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INTRODUCTION 

Advancing technology and declining costs have led to 
a sharp increase in the number and variety of small 
computers in use. Because small computers are readily 
suited for many real-time applications, a great deal 
of work has been directed toward simplifying the inter­
face between the computer and its peripherals. Hard­
ware interrupting capability and a specially designed 
I /O bus are required for peripheral device interfacing 
in a real-time environment and such things as direct 
memory access, data channels, and multilevel hardware 
and software interrupt capability are common. These 
machines tend to be parallel, synchronous computers 
with a relatively simple architecture. 

In a real-time environment, fault detection can be of 
major importance. Much of the past work has been 
directed toward the design of additional hardware, 
internal to the computer, which allows critical feedback 
loops to be controlled and often inserts special registers 
for the maintenance task.1-4 These techniques require 
that the maintenance circuitry be designed concur­
rently with the computer itself and have access to 
components internal to the computer. Many problems 
can arise from attempting to modify an existing com­
puter. For example, critical timing and gate fan-out 
can be disturbed, and most warranties become void 
if unauthorized modifications are made to a computer. 

Other techniques cannot be used for real-time fault 
detection because they require manual intervention, 
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excessive storage, noncontiguous memory locations 
or excessive execution time.5-7 Much of the previous 
work attempts to locate faults as well as detect them. 
While fault location is desirable, it is more expensive 
and requires much more time and storage than fault 
detection. Many applications do not require fault lo­
cation. It may be more feasible to either interrupt the 
task or perform the task manually during the diagnosis 
and repair interval; the most important thing is to 
recognize that the computer may be performing the 
task incorrectly. 

An earlier technique attempted to simulate each 
instruction using different instructions and comparing 
the simulation result with the actual result.7 This 
technique requires that the computer be somewhat 
operational and that it be capable of comparing the 
two results. A means is needed for determining that 
the test routine is executed periodically. 

In this paper, we propose a real-time fault detection 
scheme for small computers which is effective for faults 
in the central processor unit (CPU), core memory and 
I/O bus. It requires an external monitor which is 
simple, inexpensive, and interfaces to the computer's 
I /O bus just as any other peripheral device. The monitor 
periodically triggers a program interrupt, causing the 
computer to execute a predefine test routine. During 
the course of the routine's execution, several key bit 
configurations are transmitted to the monitor. If the 
computer fails to respond or if the bit configuration 
does not match the one that is expected, then the 
computer is assumed to be faulty and the device may 
either cause a power down or sound an alarm. 

The proposed technique compares favorably to the 
previously referenced techniques in fault detection. 
Certain faults will not be detected, however, because 
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Figure 1—Typical computer architecture 

internal modification to the computer is not allowed. 
In the past, real-time fault detection has carried a price 
tag comparable to the cost of the computer itself. A 
major advantage of this technique is that its low cost 
makes a great deal of fault detection possible in appli­
cations which would not previously have been cost 
effective. The fact that the technique assumes that no 
modification may be made to the computer means that 
many existing systems could make use of the method 
without extensive modifications. 

COMPUTER ARCHITECTURE 

The proposed fault detection method may be used 
with a variety of small computers, all of which are very 
similar in architecture. Included in this class of com­
puters are such machines as Digital Equipment Cor­
poration's PDP-8, PDP-9/15; Hewlett-Packard's HP-
2100; Honeywell's DDP-516; Data General's Nova-
1200 and Nova-800; Xerox Data System's Sigma-3; 
and Hitachi's HITAC-10. All of these are parallel, 
synchronous machines with hardware interrupt and 
I /O bus. 

Figure 1 shows a block diagram of a typical small 
computer. The program counter (PC) contains the 
address of the next instruction to be executed. The 
memory buffer register (MB) serves as temporary storage 
for information being written into and read from 
memory. The address of the memory cell to be accessed 
is placed in the memory address register (MA). The 
decoded contents of the instruction register (IR) controls 
the instruction sequencer. Other registers commonly 
found are an accumulator (AC), general purpose registers 
(GPR), an arithmetic register (AR) and an index register 
(IX). Most small machines make use of some subset of 
these registers. 

Most of the logic functions are performed in the 
general purpose logic unit (ADR). A pulse on the hard­
ware interrupt lead will cause the instruction sequencer 
to save the appropriate registers and to begin executing 
a different program. 

ADDITIONAL HARDWARE REQUIREMENTS 

This section explains the function of each portion 
of the block diagram for the monitor hardware shown 
in Figure 2. 

The DEVICE SELECT modules (DSl and DS2) 
are basically an array of AND gates which allow the 
peripheral device control signals and data signals to 
pass only when the proper device select code is present 
on the device select bus. This allows several peripheral 
devices to share the same I/O bus without interfering 
with one another. Three device codes are required, 
XX, XX, and YY. It is desirable to have one device 
code (XX), which is the complement of the other to 
verify that each bit of the device select bus can be set 
to. both logical states. 

Device codes XX and YY cause the WIRED 
REGISTER to be gated onto the Input Bus. The 
WIRED REGISTER is constructed simply by at­
taching alternate bits to a voltage representing a logical 
one and the remaining bits to logical zero. When 
device code YY is selected, the "DEVICE = YY" 
lead is enabled causing the contents of the WIRED 
REGISTER to be complemented before being placed 
on the Input Bus. Reading from both device XX and 
device YY causes both a 1 and a 0 to be read from each 
bit position. Many computers determine the status of 
a peripheral device by executing an instruction which 
causes the next instruction to be skipped if a status 
FF is set. By executing this instruction with device 
code XX the BUSY/IDLE FF will appear to be busy; 
if device code YY is used, the "DEVICE = YY" lead 
causes the FF to appear to be idle. In this way the 
device status testing feature may be checked. 

Device code XX is used when outputting bit con­
figurations to the monitor for comparison to the 
expected value. The INTERRUPT TIMER is simply 
a monostable FF which, after an appropriate delay, 
will cause a program interrupt to be sent to the com­
puter and at the same time sets a FF, which enables 
the RESPONSE TIMER. The testing frequency is 
set by adjusting the monostable's delay time. 

The RESPONSE TIMER is used to determine that 
the computer is taking too long to respond and may be 
"lost." If the RESPONSE TIMER is not reset or 
disabled before it "times out," an OVERTIME signal 
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Figure 2—Block diagram for monitor hardware 

is generated, indicating that a fault has been detected. 
A circuit to perform the RESPONSE TIMER function 
is shown in Figure 3. 

The ADDRESS COUNTER is simply a cyclic 
counter designed to count modulo N, where N is the 
number of responses expected during a normal test. 
When the counter resets, a DONE signal is generated 
which disables the RESPONSE TIMER and resets 
the INTERRUPT TIMER. The ADDRESS 
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Figure 3—Response timer 

COUNTER is incremented after each output from the 
computer to sequentially address the contents of the 
read-only memory (ROM). The ROM need not be 
large and may be built economically from a diode 
array. 

The response from the computer and the expected 
response, read from the ROM, are both buffered and 
compared by the MATCH LOGIC. When enabled, 
the MATCH LOGIC basically OR's together each bit 
of the XOR of the two buffers to produce the MIS­
MATCH signal. An OUTPUT READY signal from 
the computer is used to load the BUFFER, enable the 
MATCH LOGIC, reset the RESPONSE TIMER, and 
increment the ADDRESS COUNTER, all after ap­
propriate delays. 

If either a MISMATCH or an OVERTIME signal 
is produced, the FAULT FF is set. This inhibits any 
further output to the monitor, thus preserving the 
contents of the ADDRESS COUNTER and the two 
buffers as an aid for the diagnosis of the fault. 
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The FAULT signal may be used in whatever way-
seems appropriate; it may stop the computer, sound an 
alarm, or trigger an interrupt to call some form of self-
diagnosis program, which may attempt to actually 
locate the fault. 

All circuits may be built using conventional methods 
and commercially available logic gates. The total cost 
of the hardware components is estimated at approxi­
mately $250. 

GENERAL GUIDELINES 

Small computers seldom have a large amount of 
core memory, often as little as 4,000 words. Often, 
external storage is limited to paper tape, which re­
quires manual intervention to be read. In order for a 
real-time fault detection scheme to be useful in these 
circumstances, its memory requirements should be 
small enough to allow it to remain resident in a very 
small core memory and still leave room for the system 
programs. 

A large number of faults are severe enough to either 
stop execution or at least to make sequential instruc­
tion execution impossible. No additional effort need 
be made to detect such a fault; the resulting failure 
to produce the required sequence of responses will 
cause the fault to be detected. However, faults which 
affect only a single bit position of a bus or register can 
be among the most troublesome. This type of fault 
may allow execution to continue, perhaps indefinitely, 
without an indication the fault exists. 

Certain portions of the computer are very difficult 
to check under the assumed restrictions. Input-Output 
leads, other than those used by the monitor, cannot 
be checked without adding more hardware for each 
set of leads. Such Input-Output leads include Direct 
Memory Access, Data Channel, Console Controls, and 
special device channels. These devices usually appear 
as a data bus input which cannot be controlled. I t can, 
however, be determined that none of these inputs is 
stuck at a one level as this would always cause the 
output of the bus to be one. 

The instruction control circuitry cannot be checked 
directly. There are no instructions which access most 
of the control leads. Therefore, the correct operation 
of a control lead can only be determined by checking 
conditions caused by that lead, such as the comple­
menting of a register. A thorough check of the control 
circuitry, under the given constraints, would be 
lengthy. It can, however, be determined that most of 
the gating signals can be produced. This can be done 
by executing every instruction type and checking to 

see that the proper data transfers have taken place. 
This method would intuitively seem to be very effec­
tive and can be accomplished in a short period of time. 

Because the test routine is periodically required to 
change the contents of memory locations outside of its 
own boundaries, the interrupt facility must be disabled 
during the execution of the test. This is necessary to 
insure that all locations are restored before control is 
released by the test routine. Since it is undesirable to 
lock out high-priority tasks for a long period of time, 
the execution time of the routine should either be very 
short or the routine should be segmented to allow the 
servicing of high-priority tasks. 

There are a number of ways to cause the external 
monitor to recognize that a fault has occurred. One 
of the most reliable ways is to design the test in such 
a way that the computer will output an unexpected 
bit configuration in the event of a fault. This technique 
is demonstrated by the following example. The ac­
cumulator is first loaded with a bit pattern A and then 
caused to skip over an instruction which would place 
A on the I/O bus. After the skip, the AC was changed 
to a pattern B and output to the monitor. If the skip 
did not occur, pattern A would have been output and 
would not have matched the expected pattern B. 

Another method is to cause the program to "loop" 
in the event of an error. The normal sequence of output 
bit patterns will then cease and the monitor will recog­
nize the cessation of response as an indication of a 
fault. Use of these techniques reduces the read-only 
memory requirements for the monitor. 

TESTING TECHNIQUES 

This section describes several techniques, which 
may be used to test the various computer components. 

Registers 

Registers in parallel synchronous machines com­
monly resemble the configuration in Figure 4. Although 
the actual circuitry may vary, the function is very 
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simple and well defined. When lead C becomes enabled, 
the information on lead A (usually a major bus) is 
gated into the FF. When lead C is disabled, the FF 
retains the state of lead A. A variation of this type of 
register requires a fourth lead which clears the register 
prior to the enabling of lead C which then OR's the 
state of lead A into the FF. Verification that each bit 
of a register can be set to both logical states completes 
a functional test of the FF. A single possibility 
remains—a stuck at 1 fault on lead C. This fault is very 
severe because lead C is common to every bit of the 
register. Having lead C stuck at 1 would cause lead A 
to be fed directly into the FF and would totally in­
capacitate the register. In most cases the state of lead 
A changes many times between the setting and the 
reading of a register, thereby, destroying the original 
contents. If this does not happen automatically, an 
effort should be made to cause it to happen. 

To check a programmable register, such as the ac­
cumulator, the register is first loaded with a bit con­
figuration. The contents of the register are then output 
through the I /O bus to the external monitor. The 
programmable register is then loaded with the comple­
ment of the first bit configuration and its contents 
again output to the monitor. This procedure also 
checks the I/O bus drivers, and the outputs of each 
bus between the accumulator and the I/O bus. 

Not all of the registers generally used in small 
machines are directly accessible under program control. 
In these cases a variety of techniques must be used in 
order to infer that the register can be set and read 
correctly. Five such registers were described in the 
introduction. 

One of these registers is the arithmetic register (AR). 
Because the contents of the general purpose registers 
is commonly stored into AR so that AR may be used 
as the operand, many tests of the general purpose 
registers require the data flow to pass through AR, 
testing it at the same time. This commonly happens 
in the output instruction itself, meaning that no extra 
effort is required to check AR. 

The second nonprogrammable register is the memory 
buffer (MB). This register is used to contain the data 
word core memory read-write operations; it must be 
capable of being set and cleared in order to correctly 
access core memory. If two complementary words can 
be read from memory, then the MB is operative. 

The third nonprogrammable register is the instruc­
tion register (IR) which contains the OP code. This 
register is different from the above registers in that its 
contents are never gated to a point at which it could be 
displayed. In this case a set of instructions may be 
selected in such a way that together they incorporate 

both logical states for each bit. If it can be verified 
that each of these operations can be performed suc­
cessfully, then it may be assumed that IR is operative. 

The fourth nonprogrammable register is the memory 
address register (MA). This register is tested in the 
following manner: the contents of the sequence of 
addresses (0, 1, 2, 4, 8, . . . , 2n~l, where n is the number 
of bits in MA, is saved in a test routine buffer area in 
real core for future restoration. Second, two comple­
mentary flags X and X are written into location 0 
and read back. The flag X is left in location 0. Another 
flag (Y) is then written into each of the other n loca­
tions. If, after the n write operations, the contents of 
location 0 is still X, then the MA register is operative 
and the n + 1 locations used for this test should be 
restored. To see this, assume that a bit (A) of MA is 
stuck at either 1 or 0. This is not to say that bit A is 
the only inoperative bit, but only one of possibly sev­
eral. In this case, when an attempt is made to write 
into location 0, the flag will actually be written into 
another location (B). (If every faulty bit is stuck at 0, 
then B = 0.) Later when an attempt is made to write 
into location 2A, this data will also be written into 
location B, overwriting the original flag. In general, 
location B will be overwritten once for every inopera­
tive bit in MA. When an attempt is made to read from 
location 0, the overwritten contents of location B will 
be returned, which will no longer be the flag originally 
placed there. I t should also be noted that a fault in the 
address decoding circuitry or the memory itself cannot 
mask a fault in the MA. 

The fifth nonprogrammable register, the program 
counter (PC), may be tested in much the same way as 
the MA register. The first flag to be written into loca­
tion 0 is the binary configuration of a "JUMP TO A" 
instruction. Into the remaining n locations is written 
a "JUMP TO B" instruction. After the MA register 
has been checked, a transfer is made to location 0. 
This causes the PC to be loaded with a binary zero 
and the "JUMP TO A" instruction there to be exe­
cuted. At location A, a signal is made to the monitoring 
unit that the transfer was successful and the contents 
of location 0 are changed to a "JUMP TO C" instruc­
tion. The code at location C will cause the program to 
loop, or output an unexpected word which will cause 
an error condition to arise. The test routine then pro­
ceeds to transfer to each of the locations 1, 2, 3 . . . 2n~l. 
Each transfer should cause a return to location B, 
which simply continues the sequence. However, as 
with the MA register, if any bit of the PC is inoperative, 
then the "JUMP TO C" instruction will be executed 
and an error condition generated. 

All of the above registers are found in most com-
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D 
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puters and the methods described are generally ap­
plicable. 

In the methods for checking MA and PC, it is im­
portant to insure that addresses 0, 1, 2, . . . 2 n - 1 donot 
lie in critical parts of the test routine. This is simply a 
matter of convenience; if this restriction is undesirable, 
a slightly more general algorithm can be used to allow 
complete freedom in the location of the test routine. 
Since all of the n + 1 locations lie in the first 2" loca­
tions, the program could be loaded anywhere in the 
second half of the memory. 

Data bus 

A computer data bus typically consists of some varia­
tion of the circuit shown in Figure 5. Although there 
are many ways to implement this function, using dif­
ferent types of logic gates, nearly all faults will behave 
as though one of the leads numbered 1-10 has become 
frozen at one logical state. Certain varieties of logic 
allow the OR function to be accomplished simply by 
tying the outputs of gates A, B, and C together. This 
arrangement also satisfies the above statement. One 
input of each AND gate is usually common to all bit 
positions and functions as a gating lead for transferring 
data onto the bus. 

A data bus may often be directly accessible to a 
number of peripheral devices for such features as 
direct memory access or a data channel. When this 
happens, one or more of the AND gates in Figure 5 
may have inputs which cannot be controlled without 
interfering with certain of the peripheral devices. There 
will, therefore, be a few of the AND gates which will 
not be checked. 

For the remaining AND gates, the objective is to 
verify that each input and output can assume either 

logical state. This can be done by gating both a 1 and 
a 0 onto the bus from every AND gate. 

Control circuitry 

Unlike a data bus or a register, the circuitry which 
controls the gating and timing for the instruction exe­
cution is neither simple in function nor standard in 
design. 

The approach taken here is to include segments of 
code in the test routine which will exercise each in­
struction and check to see that it is performed cor­
rectly. This thoroughly tests the instruction decoder 
by providing it with all possible inputs. The control 
circuitry is the most difficult part of the computer to 
check because there is virtually no means of direct 
communication between this circuitry and the I/O 
bus. All tests must be made by performing an operation 
and verifying that the correct operations have taken 
place. It is possible, however, that something totally 
unexpected may happen in addition to normal opera­
tion of the instruction. To detect a fault such as this 
would require an extensive test for every instruction. 
There is no method known, at present, which would 
produce such a test using only the I /O bus with no 
hardware modifications to the computer. If such a 
method were available, it is likely that the storage re­
quirement and execution time would limit its useful­
ness for a real-time environment. Fortunately, faults 
which occur in the control circuitry are usually quite 
severe and grossly affect the instruction execution. 
Therefore, a thorough exercising of each instruction 
appears to be the best approach to this problem and 
may be relied upon to detect the majority of such 
faults. 

The length of the test can be reduced by studying 
logic diagrams in an attempt to find sections of logic 
used by more than one instruction. In some computers, 
for example, indirect addressing is handled by the 
same microinstruction cycle in every instruction. It 
would not be necessary, therefore, to test indirect 
addressing with each instruction. 

Correct operation of certain instructions may be 
assumed if execution of the test routine is not possible 
without them. For example, it may be assumed that 
the JUMP instruction is operative because the first 
instruction executed after a hardware interrupt is a 
JUMP to the routine which is to handle the interrupt. 

Although the approach used in this case is largely 
intuitive, if a little time is spent familiarizing oneself 
with the computer's logic and timing, the number of 
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faults which can escape detection can be greatly re­
duced. 

Logic function and condition logic 

Most Boolean operations may be easily tested by 
exhaustion of their respective truth tables. 

As a general rule, small computers have a ripple-
carry adder. Because the circuitry is simpler, this form 
of adder is easier to check than one using carry-look-
ahead. To check an adder, it is necessary to verify 
that each bit position can both generate and sink a 
carry. Both of these tests may be made simultaneously 
for all bits by adding a word of alternating ones and 
zeros to itself (252528+252528) and then adding that 
same word's complement to itself (525258+525258). 
I t is also necessary to verify that each bit position can 
propagate a carry. This is accomplished by adding 1 to 
777778. Adding 777778+777778 verifies that every bit 
position can simultaneously generate and sink a carry. 
The remainder of the truth table may be verified by 
adding 000008+000008, 777778+000008, and 000008+ 
777778. 

I t is desirable to consult the logic drawings in order 
to determine how to test the overflow and conditional 
transfer logic. Although the implementation of this 
logic varies between machines, it is quite straight­
forward and simple to check. 

Core memory 

The core memory is, perhaps, the functional element 
which will fail most frequently. This may be attributed 
to the requirement for high-power circuits operating 
under closer tolerances than the conventional logic 
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gates used in the rest of the computer. Many faults 
which occur in a core memory are the type which may 
be present for a long time before being discovered, such 
as a fault which affects only a rarely used part of mem­
ory. The ability to read and write at every address 
does not mean that the memory is free from faults; a 
faulty address decoder may read or write at two loca­
tions simultaneously. 

Small computers commonly use a 2-1/2D arrange­
ment for the memory address decoding.8 This method 
relies on a coincidence of current on an X-axis lead and 
a Y-axis lead to select a core to be written or read. To 
do this the address bits are divided into two fields, 
which independently control the X and Y current 
drivers. In addition, each of these fields is further di­
vided into two subfields. For example, if there are n 
bits in the field which selects the Y lead, then half of 
these bits will select one of 2n/2 current sources; the 
other half will select one of 2n/2 current sinks. Since 
every source is connected to every sink, the independ­
ent selection of one source and one sink selects one of 
the 2n Y-axis leads. Different sources and sinks are 
used for the read and write operations. 

Figure 6 depicts the addressing scheme for a 16-word 
memory requiring a 4-bit MA. Only a single bit posi­
tion of the memory word is shown. Other bits of the 
same word are selected by replicating the Y-axis 
drivers for each bit position as shown in Figure 7. 

During the write cycle, only the Y-axis drivers cor­
responding to bits which are to be set to 1 will be en­
abled. Because the read and write operations require 
currents in opposite directions, separate drivers are 
required for each of these operations. This means that 
a fault may affect the read operation and not the write 
operation and vice versa. 

The test procedure for checking the address decoder 
is to select one of the four subfields, having length m, 
to be checked first. The contents of each of the 2m 

locations obtained by selecting all combinations of 
these m bits and holding the remaining bits constant 
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are stored in a buffer area. Each of the 2m locations 
is then set to zero. Into one of the locations is written 
a word of all ones. Each of the remaining locations is 
checked to see that its contents is still zero. The orig­
inal location is then checked and cleared. This process 
is repeated for each of the 2m locations. Upon comple­
tion of the test, the contents of the locations are re­
stored and the test is repeated for each of the remain­
ing three subfields. 

To justify this test, assume that one of the input 
leads to a read current source were stuck at 0. This 
would mean that at least one bit in the set of test words 
could not be read as a one and would be detected by 
the test. I t is also possible that an input to a write 
current source could be stuck at 0. Because of a core 
memory's destructive read-out, the corresponding bit, 
or bits, could be read once and then never rewritten 
as a 1. Again, at least one bit of the set of test words 
would be stuck at 0 and the fault would be detected. 

Suppose now that an input to a read current source 
were stuck at 1. This means that one of the 2m ad­
dresses will select two read current sources at the same 
time, dividing the read current. The result will now 
depend upon the tolerances of the memory. The divided 
currents may not be sufficient to cause a core to switch. 
At least one test bit would then appear to be stuck at 
0 and the fault would be detected. The divided cur­
rents may, however, each be sufficient to switch a core. 
During its execution, the test will cause a 1 to be 
written by using lead A. Later, when an attempt is 
made to read a 0 by using lead B, lead A will also be 
selected and a 1 will be read. Similarly, an input to a 
write current source may be stuck at 1. If the resulting 
split in the write current is insufficient to switch a core, 
the inability to write into certain test locations will be 
detected as before. If each half of the divided current 
is sufficient to switch a core, the writing of a 1 into some 
location C will also write a 1 into some location D. This 
extra 1 will be detected when location D is checked 
for a 0. Because this test is considerably longer than 
the previous tests, it may be desirable to partition the 
test. A very natural partition would be to check each 
group of current sources separately. 

The only way to check individual cores in the mem­
ory is to read and write using every location. Although 
this must be a lengthy test, some time saving can be 
realized if the locations are checked by reading a word 
and writing its complement back into the same loca­
tion. If the complement can be read back, the word is 
good. This method makes use of whatever is already 
in the memory location and, therefore, saves the time 
which would have been required to save the contents 
to the location and initialize the location. This test is 

normally not included in the test program because of 
the time required for its execution. 

SUMMARY 

This procedure has been applied to a DEC PDP-9 
computer with two 8K core memory modules. The test 
routine requires 550 words of core memory and a maxi­
mum of 8 milliseconds per pass. The time needed to 
test the core memory increases with the size of the 
memory itself; but, by segmenting the test so that only 
a portion of the core is checked during each pass, it is 
possible to increase the memory size without increasing 
the amount of time required for a pass. All tests of the 
CPU itself are made each pass, but 12 passes are re­
quired to completely test the memory. The hardware 
monitor requires 58 words of read-only memory and 
solely determines the frequency at which the tests 
are made. This frequency may be adjusted according 
to the work load on the computer. 

This technique would seem to have many applica­
tions on small machines which have previously avoided 
fault detection because of the cost or the need to make 
hardware changes to the computer. 
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