
The future of minicomputer programming

by D. J. WAKS and A. B. KRONENBERG

Applied Data Research, Inc.
Princeton, New Jersey

"Here is Edward Bear, coming downstairs now,
bump, bump, bump, on the back of his head,
behind Christopher Robin. It is, as far as he
knows, the only way of coming downstairs, but
sometimes he feels that there really is another
way, if only he could stop bumping for a moment
and think of it. And then he feels that perhaps
there isn't."

Beginning of Winnie-the-Pooh, A. A. Milne

INTRODUCTION

The minicomputer syndrome

The programming of minicomputers to date has
resembled Pooh Bear coming downstairs because
although we feel that there really is another way, we
rarely stop bumping. Programmers for small computers
have long exhibited what we call "the minicomputer
syndrome", which is a very low expectation of program
support and facilities on a minicomputer and a lack of
appreciation of the hardware and software tools one can
employ to attack and solve a programming problem.

Minicomputers came on the market when it was first
realized that small general-purpose stored-program
computers could be competitive with complex hard
wired systems built from general-purpose logic modules.
Not at all surprisingly, the manufacturers of logic
modules quickly became the leading developers of
minicomputers. Since the programming process was
viewed as an unfortunately necessary step in making
the mini behave like the hard-wired system it was
replacing, very little general-purpose programming
support was provided with the minis. Thus, the
minicomputer syndrome—the belief that primitive
computers require primitive programming support—was
born virtually at the same time as the mini itself.

Computer manufacturers have fostered this syndrome

by typically providing little general-purpose software*
with their minis. Although manufacturers have re
cently attempted to provide reasonable program-crea
tion software, the majority of available assemblers still
lack such desirable features as macros, conditional
assembly, literals, and multiple location counters.
Program-execution software for most small computers is
often so weak that the user usually is left to write his
own disk handler, communications package, or real-time
executive. Even in cases where a manufacturer does
provide such software, it usually requires a configuration
that is uneconomically large.

The manufacturers' software planners seem to
exhibit the minicomputer syndrome more than many
of their customers. They continue to design separate,
single-application monitors apparently assuming that
the user will employ his mini only for real-time applica
tions, file processing, communications, or report writing.
Thus, the user who wants a single monitor system to
support some combination or all of these must either
adapt a manufacturer-supplied monitor or build one
from scratch.

This lack of coherent manufacturer software support
has also been characterized by a lack of standardization
and conventions or standardization of poor or unwork
able conventions in the software. This in turn has led
to a proliferation of software to dismay any ecologist.
For example, how many different assemblers now exist
for the DEC PDP-8 family? We were able to count a
baker's dozen in two minutes of trying; there must be
an equal number we didn't think of or don't know about.

Finally, this lack of standards and conventions has
resulted in incompatibility from one user to another.
Software modules created for one user's executive and
assembler can be neither assembled nor run at another
user's site. We have been involved in more than one

* General-purpose software can be classified as either program-
creation software (text/file editors, language processors), or
program-execution software (monitors, device drivers, real-time
executives).

103

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1478873.1478888&domain=pdf&date_stamp=1971-11-16

104 Spring Joint Computer Conference, 1972

project requiring that a program be manually trans
literated from one dialect for a computer to another.

What is a minicomputer?

The paper is intended to describe programming for
minicomputers. What do we mean by "minicomputer"?

Let us begin by characterizing the small computer as
having:

(a) A short word and register length, aiways 18 bits
or less; a small computer, therefore cannot
perform single-precision floating-point arithmetic
through either the hardware or software.

(b) A main memory provided in modules of 8K words
or less (typically 4K words).

(c) An instruction set and, commonly, its addressing
mode which are restricted, usually having a
rather short operation code field in its machine-
language structure.

One more characteristic is required to define what we
mean by a mini: if a machine passes the test for a small
computer, and you can't ordinarily buy it without an
ASR Teletype ®, it is a mini. If you can't ordinarily buy
it without a card reader, it isn't a mini, it's just a small
computer.

The virtual machine and the extensible machine

Let us digress for a moment and define some useful
concepts we will refer to throughout the remainder of
this paper. The concept of the ''extended machine" was
first propounded by Holt and Turanski;1 we will use the
term "virtual machine" interchangeably with extended
machine. Here we are using the term "virtual" in its
dictionary2 sense: "Virtual, apparent, as contrasted
with actual or absolute." That is, the virtual or
extended machine is what the computer user, on some
level, sees and uses. Another way of saying this is to
describe it as the set of primitives with which he must
work. Watson3 defines a "virtual processor" in a
timesharing system in a similar way. The "virtual
memory" concept in paged computers is a similar
derivation.

As it is, the computer user rarely sees or uses the
"actual or absolute" machine. To do so, he would have
to write all his code in machine language. Language
processors, executive systems, device drivers, et al., are
all extensions to the machine which substantially affect

Teletype, a registered trademark of the Teletype Corporation.

the user's view of the machine. For instance, a mini
computer with a disk operating system appears to be a
very different machine from one with only paper-tape-
oriented software. A mini with a manufacturer-provided
real-time executive appears to be a very different
machine from one without it to the user with a data
acquisition and reduction problem. In this sense, then,
all available software and hardware options act as real
extensions to the "actual" machine.

When certain types of extensions are preplanned into
the computer hardware and software design, the
resultant machine is considered "extensible"—to the
extent that such extensions are planned. We characterize
these extensions as being expansions of primitives on
three distinct levels: the hardware or "firmware" level;
the system software level; and the applications software
level. On each level, the user can implement new
extensions, typically visible at the next higher level
(further away from the hardware) although sometimes
available at the same level.

The first and lowest level of extensibility is at the
hardware or firmware level. By hardware extensibility,
we mean the ability to add new operation codes,
typically for I/O but also for CPU purposes. Thus,
a supervisor call facility was added to a PDP-8 four
years ago to provide for user-supervisor communication
in a real-time system for TV control room automation.
This form of extensibility is designed-in, and en
couraged, although only rarely used to augment CPU
primitives. By firmware extensibility, we mean exten
sions through modifications or additions to microcode
on those computers (such as all machines in the Inter-
data family) which have a two-level (micro and user)
programming structure.6 This ability to modify or
augment the instruction repertoire of the machine is a
powerful way, albeit rarely exploited, to extend the
machine at the lowest level; the new primitives thus
created are fully comparable to the original instructions
of the actual machine.

The second level of extensibility is at the software level
through creation of system software. By system software,
we mean such obvious extensions as operating systems,
device drivers and interrupt handlers, and any program-
creation software, especially language processors, which
can drastically change the primitives available to the
end user. Planned extensibility at this level implies such
hardware features as:

(a) A user mode/supervisor mode distinction, pro
viding a trap of some kind against the execution
of reserved instructions in user mode, and
providing some kind of "supervisor call" facility.

(b) An approach to I/O on the hardware level which

The Future of Minicomputer Programming 105

provides for substantial compatibility of the I/O
mechanisms from device to device, particularly
with respect to interrupts and status information,

(c) Some method for extended address mapping
which provides for hardware protection and
relocation, thus relieving the mini user of his
worst problem—severe limitations on addressing.

The third and highest level of extensibility is on the
user software level. Planned extensibility provides the
end user with the capability of augmenting the apparent
set of primitives he uses in writing his programs. Such
long-used techniques as subroutines and macros both
constitute expansions of primitives, particularly when
used together, e.g., a macro used to generate a calling
sequence for a subroutine which performs some complex
function.

Many sophisticated programmers for minis, particu
larly those coming from a large-computer background,
habitually define large numbers of macros to provide
extended primitives comparable to those found in the
actual instruction set on large machines. In this way,
the experienced programmer of a minicomputer views
the problem of programming a mini as being no different
from that for a large computer, effectively countering
the purveyors of the "minicomputer syndrome" by
using the same techniques, approaches, and skills
developed for large computers. The manufacturer can
plan for extensibility on this level by providing the user
with macro features in the assembler and by providing
flexible hardware and software techniques for invoking
subroutines.

Let us close this introduction by noting that each
layer of extension, although providing a new set of
primitives to the next higher level, may also reduce the
original set of primitives available on that level. A set of
device drivers for I/O handling, once defined, usually
prevents the user from writing code to use a new I/O
device in a substantially different way from that
standardized by the drivers added as extensions; he also
loses, in the process, any capability of doing I/O
operations himself, since attempts to do so are trapped
by the hardware.

Additionally, a Basic system—editor, compiler, and
operating system combined—gives the Basic user a
different and more powerful set of primitives than he
has in assembly language, but deprives him of the
ability to perform operations in assembly language, even
though this might be far preferable for some aspects of a
given problem. Thus, the extended machine may look to
the user quite different from the original machine, with
some primitives added and others deleted, at the
extender's discretion.

The remainder of this paper is devoted to describing
many kinds of extensions which we see occurring now
and in the future. Since this paper is principally about
software, we will concentrate on extensions to the
second and third levels. However, we feel that current
hardware developments will encourage software-like
extensions at even the lowest level, and we will discuss
these implications also. Hopefully, viewing the mini
computer as more closely related to the large-scale
computer than the hard-wired controllers it was
originally designed to replace will lead to alleviating the
underlying symptoms of the minicomputer syndrome.

THE MINI AS A GENERAL-PURPOSE
COMPUTER

We will first discuss the minicomputer as it may be
viewed by the applications programmer in the future. To
do this, we will first examine a significant difference in
the evolution of larger computer software as opposed to
minicomputer software.

Both scales of computers developed from the same
base: machine-language programs loaded into memory
via manually produced media (cards or paper tape)
followed by console debugging with the user setting
switches and reading lights on the computer. In the
history of large computers, the first executive systems
were batch monitors, which were quite widely developed
by 1960. These batch monitors provided for submitting
"jobs" on decks of cards to the computer center where
they were eventually entered into the "job stream" and
run. All programming and debugging tools developed
for large computers during most of the 1960s were
oriented to batch operation; and today virtually all
operating systems for today's large computers are
optimized for batch processing. Nearly all commercial
programming, and most university programming, is
today done using batch monitors on computers including
the IBM 360 and 370, the Univac 1108, and the CDC
6600 and 7600. Recently, a trend has started toward
providing some sort of support for interactive program
ming, debugging, and program execution. Except for
several large computers explicitly designed for inter
active operation in time-shared applications (specifi
cally the XDS 940 and the DECsystem-10, both
produced by companies previously known for minis),
the machines were originally designed for batch
operation and modified in both hardware and software
to support interactive operation. The IBM 360/67 is a
modification to the 360/65, the Honeywell (GE) 645 to
the 635, the Spectra 70/46 to the 70/45. These machines
seem to have been grudgingly provided by the manu-

106 Spring Joint Computer Conference, 1972

facturers to meet what they saw as a small, uneconomi
cal, but prestigious market; none of them provide
nearly as good interactive operation as machines and
software designed to be interactive from the beginning.
In particular, a system like the DECsystem-10 can
provide program interaction with the user on a
character-by-character basis through the user's tele
typewriter; no machine based on a 2741-type terminal
can possibly do so, since the terminal and its supporting
computer-based interfaces are designed to operate
strictly on a half-duplex, line-at-a-time basis. But the
trend would appear to be toward expanded interactive
and conversational uses of large computers, particularly
as management information systems make terminal
access to data bases desirable in real time.

Minicomputer programming started in the same way
as the large computers. Paper tape was the primary I/O
medium, read in by an ASR-33 Teletype®, with the
computer console used for all debugging. Since mini
computers cost so much less than large computers, there
was much less pressure to get away from console
debugging, particularly as it was recognized as being a
very cost-effective tool for a competent programmer.
When it became clear that it was possible to create
software tools to facilitate debugging, it was natural to
use the Teletype®, which was there anyway (recalling
our definition of a minicomputer), as the I/O device
around which to design the "monitor." The first
interactive programs for minicomputers, using the
" console teletypewriter" to provide interaction with the
user, were symbolic editors and debugging tools
(particularly DDT,7 a debugging system produced at
MIT for the PDP-1). Many other interactive systems
for minis are described in an earlier paper by one of the
authors.8 Interactive systems of all kinds are common
today on virtually all minicomputers. In addition to
symbolic editors and debugging .systems, there are
full-scale Basic systems for one or several users on many
minis; several minis have Disk Operating Systems
designed for conversational control from the console
teletypewriter, single-user and multi-user interpretive
systems derived from JOSS® running on one or more
terminals, etc.

Now that minicomputer configurations often include
peripherals, such as mass storage on removable disk
packs, card readers, line printers, magnetic tapes,
formerly found only on large computers, we see a trend
toward the use of batch operating systems on mini
computers. Such systems, typically based on RPG
and/or Fortran as higher-level languages, are closely

JOSS, a registered trademark of the RAND Corporation.

modeled after large-machine batch systems. The
resulting virtual machine thus looks almost, if not com
pletely, like the virtual machines erected on larger-machine
bases. A user programming in Fortran or RPG, both
relatively standardized languages, cannot tell, when he
submits a deck and gets back his reports, whether it was
run on a large computer or on a mini (except, perhaps,
by the size of the bill!).

Thus, large computers and minis are becoming more
and more alike—at least from the point of view of the
applications programmer. The authors hope that the
significant advantages of interaction between the user
and the computer, so prominent in the development of
minicomputer software, will not be disregarded by the
mini manufacturers in their seemingly headlong rush to
"me-too" compatibility with larger computers and their
batch operating systems.

THE MINICOMPUTER EXTENSION
SPECIALIST

Until now, the people who have played the largest
role in extending minicomputers have been the system
software designers and implementors and the hardware
engineers. We feel that the systems software designers
will have an increasing role as extension specialists in the
future by becoming knowledgeable in hardware
techniques.

Hardware/software extensibility

Already, the manufacturers of minis are providing
richer instruction sets and more designed-in extensi
bility in their newer computers. As an example, the
DEC PDP-11 provides a rich instruction set, a novel
I/O structure, and virtually a complete elimination of
the addressing problem which once plagued most minis.
The Interdata Systems 70 and 80 provide substantial
encouragement for the user to employ microprogram
ming to extend the base machine, i.e., to produce
firmware. Almost all new minis provide modular
packaging, in which a hardware function, to add a new
primitive, can be easily wired on a single module and
plugged into the machine.

We see the continued growth of microprogrammed
processors, built around Read-Only Memories (ROM's),
as being in the vanguard of user-extensible machines.
The newest hardware facilities include Programmable
ROM's (PROM's) which can be written by the user on
his site; Erasable PROM's—which can be manually

The Future of Minicomputer Programming 107

erased after being written; and Writable ROM's (slow
write cycle compared to read, intended to be written
relatively infrequently), sometimes called "Read-Mostly
Memories" (or RMM's). All of these lead us to see a
trend toward making this form of extensibility available
by design, rather than by accident.

Thus, the extension specialist will be encouraged to
work on all levels of extensibility. He will be able to add
firmware in the form of lower level programming
(microprogramming) or as pre-wired primitives which
he can literally plug in as new functions (as on the
GRI-909 family). Writable ROM's promise additional
extensibility, even providing the systems programmer
with the ability to optimize the instruction set for each
application by loading a writable ROM from his system
initialization code. Thus, he might choose an instruction
set built around four-bit decimal numbers to run Cobol
or RPG programs, one featuring binary floating point on
multiple-precision numbers for Fortran or Algol, one
with extensive byte manipulation for Snobol, and one
with primitive expression evaluation for PL/I .

Systems programmers will become more competent
at lower-level extension work, either by the firmware
being brought closer to the user in the form of writable
ROM's, or by the software designer being cross-trained
in hardware techniques. For many minicomputer
systems programmers, an oscilloscope is a familiar tool
in debugging complicated programs and systems. Every
sign indicates a growing encouragement for the systems
programmer to create his own desired environment
through extensibility. The DEC PDP-16 carries this to
its logical extreme by letting the user build his own
computer from a pre-determined set of modules using
software tools to aid the design and implementation
process.

Thus, we predict that the systems designer of the
future will increasingly be at home in both cultures—
hardware and software.

Programming automation systems

We also see a substantial growth and extension to
what we call "programming automation systems"—
techniques that provide the programmer with computer
aids in the programming process.9 All programming
systems are designed to help the programmer through
the critical loop of program development, i.e., program
modification, language processing, debugging, and back
to modification. Thus, systems such as Basic and
JOSS® provide for complete control over the critical
loop within the context of a single system with a single
language used to control all three functions. On

minicomputers, symbolic editors, language processors
and debugging aids are provided to "automate" these
three steps. For the systems programmer working on
logically complex and large programs, however, the
minicomputer does not really provide an optimum
environment. Unless it provides bulk storage and a line
printer, it is not well suited to editing and assembly.
Unless it has a console much better designed than most
mini consoles, it is also not particularly well suited to
debugging (and the newest consoles are even less useful
for debugging). Thus, there seems to be a trend toward
the use of larger computers, particularly time-shared
systems, for supporting programming automation
systems designed to support smaller machines. A large-
machine-based editor and assembler can do a lot to
facilitate the creation of programs, particularly since
the assembler does not have to be restricted in either the
features or the number of symbols which can be
accommodated. A good simulator, designed for de
bugging, can significantly improve the productivity of a
programmer by providing him wTith the necessary tools
to debug a program without the limitations of the
smaller machine. The authors have invested quite some
time over the last few years investigating this ap
proach;10 several other organizations have also done so,
with some success. Several new computers, notably the
GRI-909 and the IBM System 7, accentuate this trend;
they are only supported by larger host computers; the
actual machines are configured only to run programs,
not to create them.

For years, systems programmers for small machines
have felt, like Pooh Bear, that there must be a better
way than assembly language to write programs for
small machines. The so-called "implementation lan
guages" have been in use for some time on larger
computers; languages such as AED,11 BLISS,12 PL/ I and
ESPOL13 have been used to create systems software,
including compilers and operating systems, for large
computers. We regard it as unlikely that implementation
languages will soon be operational on minicomputers,
due to their high initial cost and inefficiency of generated
code. (Only if substantial computer time is invested in
optimizing time and space will minis be able to support
such implementation languages.) We do feel that the
trend toward using larger computers to support minis
will continue, and that it will soon be possible for
systems programmers to use large-computer-based
implementation language processors and debugging
systems as accepted tools of the trade. Already a
compiler for the BLISS language, an implementation
language developed at Carnegie-Mellon originally for
the DEC system-10, has been produced to generate code
for the PDP-11 on the DEC system-10.

108 Spring Joint Computer Conference, 1972

THE MINI AS A BASE FOR DEDICATED
SYSTEMS

Over the past five years (which represents virtually
the entire history of the minicomputer in terms of
number installed), there has been a noticeable shift in
the hardware/software tradeoffs in pricing and using
minicomputers in dedicated system applications. Several
people have long maintained that the price of the
software for a dedicated system should, as a rule of
thumb, equal the price of the hardware. Although
apparently true four years ago, this cannot possibly be
true today. Hardware costs of minicomputer main
frames and memories have been decreasing exponen
tially at an apparent rate of about 25 percent a year,
while software costs have been slowly rising, at the rate
of inflation. Thus, if the hardware/software cost ratio
was around 1/1 four years ago, it is more like 1/2.5
today, and the gap is steadily widening.

All of the extensibility promised by recent hardware
developments, including the modular construction of
the new machines and the increasing use of ROM's,
should have an accelerating affect on the applications of
minis to dedicated systems, steadily reducing the cost
of the hardware required for a given task.

We see implementation languages beginning to
relieve the trend toward higher software costs and hope
they will continue to do so in the future. But we see
problems in the high cost of training existing program
mers to use implementation languages, the lack of
acceptance by lower-level programmers, and general
questions arising as to whether such languages and
compilers really appropriately solve more difficult
problems (such as those that are space and/or time
critical).

We predict that in the next few years the current
problems regarding implementation languages will be
vigorously attacked on several fronts, and we feel
reasonably certain that they will be increasingly used in
dedicated systems, particularly those which are neither
space nor time critical. For critical systems, we feel that
some time will be required before compilers for imple
mentation languages, and indeed the languages them
selves, are improved and tested to the point that they
can be of real value.

Several people, including one of the authors, have
used interpretive languages to simplify the construction
of dedicated systems. In this technique, an existing
interpreter, for a language such as ESI14 or FOCAL,15 is
modified so as to minimize the core requirements for the
interpreter by removing unwanted features and adding
additional ones. The resulting extended machine is thus
an ESI machine, or a FOCAL machine; the user

program in the higher level language is stored in
memory and executed completely interpretively. John
C. Alderman, in a paper presently in manuscript form,
has referred to such languages as "plastic languages", in
the sense that the systems programmer, in designing the
dedicated system, can modify the interpreter for the
language, and thereby change the virtual machine, in
much the same way as writable ROM's can be used.
Indeed, the two approaches can easily be combined; one
could wire the interpreter in an ROM and plug it into
the computer, thus creating an unalterable virtual
machine for FOCAL or ESI.

It should be noted that the use of the "plastic
language" technique is limited to those systems which
are not time critical, since the interpretive nature of
program execution makes the resulting virtual machine
relatively slow. One of the authors has been quite
successful in applying this technique to a proprietary
dedicated system, where its advantages are quite
significant particularly regarding ease of modification
of the higher-level application code.

SUMMARY AND SOME SPECULATIONS

In closing, we would like to summarize a few points
made earlier, and to exercise our license to speculate a
little on the near future of minicomputers.

First, the user of minicomputers for the solution
of general-purpose applications in data processing,
scientific programming, or engineering, will find mini
computers increasingly indistinguishable from larger
computers. With luck, he will not find that interactive
control, which now distinguishes most minis from larger
systems, has been thrown out in the wash.

Second, the cost/performance ratio of minicomputer
hardware will continue to improve at the same rate as it
has over the last five years.

Third, the minicomputer user will continue to
receive the benefits of cost/performance ratios through
decreases in cost for the same, or slightly improved,
performance while the large computer user will generally
continue to receive more performance at the same cost.

Fourth, and as a consequence of the above, all
applications of minicomputers will become increasingly
more economical. Thus, many applications which are
not performed on minis today, or many which are not
done on computers at all, will utilize minis in the near
future as prices continue to drop.

It might be argued that time sharing could just as
easily be used in the future to solve problems which do
not use computers at all now. It is undoubtedly the case
that time sharing will continue to be used for those

The Future of Minicomputer Programming 109

problems which require its unique assets, i.e., essentially
as much processor time, as much I/O, as much core and
disk space as required, when you need it, purchased on
an "as you use it" basis. But even at the most favorable
rates available today, time sharing is much more
expensive than using a mini. The lowest price we know
of for time sharing is about $8 an hour for as much time
as you can use, though this is on a relatively small
system with quite heavy loading and a lot of contention.

On the other hand, even at today's prices, a mini can
be bought for $5000. If this is written off over three
years, and used 40 hours a week, an effective price of
only about one dollar an hour can be approximated.
A few years from now, this should drop to around 25
cents an hour.

We see the possibility of people providing a variety of
"plug-in packages" for popular minis, quite likely
software provided in the disguise of ROM hardware to
provide the supplier with proprietary protection,
product standardization, and integrity against un
authorized user changes. Some of these standard plug-in
packages might be:

(a) The COGO virtual machine for the civil
engineer.

(b) The JOSS® virtual machine for the engineer and
statistician, replacing today's electronic desk
calculators.

(c) The small business virtual machine, providing
the retailer with a small machine capable of
performing routine bookkeeping.

(d) The homemaker virtual machine, providing the
busy housewife with a menu planner, household
controller, alarm system, and checkbook
balancer.

In conclusion, if the designers and product planners
of minis think more clearly on what minis can do in
both program creation and program execution, we may
see an end to the minicomputer syndrome.

"He nodded and went out. . . and in a moment I
heard Winnie-the-Pooh—bump, bump, bump—
going up the stairs behind him."

Ending of Winnie-the-Pooh, A. A. Milne

REFERENCES

1 A W HOLT W J TURANSKI
Extended machine—Another approach to interpretive storage
allocation
Under Army contract DA-36-039-sc-75047 Moore School of
EE U of Pa 1960

2 C J SIPPLE
Computer handbook and dictionary
Bobbs-Merrill Indianapolis 1966

3 R W WATSON
Timesharing system design concepts
McGraw-Hill New York 1970

4 PDP-7 CORAL manual
Applied Data Research Inc Princeton N J 1967

5 Broadcast programmer user's manual
Applied Data Research Inc Princeton N J 1968

6 Interdata microprogramming manual
Interdata Ocean Park N J

7 A KOTOK
DEC debugging tape
Memo MIT-1 rev MIT December 1961

8 D J WAKS
Interactive computer languages
Instruments and Control Systems November 1970

9 D J WAKS
The MIMIC programming automation system
Applied Data Research Inc Internal memorandum July
1971

10 MIMIC user's guide
Applied Data Research Inc Ref #01-70411M May 1971

11 AED manual
Softech Cambridge Massachusetts

12 BLISS-10 manual
Carnegie-Mellon Univ Pittsburgh Pa

13 ESPOL manual
Burroughs Corp Detroit Mich

14 D J WAKS
Conversational computing on a small machine
Datamation April 1967

15 FOCAL user's manual for PDP-8
Digital Equipment Corp

