multi-layer 
boards. A substantial and successful effort was mounted 
to develop placement and wire routing algorithms and 
to obtain a computer-aided engineering package which 
enabled us to effectively use two-layer boards. 

The choice of a circuit family drastically affected the 
type and number of interconnections required. The 
Complementary Transistor Micro Logic (CT/xL) family 
was chosen because of its useful "wired OR" capability 
which has proven to reduce interconnections between 
20 and 40 percent compared to other circuit families.6 

The system bus implementation was also given much 
consideration. After preliminary studies it was decided 
to use a set of 200 Interconnections running as parallel 
lines for the length of the main frame. Figure 4 is a 
view of one of the system bases which is a simple two-
sided printed circuit board. One hundred and eleven 
lines run the full length of the system and are used as 
the main bus. The main base is partitioned as follows: 

64 bidirectional data lines 
24 bidirectional address lines 
10 bidirectional priority lines 
6 operation code lines 
5 terminal number lines 
1 system clock 
1 system clear 
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Figure 1—Gross block diagram of the SYMBOL system 

The balance of the 200 lines are used for local inter­
connections within AFUs of two to seventeen boards 
in size. As the design progressed it was necessary to 
add an additional 200 "bypass" lines on the bases. The 

PROCESSING FUNCTIONS SERVICE FUNCTIONS 

CENTRAL PROCESSOR 
Polish String Processing 
Variable Length Numeric 
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Variable Length String 

Processing 
Data Type Conversion 
Data Structuring 
Structure Referencing 
Variable Structure 

Assignment 

39 CARDS 

TRANSLATOR 

Name Table Generation 
Object String Generation 
Address Linking 
Library Access and 

Linking 

15 CARDS 

INTERFACE PROCESSOR 

Buffer Processing 
Information Transfer to 

and from Virtual Memory 
Text Editing 

MAIN 
COMMUNICATION 

BUS 

i 

s 
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1 

MEMORY CONTROLLER J 
Page Allocation 
System Address Processing 
Data String Management 
Page Table Management 
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MEMORY RECLAIMER 

Processing of Deleted Space 
to Make Reusable 
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DISC CHANNEL PROCESSOR 
Page Transfer Control 
Page Table Processing 
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CHANNEL CONTROLLER 

Channel Sequencing 
Buffer Processing 
I /O Message Control 
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SYSTEM SUPERVISOR 

Task Queue Processing 
Interrupt Processing 
Paging Control 
Real-Time Processing 
Software Communication 

Control 
* l̂ 
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Figure 3—Basic 12"X17" two sided printed circuit board with 
up to 220 dual in-line components 

final design allows each large board to contact up to 
200 bus lines and have 200 lines bypass it. Each board 
contact can be connected to the same contact number 
on the next card or alternatively can be connected via 
a bypass line to a board several slots distant. Using 
these techniques the whole system was implemented 
with a maximum of 600 parallel lines, with cuts, or 
two-layer printed circuit bases. 

There have been many interesting debates within 
the project on the size of boards chosen and on the num­
ber of interconnecting lines needed on the bases. It is 
not clear that our choices are optimum; however, it is 
now clear that they were sufficient. The completed 
system used about 102 large boards inserted between 
the two system base structures. I t is illustrated in 
Figure 5. It was interesting to find that all the main 
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Figure 2—Functions performed in the SYMBOL main frame Figure 4—SYMBOL interconnection base 
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frame including I /O, memory, disk and channel inter­
face logic took less than 20,000 CT/zL packages. 

SYMBOL FROM A PERFORMANCE 
VIEWPOINT 

The evaluation phase of SYMBOL IIR is just be­
ginning with the hardware near completion. In order 
to obtain a preview of the performance a set of measure­
ments has been made on the hardware. 

Basic operation rates 

The clock period on SYMBOL IIR now stands at 
320 nsec and may be later reduced to about 200 nsec. 
All measurements were taken at the 320 nsec period. 
The basic clock period in SYMBOL IIR contains long 
logic chains allowing relatively complex tasks to be 
performed. Many of the key logic chains contain 20 to 
25 levels of AND-OR logic. The system uses Fairchild 
CT/xL, type I throughout. The core memory is a 1964 
model with a basic 2.5 fxsec cycle. Due to a semi-serial 
interface on the core memory it has an effective cycle 
of 4 jusec, 

An improved system (referred to as SYMBOL II) 
has been studied and has been partially specified. This 
system is based on the technology of the experimental 
system, SYMBOL IIR, but has been considerably 
optimized. SYMBOL II is also specified to use the latest 
cost orientated hardware technology. Conservative 
performance estimates of SYMBOL II will be made to 
give a comparison of how the SYMBOL algorithms 
would stand up in a contemporary hardware technology 
design. They will be based on a clock period of 100 
nsec using a circuit family such as CT/*L, type II and 
an LSI memory with a 200 nsec period. One should 
keep in mind that the following comparisons are be-

Figure 5a—The SYMBOL main frame 

Figure 5b—Detail view of SYMBOL main frame 

tween SYMBOL, which is a VFL machine running in a 
very dynamic execution time environment, and a more 
conventional fixed field machine running a language 
with the data boundaries determined at translate time. 
The former places more demands on the hardware while 
the latter shifts the burden of data management to the 
user. 

For the purposes of comparison SYMBOL IIR will 
be referred to as SIIR and SYMBOL II as SII, 

Field processing operations 

SIIR performs all field operations in a VFL serial-
by-character mode. It was always assumed that after 
system evaluation and bottle-neck analysis, if war­
ranted, certain operators such as those shown below 
would be executed in a more parallel mode by using 
additional hardware. SII estimates are based on serial 
processing and known algorithm improvements that 
reduce or do not materially increase the hardware 
required. 

The following table gives processing times measured 
on SIIR and estimated for SII. The execution time 
values are specified in microseconds and do not in­
clude the instruction fetch time or single word operand 
fetching and storing. 
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SYMBOL IIR MEASURED EXECUTION TIMES IN uSEC 

OPERATION 

1234+4321 

12345678-87654321 

50 digits + 50 digits 
Convert to floating point 1234 
Convert to floating point 12345678 
Convert to floating point 50 digits 
Compare 12345678,87654321 
Compare 12345678,12345670 
label join|def| 
1123456781 join 1123456781 
1234 format |ZZZ.DD| 
1234 format |ZBZBV| 
12345.6789 format1'$'*C***C***.DD| 

SIIR 

5.6 
10.0 
45.0 
5.2 

12.5 
120.0 

4.0 
6.5 
4.5 

60.0 
9.0 
8.0 

76.0 

SII 

1.2 
1.6 
5.0 
1.2 
1.8 

18.0 
1.0 
1.2 
1.2 

12.0 
3.0 
2.6 

15.0 

Compilation 

Several programs were compiled on SIIR and the 
overall times and space usage measured. The SIIR re­
sults are tabulated below. 

SYMBOL IIR MEASURED COMPILE TIMES IN ySEC 

Program A 

Program B 

Program C 

NO. 
STATEMENTS 

195 

70 

157 

BYTES OF 
SOURCE 

8330 

3528 

7560 

BYTES OF 
OBJECT CODE 

7315 

5112 

6025 

AVERAGE TIME 
PER STATEMENT 

820 

1280 

760 

This represents about 75,000 statements compiled per minute on SIIR. 

A comparative table for SII assuming added flexi­
bility on SII for handling various other languages in 
addition to the SYMBOL language is given below. The 
data is based on a sampled study of object code and 
projected execution times of several recently developed 
algorithms. 

SYMBOL ESTIMATED COMPILE TIMES IN ySEC 

Program A 

Program B 

Program C 

STATEMENTS 

195 

70 

157 

BYTES OF 
SOURCE CODE 

8330 

3528 

7560 

BYTES OF 
OBJECT CODE 

2350 

1735 

2110 

AVERAGE TIME 
PER STATEMENT 

185 

220 

185 

This would give a compilation rate of 300,000 statements per minute. 

Paging overhead 

SYMBOL has very low overhead for paging. The 
algorithms are based on direct hardware execution 
using parameters set up by software. A count of worst 

case paging overhead for SIIR in terms of memory 
cycles for a CP page out is given below. 

SYMBOL IIR PAGING OVERHEAD IN MEMORY CYCLES 

ITEM 

CP Shut Down 

SS Queuing and Push Selection 

SS Disc Servicing 

CP S ta r t Up 

TOTAL Memory Cycles 

WORST CASE 

7 

50 

8 

6 

71 

AVERAGE 

7 

30 

6 

6 

49 

Assuming an average of 5 vsec per memory cycle counting internal 

cycles this gives 355 usee worst case. In SII using an Improved 

algorithm the overhead would be less than 20 usee. 

Input/output 

The overhead for I/O for a time-sharing system be­
comes an important factor in providing adequate termi­
nal response time. To illustrate the effect of the hidden 
software overhead an operation trace of a IBM 360/44 
during FORTRAN IV output was performed. A similar 
operation was performed on SIIR. The equivalent out­
put statements in both languages are shown in the 
table below. 

The trace of the FORTRAN statement indicated 
1753 instructions being executed. Each instruction re­
quires an average of two memory cycles. The trace 
program does not trace any of the supervisor or channel 
operations so that well over 3,000 and more likely near 
4,500 memory cycles were used in executing the 
FORTRAN statement. 

SYMBOL VS FORTRAN OUTPUT STATEMENT 
TRACES IN MEMORY CYCLES 

LANGUAGE 

SYMBOL 

FORTRAN 

STATEMENT 

OUTPUT 12345.56 FORMAT iD.DDDuDDl; 

WRITE (6 ,10 )X 

10 FORMAT (1X.E9 .3 ) 

TRACED 

130 

; 3466 

EST. OVERHEAD 
NOT TRACED 

0 

1000 

Task control overhead 

In order to measure the overhead for compilation 
and execution a program consisting of one CONTINUE 
statement was executed on SIIR. This causes a null 
program to be entered, translated, and executed and 
thus places a large demand on any system resources 
required, isolating overhead from "useful" actions. All 
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memory cycles were traced with the following dis­
tribution : 

PROCESSOR USED 

TR 
CP 

MEMORY CYCLES 

41 
20 
18 

TOTAL 79 

This could be compared with any contemporary sys­
tem where the entire compiler would have been paged 
in and much of the supervisor would have been executed 
to establish many resources that would not have been 
needed. 

* 1966 
'109,600 TOTAL COST/MONTH 

\ # * > 

Subscripting 

It would seem that VFL data structures imply slow 
data referencing. However, the SYMBOL project 
demonstrated that efficient handling of dynamically 
varying data can be achieved with sophisticated list 
processing techniques. SYMBOL IIR established the 
foundation and the algorithms have now been de­
veloped to be competitive with conventional fixed field 
indexing while retaining the VFL features. A few refer­
ences and their equivalent memory cycles for SIIR are 
given below. The subscript Fetch cycles are not counted. 

REFERENCE 

A[4,9] 
A[16,32,6] 
A[3] 
A[70] 
A 

TYPICAL MEMORY 
CYCLES REQUIRED 

4-6 
8-10 
2-3 
9-12 
2 

A substantial improvement has been obtained for 
SYMBOL II promising to make it as fast or in some 
cases faster than conventional indexing. 

SYMBOL FROM A COST VIEWPOINT 

A study of a modern computer installation and its 
users as a total "system" reveals where and how the 
computing dollar is divided. Consultants from Iowa 
State University made available all the necessary data 
for such a study early in the program.7 Figure 6 illus­
trates the I.S.U. IBM 360/50 installation in 1966 at 

Figure 6—The computing pie illustrated for Iowa State 
University 360/50 installation 

the time the study was made. This "pie" has since been 
compared with many other business and scientific in­
stallations of varying sizes with different computer 
systems. There is general agreement that the minor 
variations in the size of the slices for different installa­
tions do not materially affect the picture. This applies 
to most modern " classic software-dominated systems." 

The objective of data processing is to solve problems 
where the "user with a PROBLEM" is the input and 
the "ANSWER" is the output. I t is assumed that the 
user has his problem well defined and has the data 
available but the data is not yet programmed. The con­
version of his problem to a computable language and 
the debugging necessary for correct execution is in­
cluded in the total cost of operating an installation. 

I.S.U. calculated the total system operation on this 
basis as approximately $109,600 per month. The rate 
and labor costs were adjusted to normal commercial 
standards for the calculations. Both commercial and 
scientific problems were run in the problem mix. The 
following sections discuss the breakdown of the overall 
cost. 

About 37 percent or $40,000 is used by the problem 
originator and/or the professional programmer to con­
vert the problem to a debugged, high-level language 
and to obtain answers. 

Thirty three percent or $36,000 is required for oper­
ating personnel, key-punch operators, file clerks, sys­
tems programmers, administration, space, power, etc. 

Thirty percent of the total pie or $33,000 goes for 
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BASIC SAVINGS 
USER'S TIME 
GREATER THROUGHPUT 
LESS PROFESSIONAL HELP 

ADDED SYMBOL SAVINGS 
USER'S TIME 

CLEAN LANGUAGE 
COMPLETE VARIABILITY 

FIELDS, 
STRINGS, 
STRUCTURES. 

NO DECLARATIONS FOR 
TYPE, 
SIZE. 

SOURCE AND MACHINE 
LANGUAGE NEARLY 
IDENTICAL. 

Figure 7—Savings in problem expense 

machine rental. It is estimated that about one third of 
the rental expense goes for direct development of hard­
ware and system software (perhaps half and half), one 
third for sales, service, and application support, and 
one third for administrative costs, overhead, and profit. 

The choice of a hardware configuration and its ma­
chine language is the tail wagging the dog. Inexpensive 
hardware and a good, easy-to-use programming system 
can reduce the size (i.e., total cost) of the pie but in 
conventional systems will not materially alter the rela­
tive size of the slices. 

In the following text the computing pie is used to 
illustrate SYMBOL concepts from a cost point of view. 
Each major slice will be further subdivided into its own 
percentage parts (i.e., each major slice will be 100 per­
cent of the portion under consideration and will be 
divided into its constituent parts). 

Figure 7 shows the potential problem expense saving 
to be obtained from any good conversation-mode, high-
level language, time-sharing system. It has been esti­
mated that approximately 50 percent of the problem 

|10-15% 
720-

BASIC T IMESHARING SAVINGS 

FEWER KEYPUNCHERS 
FEWER FILE CLERKS 

ADDED SYMBOL SAVINGS 

FEWER SYSTEM PROGRAMMERS 
EASIER APPLICATION PROGRAMS 
MORE PERFORMANCE/COST 
EASIER FACILITIES 

NO RAISED FLOOR 
LESS AIR CONDITIONING 
SMALLER FLOOR AREA 

expense slice can be saved in reduced user learning 
time, increased throughput, less professional program­
ming support required, etc. We estimate the SYMBOL 
system will further reduce these costs with its "clean" 
and "concise" directly implemented high-level language 
and simplified operating system.1 

The savings in the operation of an installation comes 
from four sources. This is illustrated in Figure 8. First: 
A good time-sharing system will reduce the administra­
tive help such as file clerks, keypunch operators, etc. 
It is estimated that this saving can be ten to fifteen 
percent of the installation operating expense exclusive 
of system rental. The SYMBOL system with conversa­
tion-mode multiprocessing and multiprogramming will 
also share in this saving. Second: The "system soft­
ware" support required in a conventional installation 
is a very significant portion of the expense. Here SYM­
BOL shows a definite added saving. What system soft­
ware remains can be written in the high-level, general-
purpose language and will be easier to write, debug and 
understand later. This will reduce the number of pro­
fessional personnel required. Third: The SYMBOL 
language is directly implemented in hardware and thus 
uses less main memory for "system software." For ex­
ample, a resident compiler is not required. In addition, 
much less program swapping occurs and thus less virtual 
memory transfer time is needed. Hardware execution of 
algorithms is also faster and results in enhanced in­
struction execution speed. These features will require 
less programming attention and also provide more 
throughput per installation dollar spent. Fourth: The 
SYMBOL hardware is designed with modern integrated 
circuits and large two-layer printed circuit boards. The 
total system hardware package is compact and does not 

(5.8% 
TOTAL PIE) 

2% SYMBOL SAVINGS 
LESS STORAGE REQUIRED 
FOR SYSTEM SOFTWARE 

- 2 % S Y M B O L SAVINGS 
SIMPLE ELEGANT PACKAGING 

Figure 8—Savings in installation operation expense Figure 9—Manufacturer's direct hardware expense 
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need raised floors, special air conditioning, or vast 
amounts of floor space. It is estimated that these SYM­
BOL features will reduce installation operating ex­
pense by an additional 20-35 percent or a total of 30-50 
percent. 

The slice of the computing pie representing the com­
puter manufacturer's hardware contribution is illus­
trated in Figure 9; approximately seventeen percent of 
this slice is attributable to hardware. For large systems 
the peripheral equipment and the bulk files can approxi­
mate about one half of the total cost. The main storage 
is another quarter and the CPU logic is another quarter. 
Naturally some variation in these amounts will occur 
from installation to installation and for different system 
types. 

The SYMBOL approach saves costs in several ways: 
The first area of savings is in the use of large two-layer 
printed circuit boards and two-layer printed circuit 
bases with cam-operated contacts for all system inter­
connections. 

Except for cables to peripherals and wires used for 
correction of design errors and for logical extensions no 
wire exists in the system. Figure 3 illustrates a logic 
board and Figure 5 illustrates the main frame of the 
SYMBOL system. This type of packaging lowers pro­
duction costs for logic. It is estimated as much as a 
fifty percent saving will be achieved over small board, 
wire-wrap back panel, multi-cabinet conventional sys­
tems. This same technique reduces costs in terminal 
equipment but not to such a large degree. We estimate 
that three percent of the manufacturer's slice of the pie 
can be saved by this functionally-factored, bus-oriented, 
large printed circuit board design philosophy. The sec-

Figure 10—Manufacturer's system software expense 

Figure 11—Manufacturer's software application expense 

ond way savings are obtained is in the hardware effi­
ciency gained by the SYMBOL system. Since most of 
the normal system software is hard wired, very little 
resident main memory is used, thus providing much 
larger percentages of main memory for application pro­
grams. The execution of system instructions is done at 
"clock speeds" in a "macro" rather than a "micro" 
manner. This provides much faster high-powered in­
struction execution. Finally, more of the system hard­
ware is simultaneously operating due to the system 
organization which allows multiple jobs to be in the 
main frame for overlapped execution. We estimate that 
an additional two percent of the manufacturer's slice 
of the pie is saved here. 

The largest and most important single saving for 
SYMBOL is in the "System Software." Figure 10 illus­
trates this point. Irrespective of whether the system 
manufacturer or someone else produces the software 
for a conventional computer this large expense is real. 
The SYMBOL features directly implemented in logic 
(i.e., hard wired) make unnecessary at least 80 percent 
of the conventional system software used in large time­
sharing machines. This represents an estimated 16 per­
cent saving in the system manufacturer's slice of the 
computing pie. 

The field support of the system software is a major 
expense. The sheer volume of paper and record keeping 
to keep current with the latest changes is a major 
problem. In the design of the SYMBOL system this 
problem was given great attention. In studying the 
software delivered with large systems using a relatively 
static high-level language, we note that most (if not all) 
of the changes made were on the programmed imple-
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mentation or were due to programming errors. Many-
levels of machine and assembly language programs and 
machine runs were between the hardware language and 
the programmers' source language. This quite naturally 
introduces confusion (and errors) either in original 
programming or in understanding the hidden rules 
when using the system. 

It may also be noted that as more and more applica­
tions are programmed in a language it automatically 
becomes more rigid. We believe that the "clean," high-
level, general-purpose SYMBOL language is excellent 
for most uses. Since direct hardware implementation 
requires little field support in the software sense, we 
estimate approximately a six percent saving in the 
manufacturer's support expense. This is illustrated in 
Figure 11. 

Good service is a must in a large system. The SYM­
BOL hardware has been engineered for good reliability 
and at the same time easy maintenance. We do not 
anticipate any added expense for SYMBOL hardware 
maintenance over conventional systems with equivalent 
storage and logic circuit counts. Our experience on the 
SYMBOL model has verified this belief. 

The previous material has split the computing dollar 
up in parts and has described how major savings can 
be realized with a "total systems" approach. The SYM­
BOL techniques described herein together with good 
time-sharing, conversation mode practice can reduce 
computing costs up to 50 percent. Referring to Figure 
12, one may visualize how the savings in the whole 
computing pie add up. 

CONCLUSION 

35% POTENTIAL SAVING 

8% POTENTIAL SAVING 

Figure 12—Potential savings with a good conversation mode 
hardware/software system 

system interconnections and buses together with 
a functionally factored system results in an eco­
nomical, serviceable and reliable system. 

4. The direct hardware implementation of a gen­
eral-purpose, high-level language, the use of the 
SYMBOL construction techniques and a good 
conversation mode system can save up to 50 per­
cent of computing costs. This is contrasted to a 
good conventional system using a general-pur­
pose, high-level batch oriented system. 

5. The use of the SYMBOL system (software plus 
hardware) has shown that significantly fewer 
hidden rules exist to plague the casual or the 
professional user in debugging programs. 

The full scale running SYMBOL system has demon­
strated the following: ACKNOWLEDGMENT 

1. A very high-level, general-purpose, procedural, 
"state of the art" language and a large portion 
of a time-sharing operating system can be effec­
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