
SYMBOL—A major departure from classic software
dominated von Neumann computing systems

by REX RICE and WILLIAM R. SMITH

Fairchild Camera and Instrument Corporation
Palo Alto, California

INTRODUCTION

The prime goal of the SYMBOL research project was to
demonstrate, with a full-scale working system, that a
very high-level, general-purpose, procedural, "state of
the art" language and a large portion of a time-sharing
operating system could be implemented directly in
hardware and achieve a significant increase in overall
computational rates. A further objective was to create
hardware design and construction techniques which
could be easily applied by a small number of people
to implement such a system in a reasonable time and
at a relatively low cost. Although this was a research
project, there was a high dedication to developing auto­
mation, hardware, test equipment and documentation
to support the project. The name SYMBOL was chosen
to signify direct hardware symbolic addressing.

Another goal of the project was to develop hard­
ware/software algorithms which directly aid a casual as
well as a professional user working with non-numeric
data. Particular attention was given to the manipula­
tion of data structures for file maintenance coupled
with powerful field and character manipulating in­
structions.

The general-purpose SYMBOL language1 was de­
veloped after studying a large number of modern lan­
guages including ALGOL, FORTRAN, PL/1 LISP
and EULER. It was decided early that the new lan­
guage had to perform all useful operations on applica­
tion problems without being cluttered with machine-
dependent operators; also, since it was a research
project there was no strong necessity to be compatible
with available programs written in other languages.
On the hardware side it was decided that no appreciable
restriction to the language would be permitted and
that hardware would have to be invented to match
the language. As the project progressed it became
desirable to include conversational-mode multiproces­

sing and multiprogramming as well as source language
text editing.

The architectural philosophy of the SYMBOL sys­
tem led to hardware implementation of a variety of
features which have been and are software functions of
current systems. Some of the interesting features di­
rectly implemented in hardware in SYMBOL are:

Dynamic Memory Allocation
Dynamic Memory Reclamation
Dynamically Variable Field Lengths
Dynamically Variable Structures
Automatic Virtual Memory Management
Automatic Data Type Conversion
Automatic Time-Sharing Supervision
Direct Symbolic Addressing
Precision-Controlled Arithmetic Processing
Direct Hardware Compilation
Alphanumeric Field Manipulation
Direct Text Editing

PROJECT HISTORY

From the beginning, this research project was com­
mitted to producing a real and functioning system
rather than a simple simulation. A brief outline of the
project history appears below. It should be noted that
considerable emphasis was placed on hardware design
and implementation techniques. In fact, the complete
project was treated as a "closed system" where no item
(such as a user with his application) was considered
separately from the language, operating system, or
hardware.

1963-64: Hardware Technology Development
Fairchild CT/xL Family for Circuits
Power Distribution Techniques

575

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1478786.1478867&domain=pdf&date_stamp=1971-05-18

576 Spring Joint Computer Conference, 1971

Large Two-Layer Printed Circuit Boards
Dual In-Line Package Invented

1964-65: Data Flow Model2 Process Unit Construction
Two-Layer Printed Circuit Board System Inter­

connections
Cam-Operated, Zero Insertion Force Contacts
High-to-Low Order Variable Length Arithmetic

Processing
Use of CTML

1964-67: Language Development for SYMBOL
Dynamically Variable Field Length Data
Structured Data Literally Represented
Complete Syntax and Semantics
Source Text and Program Editing
Definition of Operating System Hardware/

Software

1965-69: Computer-Aided Engineering Design Package
Development

Equation Expansion and Checking
Timing, Loading and Offset Checking
System Logic Function Factoring
System Interconnections
Placement
Wire Routing

1964-70: Hardware Development for SYMBOL
December, 1967—Logic Flow Charts Complete
December, 1968—Partial Construction and Testing

Started
December, 1969—Fabrication Complete and

Debugging Started
June, 1970—SYMBOL Hardware Operational
January, 1971—SYMBOL Delivered to Iowa
. State University

SYMBOL FROM A USER'S VIEWPOINT

Much of the written or printed communication in our
society is conducted on what may be described as
"Typewriter English." We communicate with upper
and lower case alphabet, decimal numbers and a group
of commonly accepted special symbols. These com­
munications are generated in all sorts of forms and may
vary from handwritten, to typewriter produced or to
automatic computation output, etc. Several features
become evident on examination of the preferred com­
munication forms.

Variable field length

People use a free flowing written communication
style which requires a complete variability in the num­

ber of characters in a word (English that is). The in­
formation contained in groupings of characters or words
(i.e., fields) is also of variable length and can change
as manipulation upon that field occurs. Although past
computing practice has developed abbreviated mne­
monics and codes to fit fixed word machines and to
reduce writers cramp, it may be noted that deciphering
one's program or data base a year later is often labori­
ous and is especially difficult for a third party. To ease
this problem in SYMBOL, techniques were developed
which allow complete and dynamic variability in the
length of a string of characters used as a name, a word
or a field. Each user is under no software/hardware
constraint and may use any word or field size he wishes.
He never needs to predetermine field size by declara­
tions., In both the source program and in the data base
this variability is provided.

A new character called a Field Mark was introduced
to define the start and end of a variable length field in
the data base and for non-numeric literals in the pro­
gram. The Field Mark is a long vertical line and was
chosen so as to be easy to see and not to conflict with
commonly used characters. The field mark is entered
from keys, or automatically generated by the system,
as the data base is developed.
Examples:

I 123 I
| This is a field |
| A field may be as long as desired |
| A field may be short |
| A field may be short and then expanded |
| or contracted |

Decimal arithmetic

People have been raised with the decimal system.
Even though they adapt to computers and the use of
the hex/binary system, it is unnatural. The SYMBOL
system accepts either fixed or floating point decimal
numbers with positive or negative mantissas varying
from one to ninety nine digits with or without a decimal
point. Exponents, if any, may contain a plus or minus
sign and may have up to two decimaj digits. The oper­
ands for arithmetic may be both fixed, both floating or
mixed. The system hardware automatically converts
them to an internal floating point form and computes
a left justified floating point decimal result. Since arith­
metic computations on variable, field length numbers
can produce even longer results a LIMIT register is
provided to truncate the resulting computations at a
desired number of significant digits. The LIMIT value
may be dynamically changed by the user's program as

SYMBOL 577

he explores the effect of precision versus computing
time on his solution. The machine identifies truncated
results with an automatically generated symbol " E M "
following the number.

Examples:

Limit = 5
3^ = .33333EM

Limit = 25
\i = .3333333333333333333333333EM

Limit = 10
- 7000.00EM/ - .3i0l = 2333.33EM

All numbers without the EM tag are assumed to be
exact with an unlimited number of trailing zeros. Note
that in the last example the first operand limited the
precision of the result in contrast to the LIMIT register
limiting the first two cases.

Character manipulation

In a string and character oriented environment out­
put for human consumption is of paramount impor­
tance. The easy and efficient manipulation of data
within fields both for data base computations and for
efficient report generation must be provided. SYMBOL
includes direct hardware implementation of two opera­
tors to reconfigure string fields into desired formats. The
FORMAT operator is used to manipulate numeric
operands by applying a "pictorial string" mask against
the operand field. The operation proceeds on a charac­
ter by character basis from left to right (i.e., high order
to low order). Zero suppression, left justification, right
justification, decimal point alignment, floating dollar
sign, check protection and comma insertion are some
of the operations provided. The MASK operator pro­
vides a similar manipulation capability for alphanu­
meric string fields. Literal string insertion, character dele­
tion, character insertion, field length counts, carriage
control and space insertions, are some of the operations
provided. The hardware implemented FORMAT and
MASK operators have demonstrated exceptional per­
formance when compared to conventional software
procedure controlled character manipulation.

FORMAT examples follow for 12471.2342 which is
the operand field:

MASK examples follow for | 6N491-XMT | which is the
operand field:

FORMAT
Pictorial String
DDDDDDD.DDD
SZZZCZZZCZZZ.DD
'$'B***C***C*** DD
+D.5D 1 0 +DD

Result Field
0012471.234

$12,471.23
1*****12,471.23
+ 1.2471210+04

MASK
Pictorial String

IISSS
SBSBSSSBISSS
FC
5F' PART TYPE'

Result Field

491
6 N 4 9 1 X M T
0009
6N491 PART TYPE

The first FORMAT example illustrates control of the
number of digits (D) in the result. The next uses zero
suppression (Z), floating dollar sign ($), and conditional
comma insertion (C). The next shows check protection
(*) with conditional comma insertion and the last shows
floating point notation do) and picture replicator usage.
The MASK examples illustrate character ignore (I),
blank insertion (B), field length counting (FC), and
literal insertion ('—'),

Data structure manipulation

In both manual and in automatic record handling
the difficulty of generation and maintenance of data
bases determines the usefulness and efficiency of the
total process. In this area SYMBOL departs further
from tradition and places all field, group and structure
delineation directly in the data base. This is in contrast
to having most delineation present in the addressing
portions of object codes in more conventional systems.
Complete dynamic variability (at execute time) of field
size, vector size and structural configuration is provided.
This is directly implemented in hardware to provide
for competitive execution rates and more importantly
to relieve the programmer from any necessity of de­
claring data base sizes and attributes. Early work in
this area was reported in a research study on a system
called ADAM.3 SYMBOL extends these concepts to
allow open-ended dynamic data base flexibility and to
our knowledge, for the first time, resulted in full scale
hardware for supporting these features.

Group marks (i.e., ()) are added to the character set
to provide field grouping (i.e., vectors) in the data
base. The following examples illustrate the use of field
and group marks in the data base. These delimiters are
also used in the instruction stream to define various
items such as constants, literals, structures, etc. Con­
sider the following examples of data structures.

578 Spring Joint Computer Conference, 1971

String Fields :

| Joe Doaks |
| Flight No. 306, SFO to JFK |
| Cape Code House, 2 Bedroom, 1 Bath, Living Room, Dining Room, Fireplace, Basement, 2 Car Attached
Garage |

Numeric Fields:

| 374.1279536844879310-72 |
J -1234.5 |
| 1*****1,576,265.46 |

Dynamically Varying Structures (Time Sequence)

(123 | 456 | 789) _ .INITIAL Structure
(123 (456 | ABC)789) _ .Modified Once
(123(456 J ABC(DEF | GHI | JKL))789) ..Modified Twice

The last sturcture above can be visualized as:

(123 789)
(456 | ABC >

< D E F | G H I | JKL)

Few limits are placed on data structures. Fields may
grow to the size of main memory. No restriction is
placed on the depth of nesting in a structure.

Operating system complexity

SYMBOL directly implements almost all of a time­
sharing and multiprogramming system directly in
hardware. Further, the internal machine language is
the source language. This direct implementation of
source language significantly reduces the layers of soft­
ware normally found between source and object codes.
This in turn reduces the "hidden rules" or system de­
pendent constraints which plague the casual or pro­
fessional user of the system. These features combine to
make the system exceptionally easy to use for problems
where data base manipulation on alphanumeric data
is of prime consideration. Since the system provides
powerful arithmetic operations on variable field decimal
data it is also excellent for most engineering and
scientific uses.

A valid point can be made that if all language is
"hard wired" then error correction, extensions, new
language elements, etc., are difficult to achieve. This

need was recognized in SYMBOL and features are
provided in the hardware/software interface to allow
expansion or extension. First, interrupts are provided
for traps at hardware compile and/or execution time.
These interrupts allow a break-out from the high-level
language and may call a "system program" to perform
some desired task. Second, privileged memory opera­
tions are provided which allow a privileged program to
initiate directly any memory operation available to the
hardware. A combination of regular and privilege
operations may be used to create new language ele­
ments and/or new macro instructions.

Facilities for "file management," for example, are
supported with software that uses a combination of
ordinary language and privileged instructions. These
algorithms could have been directly implemented using
SYMBOL techniques, but they were not sufficiently
clear to be stabilized and did not need the higher per­
formance of direct implementation. Further research
evaluating th's type of tradeoff would prove most
interesting.

The objective in SYMBOL was to support the high
duty cycle and basic features of the operating system
in hardware. Many of the algorithms are hardware
executed with software established parameters so as to

SYMBOL 579

obtain higher performance without loosing the needed
flexibility. This support provides a significant simplifi­
cation in the overall operating system.

SYMBOL FROM THE ARCHITECTURAL
VIEWPOINT

Studies of modern large computer systems have
shown that a large portion of the logic in the main
frame hardware is idle most of the time. Some of the
largest systems have achieved more parallelism using
a main CPU and several auxiliary smaller computers to
handle input and output tasks, etc. (i.e., CDC 6600
and 7600). The GAMMA 60 developed earlier by the
Bull Company in France departed from tradition by
exploring the running of several problem segments in
small units each containing sufficient registers and logic
to operate autonomously for short computation se­
quences. The matrix-type systems such as the ILLIAC
IV allow many identical, or nearly identical, programs
to operate simultaneously on the same type of large
problem.

The SYMBOL system architecture shares some s'mi-
larities to and has some differences from these systems.
SYMBOL achieves parallelism and execution efficiency
by using time-sharing with multiprogramming and
multiprocessing done through seven simultaneously
operating autonomous processing units sharing a com­
mon virtual memory. The hardware contains a large
main memory, used as a virtual memory buffer, and the
"Autonomous Functional Units" (AFU). In the tradi­
tion of GAMMA 60 the autonomous units have suffi­
cient logic registers, control, etc., to perform sequences
of operations without being under control of a conven­
tional CPU. SYMBOL departs from previous systems
at this point. Each AFU is dedicated to a portion of the
computing process and its logic (i.e., instruction se­
quences) is hard wired so that source language is es­
sentially machine language.1'4 The gross block diagram
in Figure 1 shows the common communication bus
structure of the system. Each AFU is a special purpose
processor.

The architecture is designed so that the time-sharing
supervision is managed by the System Supervisor (SS).
Provided the job load permits, each AFU can be per­
forming its tasks on a different users job while simul­
taneously sharing virtual memory with other AFUs,
The SS maintains queues of jobs ready for each AFU
and schedules the system tasks. Communication is
conducted along the main bus and by several local
buses.

A unique feature of the system is automatic and
dynamic hardware memory management. The assign­

ment, and access of memory is done by the Memory
Controller (MC). With memory control as a service
function the logic for generating and manipulating data
is distributed to the various other AFUs.

Figure 2 presents a summary of the functions hard
wired into each of the AFUs. The Interface Processor
(IP) provides source text editing without use of the
Central Processor (CP). The Translator (TR) converts
the source language into a reverse Polish string form
ready for processing by the CP. Below each box a
number gives the count of large printed circuit cards,
each containing 160 to 200 integrated circuits, used
for the AFU. This gives the reader a rough feel for the
relative sizes of the units.

SYMBOL FROM THE PHYSICAL VIEWPOINT

At the start of the SYMBOL project it was decided
to use a functionally-factored, bus-oriented system.
Preliminary studies showed that large printed circuit
boards (i.e., 12"X17") with about 200 integrated cir­
cuit packages (providing the equivalent of about 800
two-input gates) would be sufficient to minimize sys­
tem interconnections (Figure 3).5

It was also obvious that two-layer printed circuit
boards were much less expensive than multi-layer
boards. A substantial and successful effort was mounted
to develop placement and wire routing algorithms and
to obtain a computer-aided engineering package which
enabled us to effectively use two-layer boards.

The choice of a circuit family drastically affected the
type and number of interconnections required. The
Complementary Transistor Micro Logic (CT/xL) family
was chosen because of its useful "wired OR" capability
which has proven to reduce interconnections between
20 and 40 percent compared to other circuit families.6

The system bus implementation was also given much
consideration. After preliminary studies it was decided
to use a set of 200 Interconnections running as parallel
lines for the length of the main frame. Figure 4 is a
view of one of the system bases which is a simple two-
sided printed circuit board. One hundred and eleven
lines run the full length of the system and are used as
the main bus. The main base is partitioned as follows:

64 bidirectional data lines
24 bidirectional address lines
10 bidirectional priority lines
6 operation code lines
5 terminal number lines
1 system clock
1 system clear

580 Spring Joint Computer Conference, 1971

SYSTEM
SUPERVISOR

SS

MAIN
BUS

TRANSLATOR

TR

CENTRAL
PROCESSOR

CP

CHANNEL
CONTROLLER

CC

MEMORY
CONTROLLER

MC

DISC
CONTROLLER

DC

HIGH SPEED CHANNELS

•TELEPHONE RATE
CHANNELS

MEMORY
BUS

MAIN
MEMORY

MEMORY
RECLAIMER
MR

HEAD PER
TRACK
DISC PILE

BULK
DISC FILE

_ I
INTERFACE
PROCESSOR

IP

Figure 1—Gross block diagram of the SYMBOL system

The balance of the 200 lines are used for local inter­
connections within AFUs of two to seventeen boards
in size. As the design progressed it was necessary to
add an additional 200 "bypass" lines on the bases. The

PROCESSING FUNCTIONS SERVICE FUNCTIONS

CENTRAL PROCESSOR
Polish String Processing
Variable Length Numeric

Processing
Variable Length String

Processing
Data Type Conversion
Data Structuring
Structure Referencing
Variable Structure

Assignment

39 CARDS

TRANSLATOR

Name Table Generation
Object String Generation
Address Linking
Library Access and

Linking

15 CARDS

INTERFACE PROCESSOR

Buffer Processing
Information Transfer to

and from Virtual Memory
Text Editing

MAIN
COMMUNICATION

BUS

i

s

8 CARDS

1

MEMORY CONTROLLER J
Page Allocation
System Address Processing
Data String Management
Page Table Management

15 CARDS

MEMORY RECLAIMER

Processing of Deleted Space
to Make Reusable

2 CARDS

DISC CHANNEL PROCESSOR
Page Transfer Control
Page Table Processing

3 CARDS

CHANNEL CONTROLLER

Channel Sequencing
Buffer Processing
I /O Message Control

11 CARDS

SYSTEM SUPERVISOR

Task Queue Processing
Interrupt Processing
Paging Control
Real-Time Processing
Software Communication

Control
* l̂

fJHiHH JHlimTmilTTTTT^

Figure 3—Basic 12"X17" two sided printed circuit board with
up to 220 dual in-line components

final design allows each large board to contact up to
200 bus lines and have 200 lines bypass it. Each board
contact can be connected to the same contact number
on the next card or alternatively can be connected via
a bypass line to a board several slots distant. Using
these techniques the whole system was implemented
with a maximum of 600 parallel lines, with cuts, or
two-layer printed circuit bases.

There have been many interesting debates within
the project on the size of boards chosen and on the num­
ber of interconnecting lines needed on the bases. It is
not clear that our choices are optimum; however, it is
now clear that they were sufficient. The completed
system used about 102 large boards inserted between
the two system base structures. I t is illustrated in
Figure 5. It was interesting to find that all the main

vcj**-ma«^maBW'm»««a^^
-"•J 3m:m?*jm->mPKm:mmjm'm*<gM><.

*acm -*mcm^mam!msm3m3*mam3^-'wampz,mjK*%

M M M M M M S M M M M M M H I I M M ^ M M W M

--sy*"* ""OBP̂ WB ^KPw/K^e^f^omm « e a » g | w c i
— mjm !*mame w o p ^ a r j p '""maep*

-<T%mi «Qsr
i*as 3ss**« KM^^gmom^wmMmamjm^^^cmmm

• &

• « * *, sit* A »n*fc , •ah T r—En II * nTirfu

»§Sfi
• ^xfc. • •Mk*...;..mm*~*z

14 CARDS

Figure 2—Functions performed in the SYMBOL main frame Figure 4—SYMBOL interconnection base

SYMBOL 581

frame including I /O, memory, disk and channel inter­
face logic took less than 20,000 CT/zL packages.

SYMBOL FROM A PERFORMANCE
VIEWPOINT

The evaluation phase of SYMBOL IIR is just be­
ginning with the hardware near completion. In order
to obtain a preview of the performance a set of measure­
ments has been made on the hardware.

Basic operation rates

The clock period on SYMBOL IIR now stands at
320 nsec and may be later reduced to about 200 nsec.
All measurements were taken at the 320 nsec period.
The basic clock period in SYMBOL IIR contains long
logic chains allowing relatively complex tasks to be
performed. Many of the key logic chains contain 20 to
25 levels of AND-OR logic. The system uses Fairchild
CT/xL, type I throughout. The core memory is a 1964
model with a basic 2.5 fxsec cycle. Due to a semi-serial
interface on the core memory it has an effective cycle
of 4 jusec,

An improved system (referred to as SYMBOL II)
has been studied and has been partially specified. This
system is based on the technology of the experimental
system, SYMBOL IIR, but has been considerably
optimized. SYMBOL II is also specified to use the latest
cost orientated hardware technology. Conservative
performance estimates of SYMBOL II will be made to
give a comparison of how the SYMBOL algorithms
would stand up in a contemporary hardware technology
design. They will be based on a clock period of 100
nsec using a circuit family such as CT/*L, type II and
an LSI memory with a 200 nsec period. One should
keep in mind that the following comparisons are be-

Figure 5a—The SYMBOL main frame

Figure 5b—Detail view of SYMBOL main frame

tween SYMBOL, which is a VFL machine running in a
very dynamic execution time environment, and a more
conventional fixed field machine running a language
with the data boundaries determined at translate time.
The former places more demands on the hardware while
the latter shifts the burden of data management to the
user.

For the purposes of comparison SYMBOL IIR will
be referred to as SIIR and SYMBOL II as SII,

Field processing operations

SIIR performs all field operations in a VFL serial-
by-character mode. It was always assumed that after
system evaluation and bottle-neck analysis, if war­
ranted, certain operators such as those shown below
would be executed in a more parallel mode by using
additional hardware. SII estimates are based on serial
processing and known algorithm improvements that
reduce or do not materially increase the hardware
required.

The following table gives processing times measured
on SIIR and estimated for SII. The execution time
values are specified in microseconds and do not in­
clude the instruction fetch time or single word operand
fetching and storing.

582 Spring Joint Computer Conference, 1971

SYMBOL IIR MEASURED EXECUTION TIMES IN uSEC

OPERATION

1234+4321

12345678-87654321

50 digits + 50 digits
Convert to floating point 1234
Convert to floating point 12345678
Convert to floating point 50 digits
Compare 12345678,87654321
Compare 12345678,12345670
label join|def|
1123456781 join 1123456781
1234 format |ZZZ.DD|
1234 format |ZBZBV|
12345.6789 format1'$'*C***C***.DD|

SIIR

5.6
10.0
45.0
5.2

12.5
120.0

4.0
6.5
4.5

60.0
9.0
8.0

76.0

SII

1.2
1.6
5.0
1.2
1.8

18.0
1.0
1.2
1.2

12.0
3.0
2.6

15.0

Compilation

Several programs were compiled on SIIR and the
overall times and space usage measured. The SIIR re­
sults are tabulated below.

SYMBOL IIR MEASURED COMPILE TIMES IN ySEC

Program A

Program B

Program C

NO.
STATEMENTS

195

70

157

BYTES OF
SOURCE

8330

3528

7560

BYTES OF
OBJECT CODE

7315

5112

6025

AVERAGE TIME
PER STATEMENT

820

1280

760

This represents about 75,000 statements compiled per minute on SIIR.

A comparative table for SII assuming added flexi­
bility on SII for handling various other languages in
addition to the SYMBOL language is given below. The
data is based on a sampled study of object code and
projected execution times of several recently developed
algorithms.

SYMBOL ESTIMATED COMPILE TIMES IN ySEC

Program A

Program B

Program C

STATEMENTS

195

70

157

BYTES OF
SOURCE CODE

8330

3528

7560

BYTES OF
OBJECT CODE

2350

1735

2110

AVERAGE TIME
PER STATEMENT

185

220

185

This would give a compilation rate of 300,000 statements per minute.

Paging overhead

SYMBOL has very low overhead for paging. The
algorithms are based on direct hardware execution
using parameters set up by software. A count of worst

case paging overhead for SIIR in terms of memory
cycles for a CP page out is given below.

SYMBOL IIR PAGING OVERHEAD IN MEMORY CYCLES

ITEM

CP Shut Down

SS Queuing and Push Selection

SS Disc Servicing

CP S ta r t Up

TOTAL Memory Cycles

WORST CASE

7

50

8

6

71

AVERAGE

7

30

6

6

49

Assuming an average of 5 vsec per memory cycle counting internal

cycles this gives 355 usee worst case. In SII using an Improved

algorithm the overhead would be less than 20 usee.

Input/output

The overhead for I/O for a time-sharing system be­
comes an important factor in providing adequate termi­
nal response time. To illustrate the effect of the hidden
software overhead an operation trace of a IBM 360/44
during FORTRAN IV output was performed. A similar
operation was performed on SIIR. The equivalent out­
put statements in both languages are shown in the
table below.

The trace of the FORTRAN statement indicated
1753 instructions being executed. Each instruction re­
quires an average of two memory cycles. The trace
program does not trace any of the supervisor or channel
operations so that well over 3,000 and more likely near
4,500 memory cycles were used in executing the
FORTRAN statement.

SYMBOL VS FORTRAN OUTPUT STATEMENT
TRACES IN MEMORY CYCLES

LANGUAGE

SYMBOL

FORTRAN

STATEMENT

OUTPUT 12345.56 FORMAT iD.DDDuDDl;

WRITE (6 ,10)X

10 FORMAT (1X.E9 .3)

TRACED

130

; 3466

EST. OVERHEAD
NOT TRACED

0

1000

Task control overhead

In order to measure the overhead for compilation
and execution a program consisting of one CONTINUE
statement was executed on SIIR. This causes a null
program to be entered, translated, and executed and
thus places a large demand on any system resources
required, isolating overhead from "useful" actions. All

SYMBOL 583

memory cycles were traced with the following dis­
tribution :

PROCESSOR USED

TR
CP

MEMORY CYCLES

41
20
18

TOTAL 79

This could be compared with any contemporary sys­
tem where the entire compiler would have been paged
in and much of the supervisor would have been executed
to establish many resources that would not have been
needed.

* 1966
'109,600 TOTAL COST/MONTH

\ # * >

Subscripting

It would seem that VFL data structures imply slow
data referencing. However, the SYMBOL project
demonstrated that efficient handling of dynamically
varying data can be achieved with sophisticated list
processing techniques. SYMBOL IIR established the
foundation and the algorithms have now been de­
veloped to be competitive with conventional fixed field
indexing while retaining the VFL features. A few refer­
ences and their equivalent memory cycles for SIIR are
given below. The subscript Fetch cycles are not counted.

REFERENCE

A[4,9]
A[16,32,6]
A[3]
A[70]
A

TYPICAL MEMORY
CYCLES REQUIRED

4-6
8-10
2-3
9-12
2

A substantial improvement has been obtained for
SYMBOL II promising to make it as fast or in some
cases faster than conventional indexing.

SYMBOL FROM A COST VIEWPOINT

A study of a modern computer installation and its
users as a total "system" reveals where and how the
computing dollar is divided. Consultants from Iowa
State University made available all the necessary data
for such a study early in the program.7 Figure 6 illus­
trates the I.S.U. IBM 360/50 installation in 1966 at

Figure 6—The computing pie illustrated for Iowa State
University 360/50 installation

the time the study was made. This "pie" has since been
compared with many other business and scientific in­
stallations of varying sizes with different computer
systems. There is general agreement that the minor
variations in the size of the slices for different installa­
tions do not materially affect the picture. This applies
to most modern " classic software-dominated systems."

The objective of data processing is to solve problems
where the "user with a PROBLEM" is the input and
the "ANSWER" is the output. I t is assumed that the
user has his problem well defined and has the data
available but the data is not yet programmed. The con­
version of his problem to a computable language and
the debugging necessary for correct execution is in­
cluded in the total cost of operating an installation.

I.S.U. calculated the total system operation on this
basis as approximately $109,600 per month. The rate
and labor costs were adjusted to normal commercial
standards for the calculations. Both commercial and
scientific problems were run in the problem mix. The
following sections discuss the breakdown of the overall
cost.

About 37 percent or $40,000 is used by the problem
originator and/or the professional programmer to con­
vert the problem to a debugged, high-level language
and to obtain answers.

Thirty three percent or $36,000 is required for oper­
ating personnel, key-punch operators, file clerks, sys­
tems programmers, administration, space, power, etc.

Thirty percent of the total pie or $33,000 goes for

584 Spring Joint Computer Conference, 1971

BASIC SAVINGS
USER'S TIME
GREATER THROUGHPUT
LESS PROFESSIONAL HELP

ADDED SYMBOL SAVINGS
USER'S TIME

CLEAN LANGUAGE
COMPLETE VARIABILITY

FIELDS,
STRINGS,
STRUCTURES.

NO DECLARATIONS FOR
TYPE,
SIZE.

SOURCE AND MACHINE
LANGUAGE NEARLY
IDENTICAL.

Figure 7—Savings in problem expense

machine rental. It is estimated that about one third of
the rental expense goes for direct development of hard­
ware and system software (perhaps half and half), one
third for sales, service, and application support, and
one third for administrative costs, overhead, and profit.

The choice of a hardware configuration and its ma­
chine language is the tail wagging the dog. Inexpensive
hardware and a good, easy-to-use programming system
can reduce the size (i.e., total cost) of the pie but in
conventional systems will not materially alter the rela­
tive size of the slices.

In the following text the computing pie is used to
illustrate SYMBOL concepts from a cost point of view.
Each major slice will be further subdivided into its own
percentage parts (i.e., each major slice will be 100 per­
cent of the portion under consideration and will be
divided into its constituent parts).

Figure 7 shows the potential problem expense saving
to be obtained from any good conversation-mode, high-
level language, time-sharing system. It has been esti­
mated that approximately 50 percent of the problem

|10-15%
720-

BASIC T IMESHARING SAVINGS

FEWER KEYPUNCHERS
FEWER FILE CLERKS

ADDED SYMBOL SAVINGS

FEWER SYSTEM PROGRAMMERS
EASIER APPLICATION PROGRAMS
MORE PERFORMANCE/COST
EASIER FACILITIES

NO RAISED FLOOR
LESS AIR CONDITIONING
SMALLER FLOOR AREA

expense slice can be saved in reduced user learning
time, increased throughput, less professional program­
ming support required, etc. We estimate the SYMBOL
system will further reduce these costs with its "clean"
and "concise" directly implemented high-level language
and simplified operating system.1

The savings in the operation of an installation comes
from four sources. This is illustrated in Figure 8. First:
A good time-sharing system will reduce the administra­
tive help such as file clerks, keypunch operators, etc.
It is estimated that this saving can be ten to fifteen
percent of the installation operating expense exclusive
of system rental. The SYMBOL system with conversa­
tion-mode multiprocessing and multiprogramming will
also share in this saving. Second: The "system soft­
ware" support required in a conventional installation
is a very significant portion of the expense. Here SYM­
BOL shows a definite added saving. What system soft­
ware remains can be written in the high-level, general-
purpose language and will be easier to write, debug and
understand later. This will reduce the number of pro­
fessional personnel required. Third: The SYMBOL
language is directly implemented in hardware and thus
uses less main memory for "system software." For ex­
ample, a resident compiler is not required. In addition,
much less program swapping occurs and thus less virtual
memory transfer time is needed. Hardware execution of
algorithms is also faster and results in enhanced in­
struction execution speed. These features will require
less programming attention and also provide more
throughput per installation dollar spent. Fourth: The
SYMBOL hardware is designed with modern integrated
circuits and large two-layer printed circuit boards. The
total system hardware package is compact and does not

(5.8%
TOTAL PIE)

2% SYMBOL SAVINGS
LESS STORAGE REQUIRED
FOR SYSTEM SOFTWARE

- 2 % S Y M B O L SAVINGS
SIMPLE ELEGANT PACKAGING

Figure 8—Savings in installation operation expense Figure 9—Manufacturer's direct hardware expense

SYMBOL 585

need raised floors, special air conditioning, or vast
amounts of floor space. It is estimated that these SYM­
BOL features will reduce installation operating ex­
pense by an additional 20-35 percent or a total of 30-50
percent.

The slice of the computing pie representing the com­
puter manufacturer's hardware contribution is illus­
trated in Figure 9; approximately seventeen percent of
this slice is attributable to hardware. For large systems
the peripheral equipment and the bulk files can approxi­
mate about one half of the total cost. The main storage
is another quarter and the CPU logic is another quarter.
Naturally some variation in these amounts will occur
from installation to installation and for different system
types.

The SYMBOL approach saves costs in several ways:
The first area of savings is in the use of large two-layer
printed circuit boards and two-layer printed circuit
bases with cam-operated contacts for all system inter­
connections.

Except for cables to peripherals and wires used for
correction of design errors and for logical extensions no
wire exists in the system. Figure 3 illustrates a logic
board and Figure 5 illustrates the main frame of the
SYMBOL system. This type of packaging lowers pro­
duction costs for logic. It is estimated as much as a
fifty percent saving will be achieved over small board,
wire-wrap back panel, multi-cabinet conventional sys­
tems. This same technique reduces costs in terminal
equipment but not to such a large degree. We estimate
that three percent of the manufacturer's slice of the pie
can be saved by this functionally-factored, bus-oriented,
large printed circuit board design philosophy. The sec-

Figure 10—Manufacturer's system software expense

Figure 11—Manufacturer's software application expense

ond way savings are obtained is in the hardware effi­
ciency gained by the SYMBOL system. Since most of
the normal system software is hard wired, very little
resident main memory is used, thus providing much
larger percentages of main memory for application pro­
grams. The execution of system instructions is done at
"clock speeds" in a "macro" rather than a "micro"
manner. This provides much faster high-powered in­
struction execution. Finally, more of the system hard­
ware is simultaneously operating due to the system
organization which allows multiple jobs to be in the
main frame for overlapped execution. We estimate that
an additional two percent of the manufacturer's slice
of the pie is saved here.

The largest and most important single saving for
SYMBOL is in the "System Software." Figure 10 illus­
trates this point. Irrespective of whether the system
manufacturer or someone else produces the software
for a conventional computer this large expense is real.
The SYMBOL features directly implemented in logic
(i.e., hard wired) make unnecessary at least 80 percent
of the conventional system software used in large time­
sharing machines. This represents an estimated 16 per­
cent saving in the system manufacturer's slice of the
computing pie.

The field support of the system software is a major
expense. The sheer volume of paper and record keeping
to keep current with the latest changes is a major
problem. In the design of the SYMBOL system this
problem was given great attention. In studying the
software delivered with large systems using a relatively
static high-level language, we note that most (if not all)
of the changes made were on the programmed imple-

586 Spring Joint Computer Conference, 1971

mentation or were due to programming errors. Many-
levels of machine and assembly language programs and
machine runs were between the hardware language and
the programmers' source language. This quite naturally
introduces confusion (and errors) either in original
programming or in understanding the hidden rules
when using the system.

It may also be noted that as more and more applica­
tions are programmed in a language it automatically
becomes more rigid. We believe that the "clean," high-
level, general-purpose SYMBOL language is excellent
for most uses. Since direct hardware implementation
requires little field support in the software sense, we
estimate approximately a six percent saving in the
manufacturer's support expense. This is illustrated in
Figure 11.

Good service is a must in a large system. The SYM­
BOL hardware has been engineered for good reliability
and at the same time easy maintenance. We do not
anticipate any added expense for SYMBOL hardware
maintenance over conventional systems with equivalent
storage and logic circuit counts. Our experience on the
SYMBOL model has verified this belief.

The previous material has split the computing dollar
up in parts and has described how major savings can
be realized with a "total systems" approach. The SYM­
BOL techniques described herein together with good
time-sharing, conversation mode practice can reduce
computing costs up to 50 percent. Referring to Figure
12, one may visualize how the savings in the whole
computing pie add up.

CONCLUSION

35% POTENTIAL SAVING

8% POTENTIAL SAVING

Figure 12—Potential savings with a good conversation mode
hardware/software system

system interconnections and buses together with
a functionally factored system results in an eco­
nomical, serviceable and reliable system.

4. The direct hardware implementation of a gen­
eral-purpose, high-level language, the use of the
SYMBOL construction techniques and a good
conversation mode system can save up to 50 per­
cent of computing costs. This is contrasted to a
good conventional system using a general-pur­
pose, high-level batch oriented system.

5. The use of the SYMBOL system (software plus
hardware) has shown that significantly fewer
hidden rules exist to plague the casual or the
professional user in debugging programs.

The full scale running SYMBOL system has demon­
strated the following: ACKNOWLEDGMENT

1. A very high-level, general-purpose, procedural,
"state of the art" language and a large portion
of a time-sharing operating system can be effec­
tively implemented directly in hardware.

2. Complete dynamic variability in data fields,
data structures, processing length of strings and
numbers and depth of structural nesting (sub­
scripting) can be efficiently and directly imple­
mented in hardware. Competitive execution
speeds can be obtained as compared with more
conventional fixed field and structure machines
and in certain areas such as language transla­
tion extremely high performance rates can be
demonstrated.

3. Design and construction techniques using only
large two-layer printed circuit boards for all

The authors wish to express their thanks to the Fair-
child Camera and Instrument Corporation for the op­
portunity to do this research.

Special thanks are due to Professor Robert Stewart,
Professor Arthur Pohm and Professor Roy Zingg of
Iowa State University for their constructive help and
support. We are most grateful to the National Science
Foundation for the grant which made it possible for
the SYMBOL IIR system to be delivered to Iowa
State University for evaluation and continuing re­
search on this technology.

Finally, we are deeply indebted to the past and pres­
ent members of the Digital Systems Research Depart­
ment at Fairchild. Their hard work and enthusiasm
made this research project result in a real and operating
system.

SYMBOL 587

REFERENCES

1 G D CHESLEY W R SMITH
The hardware-implemented high-level machine language for
SYMBOL
This volume

2 J R T E N N A N T G D CHESLEY
Design and layout of large integrated circuit boards
Second Annual Seminar on Integrated Circuits January
1965

3 A P MULLERY R F SCHAUER R RICE
ADAM-A problem-oriented SYMBOL processor
Proc SJCC Vol 23 1963 pp 367-380

4 W R SMITH et al
SYMBOL: A large experimental system exploring major

hardware replacement of software
This volume

5 B E COWART R R I C E S F LUNDSTROM
The physical attributes and testing aspects of the SYMBOL
system
This volume

6 W R SMITH
System design based on LSI constraints: A case history
Digest of 1968 Computer Group Conference June 25-27
1968 International Hotel Los Angeles California I E E E
345 East 47th Street New York New York

7 R R I C E
Impact of arrays on digital systems
I E E E Journ of Solid-State Circuits Vol SC-2 No 4
December 1967
An expanded set of references to cover work on the
SYMBOL can be found in References 1, 4, and 5.

