
Real-time fault detection for small computers

by J. R. ALLEN

Bell Telephone Laboratories
Naperville, Illinois

and

S. S. YAU**

Northwestern University
Evanston, Illinois

INTRODUCTION

Advancing technology and declining costs have led to
a sharp increase in the number and variety of small
computers in use. Because small computers are readily
suited for many real-time applications, a great deal
of work has been directed toward simplifying the inter­
face between the computer and its peripherals. Hard­
ware interrupting capability and a specially designed
I /O bus are required for peripheral device interfacing
in a real-time environment and such things as direct
memory access, data channels, and multilevel hardware
and software interrupt capability are common. These
machines tend to be parallel, synchronous computers
with a relatively simple architecture.

In a real-time environment, fault detection can be of
major importance. Much of the past work has been
directed toward the design of additional hardware,
internal to the computer, which allows critical feedback
loops to be controlled and often inserts special registers
for the maintenance task.1-4 These techniques require
that the maintenance circuitry be designed concur­
rently with the computer itself and have access to
components internal to the computer. Many problems
can arise from attempting to modify an existing com­
puter. For example, critical timing and gate fan-out
can be disturbed, and most warranties become void
if unauthorized modifications are made to a computer.

Other techniques cannot be used for real-time fault
detection because they require manual intervention,

* Portions of this Work were supported by U. S. PHS Grant
No. 5 POl GM 15418-04.

** Depts. of Electrical Engineering and Computer Sciences,
and Biomedical Engineering Center.

excessive storage, noncontiguous memory locations
or excessive execution time.5-7 Much of the previous
work attempts to locate faults as well as detect them.
While fault location is desirable, it is more expensive
and requires much more time and storage than fault
detection. Many applications do not require fault lo­
cation. It may be more feasible to either interrupt the
task or perform the task manually during the diagnosis
and repair interval; the most important thing is to
recognize that the computer may be performing the
task incorrectly.

An earlier technique attempted to simulate each
instruction using different instructions and comparing
the simulation result with the actual result.7 This
technique requires that the computer be somewhat
operational and that it be capable of comparing the
two results. A means is needed for determining that
the test routine is executed periodically.

In this paper, we propose a real-time fault detection
scheme for small computers which is effective for faults
in the central processor unit (CPU), core memory and
I/O bus. It requires an external monitor which is
simple, inexpensive, and interfaces to the computer's
I /O bus just as any other peripheral device. The monitor
periodically triggers a program interrupt, causing the
computer to execute a predefine test routine. During
the course of the routine's execution, several key bit
configurations are transmitted to the monitor. If the
computer fails to respond or if the bit configuration
does not match the one that is expected, then the
computer is assumed to be faulty and the device may
either cause a power down or sound an alarm.

The proposed technique compares favorably to the
previously referenced techniques in fault detection.
Certain faults will not be detected, however, because

119

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1478873.1478890&domain=pdf&date_stamp=1971-11-16

120 Spring Joint Computer Conference, 1972

1 MA 1

i
CORE

MEMORY

1

1
t

| I /O BUS

0 BUS |

T T

| MB | | PC | | IX | | AC/GPR | | AR |

1
,,

| B BUS | |

t

|

1
t
IR

A BUS |

*
ADR |

.

INSTRUCTION
SEQUENCER

^HARDWARE
INTERRUPT

Figure 1—Typical computer architecture

internal modification to the computer is not allowed.
In the past, real-time fault detection has carried a price
tag comparable to the cost of the computer itself. A
major advantage of this technique is that its low cost
makes a great deal of fault detection possible in appli­
cations which would not previously have been cost
effective. The fact that the technique assumes that no
modification may be made to the computer means that
many existing systems could make use of the method
without extensive modifications.

COMPUTER ARCHITECTURE

The proposed fault detection method may be used
with a variety of small computers, all of which are very
similar in architecture. Included in this class of com­
puters are such machines as Digital Equipment Cor­
poration's PDP-8, PDP-9/15; Hewlett-Packard's HP-
2100; Honeywell's DDP-516; Data General's Nova-
1200 and Nova-800; Xerox Data System's Sigma-3;
and Hitachi's HITAC-10. All of these are parallel,
synchronous machines with hardware interrupt and
I /O bus.

Figure 1 shows a block diagram of a typical small
computer. The program counter (PC) contains the
address of the next instruction to be executed. The
memory buffer register (MB) serves as temporary storage
for information being written into and read from
memory. The address of the memory cell to be accessed
is placed in the memory address register (MA). The
decoded contents of the instruction register (IR) controls
the instruction sequencer. Other registers commonly
found are an accumulator (AC), general purpose registers
(GPR), an arithmetic register (AR) and an index register
(IX). Most small machines make use of some subset of
these registers.

Most of the logic functions are performed in the
general purpose logic unit (ADR). A pulse on the hard­
ware interrupt lead will cause the instruction sequencer
to save the appropriate registers and to begin executing
a different program.

ADDITIONAL HARDWARE REQUIREMENTS

This section explains the function of each portion
of the block diagram for the monitor hardware shown
in Figure 2.

The DEVICE SELECT modules (DSl and DS2)
are basically an array of AND gates which allow the
peripheral device control signals and data signals to
pass only when the proper device select code is present
on the device select bus. This allows several peripheral
devices to share the same I/O bus without interfering
with one another. Three device codes are required,
XX, XX, and YY. It is desirable to have one device
code (XX), which is the complement of the other to
verify that each bit of the device select bus can be set
to. both logical states.

Device codes XX and YY cause the WIRED
REGISTER to be gated onto the Input Bus. The
WIRED REGISTER is constructed simply by at­
taching alternate bits to a voltage representing a logical
one and the remaining bits to logical zero. When
device code YY is selected, the "DEVICE = YY"
lead is enabled causing the contents of the WIRED
REGISTER to be complemented before being placed
on the Input Bus. Reading from both device XX and
device YY causes both a 1 and a 0 to be read from each
bit position. Many computers determine the status of
a peripheral device by executing an instruction which
causes the next instruction to be skipped if a status
FF is set. By executing this instruction with device
code XX the BUSY/IDLE FF will appear to be busy;
if device code YY is used, the "DEVICE = YY" lead
causes the FF to appear to be idle. In this way the
device status testing feature may be checked.

Device code XX is used when outputting bit con­
figurations to the monitor for comparison to the
expected value. The INTERRUPT TIMER is simply
a monostable FF which, after an appropriate delay,
will cause a program interrupt to be sent to the com­
puter and at the same time sets a FF, which enables
the RESPONSE TIMER. The testing frequency is
set by adjusting the monostable's delay time.

The RESPONSE TIMER is used to determine that
the computer is taking too long to respond and may be
"lost." If the RESPONSE TIMER is not reset or
disabled before it "times out," an OVERTIME signal

Real-Time Fault Detection for Small Computers 121

COMPUTER

i i

INPUT

BUS

DEVICE
STATUS

PROG

INTERRUPT

OUTPUT

READY*~

OUTPUT
BUS ^

FAULT

DEVICE

SELECT

(DSD

DEVICE

CODE

(XX)

OR

(YY)

DEVICE

SELECT

(DS2)

DEVICE

CODE

(XX)

i 1 INI

DEVICE =

PI

HIBIT

YY

XOR .

u

"

XOR

WIRED REGISTER
= 525252

B/l WIRED BUSY/IDLE
= BUSY

r

"
"
B

I
R

FAULT
F-F

SET

- A

1
INTERRUPT

TIMER
RESET

n-

* r
- " " A r

" ,st lNHt5LL
1 '

MATCH
LOGIC

• SET

j MIS

PR —
U

>MATC

A

t
B
U
F

R
H

COUNT

ENABLE

:LEAR

ADDRESS
COUNTER

J

ROM

OVERTIME

,
f RESET

RESPONSE
TIMER

Figure 2—Block diagram for monitor hardware

is generated, indicating that a fault has been detected.
A circuit to perform the RESPONSE TIMER function
is shown in Figure 3.

The ADDRESS COUNTER is simply a cyclic
counter designed to count modulo N, where N is the
number of responses expected during a normal test.
When the counter resets, a DONE signal is generated
which disables the RESPONSE TIMER and resets
the INTERRUPT TIMER. The ADDRESS

, + 5V

ENABLE

R E S E T r > ^ — • - .
n

SCHMIDT
TRIGGER

OVERTIME

Figure 3—Response timer

COUNTER is incremented after each output from the
computer to sequentially address the contents of the
read-only memory (ROM). The ROM need not be
large and may be built economically from a diode
array.

The response from the computer and the expected
response, read from the ROM, are both buffered and
compared by the MATCH LOGIC. When enabled,
the MATCH LOGIC basically OR's together each bit
of the XOR of the two buffers to produce the MIS­
MATCH signal. An OUTPUT READY signal from
the computer is used to load the BUFFER, enable the
MATCH LOGIC, reset the RESPONSE TIMER, and
increment the ADDRESS COUNTER, all after ap­
propriate delays.

If either a MISMATCH or an OVERTIME signal
is produced, the FAULT FF is set. This inhibits any
further output to the monitor, thus preserving the
contents of the ADDRESS COUNTER and the two
buffers as an aid for the diagnosis of the fault.

122 Spring Joint Computer Conference, 1972

The FAULT signal may be used in whatever way-
seems appropriate; it may stop the computer, sound an
alarm, or trigger an interrupt to call some form of self-
diagnosis program, which may attempt to actually
locate the fault.

All circuits may be built using conventional methods
and commercially available logic gates. The total cost
of the hardware components is estimated at approxi­
mately $250.

GENERAL GUIDELINES

Small computers seldom have a large amount of
core memory, often as little as 4,000 words. Often,
external storage is limited to paper tape, which re­
quires manual intervention to be read. In order for a
real-time fault detection scheme to be useful in these
circumstances, its memory requirements should be
small enough to allow it to remain resident in a very
small core memory and still leave room for the system
programs.

A large number of faults are severe enough to either
stop execution or at least to make sequential instruc­
tion execution impossible. No additional effort need
be made to detect such a fault; the resulting failure
to produce the required sequence of responses will
cause the fault to be detected. However, faults which
affect only a single bit position of a bus or register can
be among the most troublesome. This type of fault
may allow execution to continue, perhaps indefinitely,
without an indication the fault exists.

Certain portions of the computer are very difficult
to check under the assumed restrictions. Input-Output
leads, other than those used by the monitor, cannot
be checked without adding more hardware for each
set of leads. Such Input-Output leads include Direct
Memory Access, Data Channel, Console Controls, and
special device channels. These devices usually appear
as a data bus input which cannot be controlled. I t can,
however, be determined that none of these inputs is
stuck at a one level as this would always cause the
output of the bus to be one.

The instruction control circuitry cannot be checked
directly. There are no instructions which access most
of the control leads. Therefore, the correct operation
of a control lead can only be determined by checking
conditions caused by that lead, such as the comple­
menting of a register. A thorough check of the control
circuitry, under the given constraints, would be
lengthy. It can, however, be determined that most of
the gating signals can be produced. This can be done
by executing every instruction type and checking to

see that the proper data transfers have taken place.
This method would intuitively seem to be very effec­
tive and can be accomplished in a short period of time.

Because the test routine is periodically required to
change the contents of memory locations outside of its
own boundaries, the interrupt facility must be disabled
during the execution of the test. This is necessary to
insure that all locations are restored before control is
released by the test routine. Since it is undesirable to
lock out high-priority tasks for a long period of time,
the execution time of the routine should either be very
short or the routine should be segmented to allow the
servicing of high-priority tasks.

There are a number of ways to cause the external
monitor to recognize that a fault has occurred. One
of the most reliable ways is to design the test in such
a way that the computer will output an unexpected
bit configuration in the event of a fault. This technique
is demonstrated by the following example. The ac­
cumulator is first loaded with a bit pattern A and then
caused to skip over an instruction which would place
A on the I/O bus. After the skip, the AC was changed
to a pattern B and output to the monitor. If the skip
did not occur, pattern A would have been output and
would not have matched the expected pattern B.

Another method is to cause the program to "loop"
in the event of an error. The normal sequence of output
bit patterns will then cease and the monitor will recog­
nize the cessation of response as an indication of a
fault. Use of these techniques reduces the read-only
memory requirements for the monitor.

TESTING TECHNIQUES

This section describes several techniques, which
may be used to test the various computer components.

Registers

Registers in parallel synchronous machines com­
monly resemble the configuration in Figure 4. Although
the actual circuitry may vary, the function is very

\
)

F-F
B

Figure 4—Flip-flop

Real-Time Fault Detection for Small Computers 123

simple and well defined. When lead C becomes enabled,
the information on lead A (usually a major bus) is
gated into the FF. When lead C is disabled, the FF
retains the state of lead A. A variation of this type of
register requires a fourth lead which clears the register
prior to the enabling of lead C which then OR's the
state of lead A into the FF. Verification that each bit
of a register can be set to both logical states completes
a functional test of the FF. A single possibility
remains—a stuck at 1 fault on lead C. This fault is very
severe because lead C is common to every bit of the
register. Having lead C stuck at 1 would cause lead A
to be fed directly into the FF and would totally in­
capacitate the register. In most cases the state of lead
A changes many times between the setting and the
reading of a register, thereby, destroying the original
contents. If this does not happen automatically, an
effort should be made to cause it to happen.

To check a programmable register, such as the ac­
cumulator, the register is first loaded with a bit con­
figuration. The contents of the register are then output
through the I /O bus to the external monitor. The
programmable register is then loaded with the comple­
ment of the first bit configuration and its contents
again output to the monitor. This procedure also
checks the I/O bus drivers, and the outputs of each
bus between the accumulator and the I/O bus.

Not all of the registers generally used in small
machines are directly accessible under program control.
In these cases a variety of techniques must be used in
order to infer that the register can be set and read
correctly. Five such registers were described in the
introduction.

One of these registers is the arithmetic register (AR).
Because the contents of the general purpose registers
is commonly stored into AR so that AR may be used
as the operand, many tests of the general purpose
registers require the data flow to pass through AR,
testing it at the same time. This commonly happens
in the output instruction itself, meaning that no extra
effort is required to check AR.

The second nonprogrammable register is the memory
buffer (MB). This register is used to contain the data
word core memory read-write operations; it must be
capable of being set and cleared in order to correctly
access core memory. If two complementary words can
be read from memory, then the MB is operative.

The third nonprogrammable register is the instruc­
tion register (IR) which contains the OP code. This
register is different from the above registers in that its
contents are never gated to a point at which it could be
displayed. In this case a set of instructions may be
selected in such a way that together they incorporate

both logical states for each bit. If it can be verified
that each of these operations can be performed suc­
cessfully, then it may be assumed that IR is operative.

The fourth nonprogrammable register is the memory
address register (MA). This register is tested in the
following manner: the contents of the sequence of
addresses (0, 1, 2, 4, 8, . . . , 2n~l, where n is the number
of bits in MA, is saved in a test routine buffer area in
real core for future restoration. Second, two comple­
mentary flags X and X are written into location 0
and read back. The flag X is left in location 0. Another
flag (Y) is then written into each of the other n loca­
tions. If, after the n write operations, the contents of
location 0 is still X, then the MA register is operative
and the n + 1 locations used for this test should be
restored. To see this, assume that a bit (A) of MA is
stuck at either 1 or 0. This is not to say that bit A is
the only inoperative bit, but only one of possibly sev­
eral. In this case, when an attempt is made to write
into location 0, the flag will actually be written into
another location (B). (If every faulty bit is stuck at 0,
then B = 0.) Later when an attempt is made to write
into location 2A, this data will also be written into
location B, overwriting the original flag. In general,
location B will be overwritten once for every inopera­
tive bit in MA. When an attempt is made to read from
location 0, the overwritten contents of location B will
be returned, which will no longer be the flag originally
placed there. I t should also be noted that a fault in the
address decoding circuitry or the memory itself cannot
mask a fault in the MA.

The fifth nonprogrammable register, the program
counter (PC), may be tested in much the same way as
the MA register. The first flag to be written into loca­
tion 0 is the binary configuration of a "JUMP TO A"
instruction. Into the remaining n locations is written
a "JUMP TO B" instruction. After the MA register
has been checked, a transfer is made to location 0.
This causes the PC to be loaded with a binary zero
and the "JUMP TO A" instruction there to be exe­
cuted. At location A, a signal is made to the monitoring
unit that the transfer was successful and the contents
of location 0 are changed to a "JUMP TO C" instruc­
tion. The code at location C will cause the program to
loop, or output an unexpected word which will cause
an error condition to arise. The test routine then pro­
ceeds to transfer to each of the locations 1, 2, 3 . . . 2n~l.
Each transfer should cause a return to location B,
which simply continues the sequence. However, as
with the MA register, if any bit of the PC is inoperative,
then the "JUMP TO C" instruction will be executed
and an error condition generated.

All of the above registers are found in most com-

124 Spring Joint Computer Conference, 1972

D
Figure 5—Bus structure

puters and the methods described are generally ap­
plicable.

In the methods for checking MA and PC, it is im­
portant to insure that addresses 0, 1, 2, . . . 2 n - 1 donot
lie in critical parts of the test routine. This is simply a
matter of convenience; if this restriction is undesirable,
a slightly more general algorithm can be used to allow
complete freedom in the location of the test routine.
Since all of the n + 1 locations lie in the first 2" loca­
tions, the program could be loaded anywhere in the
second half of the memory.

Data bus

A computer data bus typically consists of some varia­
tion of the circuit shown in Figure 5. Although there
are many ways to implement this function, using dif­
ferent types of logic gates, nearly all faults will behave
as though one of the leads numbered 1-10 has become
frozen at one logical state. Certain varieties of logic
allow the OR function to be accomplished simply by
tying the outputs of gates A, B, and C together. This
arrangement also satisfies the above statement. One
input of each AND gate is usually common to all bit
positions and functions as a gating lead for transferring
data onto the bus.

A data bus may often be directly accessible to a
number of peripheral devices for such features as
direct memory access or a data channel. When this
happens, one or more of the AND gates in Figure 5
may have inputs which cannot be controlled without
interfering with certain of the peripheral devices. There
will, therefore, be a few of the AND gates which will
not be checked.

For the remaining AND gates, the objective is to
verify that each input and output can assume either

logical state. This can be done by gating both a 1 and
a 0 onto the bus from every AND gate.

Control circuitry

Unlike a data bus or a register, the circuitry which
controls the gating and timing for the instruction exe­
cution is neither simple in function nor standard in
design.

The approach taken here is to include segments of
code in the test routine which will exercise each in­
struction and check to see that it is performed cor­
rectly. This thoroughly tests the instruction decoder
by providing it with all possible inputs. The control
circuitry is the most difficult part of the computer to
check because there is virtually no means of direct
communication between this circuitry and the I/O
bus. All tests must be made by performing an operation
and verifying that the correct operations have taken
place. It is possible, however, that something totally
unexpected may happen in addition to normal opera­
tion of the instruction. To detect a fault such as this
would require an extensive test for every instruction.
There is no method known, at present, which would
produce such a test using only the I /O bus with no
hardware modifications to the computer. If such a
method were available, it is likely that the storage re­
quirement and execution time would limit its useful­
ness for a real-time environment. Fortunately, faults
which occur in the control circuitry are usually quite
severe and grossly affect the instruction execution.
Therefore, a thorough exercising of each instruction
appears to be the best approach to this problem and
may be relied upon to detect the majority of such
faults.

The length of the test can be reduced by studying
logic diagrams in an attempt to find sections of logic
used by more than one instruction. In some computers,
for example, indirect addressing is handled by the
same microinstruction cycle in every instruction. It
would not be necessary, therefore, to test indirect
addressing with each instruction.

Correct operation of certain instructions may be
assumed if execution of the test routine is not possible
without them. For example, it may be assumed that
the JUMP instruction is operative because the first
instruction executed after a hardware interrupt is a
JUMP to the routine which is to handle the interrupt.

Although the approach used in this case is largely
intuitive, if a little time is spent familiarizing oneself
with the computer's logic and timing, the number of

Real-Time Fault Detection for Small Computers 125

faults which can escape detection can be greatly re­
duced.

Logic function and condition logic

Most Boolean operations may be easily tested by
exhaustion of their respective truth tables.

As a general rule, small computers have a ripple-
carry adder. Because the circuitry is simpler, this form
of adder is easier to check than one using carry-look-
ahead. To check an adder, it is necessary to verify
that each bit position can both generate and sink a
carry. Both of these tests may be made simultaneously
for all bits by adding a word of alternating ones and
zeros to itself (252528+252528) and then adding that
same word's complement to itself (525258+525258).
I t is also necessary to verify that each bit position can
propagate a carry. This is accomplished by adding 1 to
777778. Adding 777778+777778 verifies that every bit
position can simultaneously generate and sink a carry.
The remainder of the truth table may be verified by
adding 000008+000008, 777778+000008, and 000008+
777778.

I t is desirable to consult the logic drawings in order
to determine how to test the overflow and conditional
transfer logic. Although the implementation of this
logic varies between machines, it is quite straight­
forward and simple to check.

Core memory

The core memory is, perhaps, the functional element
which will fail most frequently. This may be attributed
to the requirement for high-power circuits operating
under closer tolerances than the conventional logic

0 1 MA1

A X
IK

MA 3

V"
12

10

14 15

MA2

1 MAO

I BIT 1 | | BIT 2 | BIT N

-f h

-i h

Figure 6—Core memory bit slice

I I •
Y - DRIVERS

Figure 7—Memory addressing structure

gates used in the rest of the computer. Many faults
which occur in a core memory are the type which may
be present for a long time before being discovered, such
as a fault which affects only a rarely used part of mem­
ory. The ability to read and write at every address
does not mean that the memory is free from faults; a
faulty address decoder may read or write at two loca­
tions simultaneously.

Small computers commonly use a 2-1/2D arrange­
ment for the memory address decoding.8 This method
relies on a coincidence of current on an X-axis lead and
a Y-axis lead to select a core to be written or read. To
do this the address bits are divided into two fields,
which independently control the X and Y current
drivers. In addition, each of these fields is further di­
vided into two subfields. For example, if there are n
bits in the field which selects the Y lead, then half of
these bits will select one of 2n/2 current sources; the
other half will select one of 2n/2 current sinks. Since
every source is connected to every sink, the independ­
ent selection of one source and one sink selects one of
the 2n Y-axis leads. Different sources and sinks are
used for the read and write operations.

Figure 6 depicts the addressing scheme for a 16-word
memory requiring a 4-bit MA. Only a single bit posi­
tion of the memory word is shown. Other bits of the
same word are selected by replicating the Y-axis
drivers for each bit position as shown in Figure 7.

During the write cycle, only the Y-axis drivers cor­
responding to bits which are to be set to 1 will be en­
abled. Because the read and write operations require
currents in opposite directions, separate drivers are
required for each of these operations. This means that
a fault may affect the read operation and not the write
operation and vice versa.

The test procedure for checking the address decoder
is to select one of the four subfields, having length m,
to be checked first. The contents of each of the 2m

locations obtained by selecting all combinations of
these m bits and holding the remaining bits constant

126 Spring Joint Computer Conference, 1972

are stored in a buffer area. Each of the 2m locations
is then set to zero. Into one of the locations is written
a word of all ones. Each of the remaining locations is
checked to see that its contents is still zero. The orig­
inal location is then checked and cleared. This process
is repeated for each of the 2m locations. Upon comple­
tion of the test, the contents of the locations are re­
stored and the test is repeated for each of the remain­
ing three subfields.

To justify this test, assume that one of the input
leads to a read current source were stuck at 0. This
would mean that at least one bit in the set of test words
could not be read as a one and would be detected by
the test. I t is also possible that an input to a write
current source could be stuck at 0. Because of a core
memory's destructive read-out, the corresponding bit,
or bits, could be read once and then never rewritten
as a 1. Again, at least one bit of the set of test words
would be stuck at 0 and the fault would be detected.

Suppose now that an input to a read current source
were stuck at 1. This means that one of the 2m ad­
dresses will select two read current sources at the same
time, dividing the read current. The result will now
depend upon the tolerances of the memory. The divided
currents may not be sufficient to cause a core to switch.
At least one test bit would then appear to be stuck at
0 and the fault would be detected. The divided cur­
rents may, however, each be sufficient to switch a core.
During its execution, the test will cause a 1 to be
written by using lead A. Later, when an attempt is
made to read a 0 by using lead B, lead A will also be
selected and a 1 will be read. Similarly, an input to a
write current source may be stuck at 1. If the resulting
split in the write current is insufficient to switch a core,
the inability to write into certain test locations will be
detected as before. If each half of the divided current
is sufficient to switch a core, the writing of a 1 into some
location C will also write a 1 into some location D. This
extra 1 will be detected when location D is checked
for a 0. Because this test is considerably longer than
the previous tests, it may be desirable to partition the
test. A very natural partition would be to check each
group of current sources separately.

The only way to check individual cores in the mem­
ory is to read and write using every location. Although
this must be a lengthy test, some time saving can be
realized if the locations are checked by reading a word
and writing its complement back into the same loca­
tion. If the complement can be read back, the word is
good. This method makes use of whatever is already
in the memory location and, therefore, saves the time
which would have been required to save the contents
to the location and initialize the location. This test is

normally not included in the test program because of
the time required for its execution.

SUMMARY

This procedure has been applied to a DEC PDP-9
computer with two 8K core memory modules. The test
routine requires 550 words of core memory and a maxi­
mum of 8 milliseconds per pass. The time needed to
test the core memory increases with the size of the
memory itself; but, by segmenting the test so that only
a portion of the core is checked during each pass, it is
possible to increase the memory size without increasing
the amount of time required for a pass. All tests of the
CPU itself are made each pass, but 12 passes are re­
quired to completely test the memory. The hardware
monitor requires 58 words of read-only memory and
solely determines the frequency at which the tests
are made. This frequency may be adjusted according
to the work load on the computer.

This technique would seem to have many applica­
tions on small machines which have previously avoided
fault detection because of the cost or the need to make
hardware changes to the computer.

ACKNOWLEDGMENTS

The authors would like to thank Messrs. Gary F.
DePalma, G. Wayne Dietrich and J. S. Tang of North­
western University for helping in the implementation
of this fault detection scheme on the DEC PDP-9
computer.

REFERENCES

1 E G MANNING
On computer self-diagnosis: Part I—Experimental study of a
processor
IEEE Trans Electronic Computers EC-15 pp 873-881 1966

2 E G MANNING
On computer self-diagnosis: Part II—Generalizations and
design principles
IEEE Trans Electronic Computers EC-15 pp 882-890 1966

3 R W DOWNING J S NOWAK
L S TUOMENOKSA
No 1 ESS maintenance plan
Bell System Technical Journal Vol 43 pp 1961-2019 1964

4 K MALING E L ALLEN JR
A computer organization and programming system for
automated maintenance
IEEE Trans Electronic Computers EC-12 pp 887-895 1963

Real-Time Fault Detection for Small Computers 127

5 C V RAVI
Fault location in memory systems by program
Proceedings of AFIPS Spring Joint Computer Conference
pp 393-401 1969

6 M S HOROVITZ
- Automatic checkout of small computers

Proceedings of AFIPS Spring Joint Computer Conference
pp 359-365 1969

7 T R BASHKOW J F R I E T S A KARSON
A programming system for detection and diagnosis of machine
malfunctions
I E E E Trans Electronic Computers EC-12 pp 10-17 1963

8 P A HARDING M W ROLUND
Bit access problems in 2\^D 2-wire memories
Proceedings of AFIPS Fall Joint Computer Conference
pp 353-362 1967

