
The Rice Research Computer—A tagged architecture

by E. A. FEUSTEL

Rice University
Houston, Texas

INTRODUCTION

In this paper we report on a new computer with several
novel features. These features are applications of the
concept of tagged architecture, and although some
of them are not unique to the Rice Research Computer
(R-2), they focus our attention on this radical design
form, its advantages and disadvantages. Since the
work is still in progress, we limit this report to a dis­
cussion of the architecture and a few of its ramifications.

History of tagged architecture

The R-2 computer is an adaptation of a design of the
Basic Language Machine (BLM)1 of Iliffe. In his book
and paper2 he presents an argument for the utilization of
a fraction of each memory word as tag bits. These tag
bits are to be interpreted by the hardware as informa­
tion about the data found in the referenced location, or
its status with respect to the program or operating

t system.
The basic concept of tag bits is not new. Almost all

computers employ a parity bit which the hardware
uses to detect memory failure. In addition, many
computers utilize a lock byte which limits access to an
area of storage to the operating system or to those who
have a key byte that opens the locked area.

Early machines also employed bits which were of
special significance to the hardware. The Burroughs
B5500 employed a flag bit to inform the hardware that
the word at the location addressed possessed a non-
numeric value which must be interpreted by the
operating system.3 The Rice Computer (R-l),4 circa
1959, employed two bits for every word which could be
set by the operating system or the programmer. These
bits were used in an extensive debugging system wherein
tracing, monitoring, or other procedures were carried

* This work is supported in part by the Atomic Energy Commis­
sion under grants AT-(40-l)-2572 and AT-(40-l)-4061.

out when a tagged data word or instruction was
encountered.

Today the EAI8400 employs two tag bits for similar
purposes. The Telefunken TR4 and TR4405 employ
two tag bits to denote the numeric type of data at an
addressed location. The Burroughs B67006-7,8 and
B7700 which were developed concurrently and in­
dependently of the R-2 employ three tag bits to
identify types of numeric operands and special informa­
tion used by the operating system.

What is new about Iliffe's concept is that it represents
a rejection of the classical von Neumann machine in
favor of something which may be better. In the von
Neumann machine program and data are equivalent in
the sense that the data which the program operates on
may be the program itself. The loop which modifies its
own addresses or changes its own instructions is an
example of this. While this practice may be permissible
in a minicomputer with a single user, it constitutes
gross negligence in the case of a multi-user machine
where sharing of code and/or data is to be encouraged.

Instead, Iliffe presents a different conjecture. All
information which the algorithm needs to know about
the data ought to be contained indivisibly in the data
itself. For example, an algorithm to perform a /or-loop
on arrays ought to be the same whether the array is of
length ten or length 100. Rather than record this
information in a variable and use a loop with an index,
Iliffe proposes to record the length of the array with the
pointer to the array itself, as in Figure 1.

Rather than have several different algorithms for
add integer, add floating, add double precision, and
add complex, he proposes to make the data self-repre­
senting. An integer can only be used as an integer, a
floating quantity as a floating quantity, etc. This idea
is the fundamental difference between the class of
machines represented by the BLM, the R-2, and the
Burroughs B6700 on the one hand, and by those of more
conventional architecture on the other.

Once the fundamental decision has been made to

369

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1478873.1478920&domain=pdf&date_stamp=1971-11-16

370 Spring Joint Computer Conference, 1972

A L I B ADDRESS FORMAT

A 50 0 7

ARRAY
POINTER

ARRAY

Figure 1—A typical array pointer and its array

adopt this goal in hardware, and the commitment to the
use of memory bits for tags has been made, a great
many benefits result. One of the most important is that
the hardware, once informed of what each piece of
data is, can perform run-time checks for consistency
of data and algorithms, e g., bounds checking and type
conversion.

General structure of the R-2

We now turn to the general structure of the R-2 as
shown in Figure 2, which represents only a minor
modification from the original design which began in
January 1969. The system consists of three major
asynchronous subsystems: a memory system of 24K
64-bit words of core memory, a Digital Equipment
Corporation PDP-11 1-0 controller, and the CPU
complex. While the details of the first and second sub­
system are of interest, we will not be concerned with
them in this paper.

The CPU complex consists of a set of 64 16-bit
scratch-pad memory circuits organized as 64-bit
registers (designated X0 through XI5), whose cycle
time is approximately 40 nanoseconds, an arithmetic
unit and a CPU. The latter two units are built from
RCA ECL integrated circuits with typical delays
of from 3 to 5 nanoseconds. This results in a typical
add time for two 54-bit floating quantities on the order
of 50-200 nanoseconds, and a multiply consisting of
additions and shifts typically requiring 3 microseconds.

The address calculator in the CPU is one of the most
important features of the system. It functions as an
automatic base-bounds calculator and is responsible

for the high security of the system programs. For every
fetch from memory the address calculator is given
four quantities, a base address B of 20 bits, an initial
index I of 14 bits, a length L of 14 bits, and the element
selector D of 14 bits. In 150 to 200 nanoseconds the
calculator performs the following algorithm:

Temp: = D-I;
if Temp < O then Low error 1;
if Temp > L then High error 1;
Actual address: = B+Temp;

I is a number between — (213—1) and (213—1) in one's
complement form. D has a maximum value of 214—1
and this is the largest segment which one can practically
use. This should be sufficient for all but the largest
one-dimensional arrays of data. The base address B is
of sufficient size for any program (or memory) that we
can currently foresee, on the order of 1 million words.

Data formats

Before we can discuss the operation of the CPU we
must understand the various data formats which the
R-2 can deal with. These formats are given in Figure 3.
Each word currently consists of 62 bits of information.
A two bit field in every word contains a parity bit Z
and a write lock bit L. The remaining 60 bits may be
divided into four classes of words: numeric words,
control words, address words (or partition words), and
instruction words. The first three classes contain six
bits used for tags as Iliffe suggested. Four bits are used
to distinguish types and two may be set by the program­
mer to generate interrupts. The type codes are listed in
Table I.

SCRATCHPAD

ARITHMETIC
UNIT

C PU +

ADDRESS
UNIT

24K 64 BIT
CORE

MEMORY
INTERFACE

3—r.
I-O

CONTROLLER

l l l l l l l l
l -O DEVICE & DISK

Figure 2—Subsystems of the R-2 Computer

The Rice Research Computer 371

The format of the various numeric types is of little
interest. They are the same as those found in the
original Rice Computer.4 See Table I.

We should take greater note of the formats for address
words. In addition to containing a base field (B), an
initial index field (I) and a length field (L), each address
word also contains an indirect reference field which in­
dicates the type of the object in the block described by
the address word. Two more bits are used. One indi­
cates whether the block which is described is in core
memory or in secondary storage (P). The other indicates
whether the block may be relocated. (Q).

Control words are an innovation. They are the only
method of intersegment communication. They contain
a 21-bit halfword pointer to an instruction (R-2 instruc­
tions are packed two per word). A mode field of 11
bits indicates the operating state of the computer at the
time a jump to a subroutine is made. A two-bit con­
dition code at the time the jump is made is stored in
field C. Since the routine may be disk resident, a P field
is provided to signal the routine's presence or absence
in core memory. A chain field is provided in each control
word. This field may be used to link together control
words which are on the stack or are in a common
linkage segment. Rather than scan storage linearly to

8 BIT
CONTROL
FIELD

2 2 i,

54 BIT
ARITHMETIC AND DATA FIELD

ZS D
L

COEFFICIENT

NUMERIC WORDS

2

z
L

2

s

•l

'D

1 » >

11

1".

CHAIN

C0NTR(

2

C

)L

11

MODE

WORDS

21

LOCATION

2

z
L

2

s

ll

D

••

IR

l".

LENGTH
(L)

!••

INITIAL
INDEX (I)

20

BASE

(B)

ADDRESS WORDS
or

PARTITION WORDS

2

z

L

2

S

A

<•

V
«

OP

*

Y

m

±N

2

S

A

*

/ v

c

OP

H

Y

it

IN

FIRST INSTRUCTION SECOND INSTRUCTION

INSTRUCTION WORDS

S—Software-defined tags
D—Direct tags
IR—Indirect tags
M—-Mark
Z—Parity
L—Write lockout
A—Literal value of ±N

N—Displacement of Location
Q—Restricted access to array
P---Array present in core
X — 1 s t operand reg. selector
V---Variant on operation
Y—2nd operand reg. selector
OP Operation code
C---Condition code

Figure 3—Diagram of R-2 word formats

TABLE I—Data Tag Assignment

TAG Number Meaning

0000 MIXED OR UNTAGGED
0001 (unassigned)
0010 (unassigned)
0011 (unassigned)
0100 REAL, SINGLE PRECISION
0101 54 BIT BINARY STRING OR INTEGER
0110 DOUBLE PRECISION (real, fl. pt.)
0111 COMPLEX (two single precision fl. pt. words)
1000 UNDEFINED FOR NORMAL OPERATIONS
1001 PARTITION WORD
1010 RELATIVE CONTROL WORD
1011 ABSOLUTE CONTROL WORD
1100 RELATIVE ADDRESS, UNCHAINED
1101 ABSOLUTE ADDRESS, UNCHAINED
1110 RELATIVE ADDRESS, CHAINED
1111 ABSOLUTE ADDRESS, CHAINED

find the previous control word, one merely follows the
chain of links. Finally, a four-bit mark field may be used
to indicate the level of the subroutine or the level of the
subtask in the operating system. These marks are
especially useful when employed with the control
stack for exiting blocks and reestablishing an appro­
priate environment.

Processor foxilities

Two major resources are available for use by the
instruction unit. The first is the hardware stack and
stacking mechanism. The second is the register set
(previously described). The stack is maintained in
memory and utilizes an address word held in register
X0 as a stack pointer and bound. In order to utilize the
address calculator in a consistent manner, the top of the
stack is the location addressed by the base field of the
address word and the bottom of the (accessible) stack
is determined using the length field. Special words called
partition words are stored by the operating system to
denote the absolute beginning and end of the stack
region or to point to a continuation of the stack in
another segment (see Figure 4). Any word of the acces­
sible stack within 214—1 of the top may be accessed by
an instruction. Partition words cannot be overwritten
by normal stacking and unstacking operations.

Two hardware registers U and R constitute XI, the
double length accumulator for arithmetic and logical
operations. If XI is loaded with an item of double
precision or complex data, the second word is held in
the R register. Special instructions are available to
address the R register independently of U.

372 Spring Joint Computer Conference, 1972

BOTTOM OF STACK

XO L 1=0

PF-PARTITION FORWARD

PB-PARTITION BACKWARD

ALLOCATED FOR STACK

Figure 4—The stack pointer and stack layout

four bits labeled X/V in Figure 3 are interpreted differ­
ently in two classes of instructions. The first features a
four bit result register field X. The second uses this
field as a variant code for the operation, and for this
class (which includes arithmetic and logic) the first
operand is implicitly XI, which also contains the
result.

Instructions are customarily written in the form
S A X O P Y ± N o r S A O P Y ± N where the function
is to perform X OP Yeff—>X. The first operand X is
either stated explicitly or is implicit in the instruction.
Yeff depends on the contents of Y, the number N and
the immediate bit A.

Rather than describe the operation of the addressing
algorithm for Yeff exhaustively by flow diagrams, we
will describe instruction sequences for short algorithms.
This will show the effect of Iliffe's conjecture, as well
as illustrating the machine design.

EXAMPLE PROGRAMS

Registers X2 through X15 are implemented with the
scratchpad memory integrated circuits mentioned
previously, and a reserved, fixed core memory location is
associated with each register to hold the second word of
double word data when it appears. By recognizing
the data tags "complex" and "double precision," the
hardware automatically performs the appropriate
double word transfers and storage so that no special
programming is required. Thus, to the programmer XI
through X15 appear to be a set of general purpose
double word registers. Since X0 is always used as the
stack pointer, the hardware rejects (by interrupt) any
attempt to store a word into X0 unless it is tagged as
an address word.

All of the other registers except X15 may be used for
temporary storage of numbers, addresses, or control
words. X15 must contain an address word which de­
scribes where the interrupt vector is located. All
interrupts transfer relative to this address. In the event
of a catastrophe when there might not be an address
word in X15, interrupts transfer to locations relative
to absolute address 0.

Instruction formats

Every instruction contains a one bit software tag
denoted by S and six bit function code field labeled OP
in Figure 3. Each instruction also features an immediate
bit labeled A, a numeric offset labeled N which may be
plus or minus, and a register field Y. The remaining

Example 1—Accessing vector elements

All elements must be accessed through an address
word. Address words can be constructed by the op­
erating system in a manner to be described in a following
example. Suppose we have an address word in X2
which points to a vector in the manner of Figure 1, and
suppose we wish to add the element with index ten
of the array to a numeric quantity in XL We could use
the following instruction:

ADD X2.10 / / Select the element of X2 indexed by
10 and add to XI. Suppose the initial index of X2,
I(X2) is —4, the length 15, and the base address 1000.
The sequence of computations would proceed as follows.
The computer would check X2 and determine that it
contained an address. I t would issue B = 1000, I = — 4,
L = 15, and D = 10 to the address calculator. The
calculator would compute D-I (10—(—4)) or 14
which is greater than —1 and less than L. Since the
element is within the vector, an address of 1014 would
be generated and the element would be brought to the
arithmetic unit. If the element is an integer it would be
immediately added to the integer in XI and the
condition code would be set to reflect whether the
result was less than, greater than, or equal to zero. If
the element is real (fixed or floating point fraction), the
computer would convert XI to floating point form and
perform the addition. If the element is anything but a
numeric type, an exception occurs and an interrupt to a
fixed location relative to the address in X15 takes place.
If the instruction also invokes the auto-store option,

The Rice Research Computer 373

denoted ADD-
into 1014.

»X2.10, the result would be stored back that the initial indices are 0. Then we could use:

Example 2—Accessing array elements

On the R-2 we usually represent arrays in a tree
structure. The first index is used to determine an
element in a vector composed of address words. The
second index is used with this address element to select
an element from a second vector which is an address
word and so on until the last index which is used to
select the desired element. This kind of an array is
illustrated in Figure 5. Because of the fact that each
address word carries with it the length of the vector
it addresses, such arrays may be uniform or nonuniform
as desired. They may also be so large that only one
vector of data will fit in core memory at any time.

Two different methods of addressing such arrays
can be used. These methods are considerably more
efficient than that used on the Burroughs 6700 because
of the scratchpad registers X2-X14 which are available.
One method involves element selection as in the first
example. It is generally used when we wish to select
only Xt,/,*> element of an array rather than to deal
with every element. The following sequence of instruc­
tions indicates how this may be accomplished.

Suppose X2 contains the address word pointing to
the vector and we desire to select Z 3 I I I 5 and assume

ADDRESS

FORMATS

INTEGER REAL

N INTEGER REAL

-4

-5

* A

-2

-1 jn

-10

10

A

A
2

1

0

1

R

R

N

7-1

S3

-10

A
A

2
2

2

3 I
R

N

R

N

-12-2
5

4.3

- 7

X2 DOT = 3 / / Replaces the contents of X2
with the third element of
first level tree.

X2 DOT = 1 / / Replaces of the contents of
X2 with the first element of
second level.

X2 MOD = 5 / / Generates the address of
Z8li>8 in X2.

ADD -» X2 / / Adds (XI) to ZM ,B and auto-
stores back into the array.

This set uses the immediate address form of the
instruction.

An alternative form might employ a vector of sub­
scripts. Suppose that X3 contains the address word of a
vector of subscripts to be applied to Z, i.e. (3, 1, 5). The
following sequence indicates how this may be done.

X2 DOT X3.1 / / Obtains the
first level.

X2 DOT X3.2 / / Obtains the

third element of

first element of

X2 MOD X3.3
ADD

second level.
/ / Generates a

X2• / / Adds (XI) to Z8,i,6
stores.

pointer to Z3,i,5.
and auto-

This sequence of computations is as follows. The first
element of X3 (since I(X3) =0) is selected and brought
to the CPU. I t has the value 3. If X3 had
contained a number originally, 1 would have been
added to that number and the resultant would have
been used. This value is then used to obtain the third
element of Z's first level subtree (denoted Z3>*,*).
This is left in X2. The next operation obtains an address
word which is the first element of Z's second level tree
of the third branch (Z3,i,*). The next operation indexes
this address to make its location field point to the
desired element. This element is presumably a number
(integer, real, complex, or double precision). It is added
to the contents of the U register (XI), and the result
placed in XI and in Z3,i>5, thus smoothly implementing
the ALGOL 68 statement: Z[3,1,5]+ : ^ V; where V was
the contents of XI. If the value of (X3.1), (X3.2), or
(X3.2) had not been a number then an exception
would have occurred.

Examples—Array processing

Figure 5—A nonuniform three dimensional array
In some cases vector processing is desired. For this

purpose a different kind of access is desired. In this

374 Spring Joint Computer Conference, 1972

mode one systematically examines all the elements of an
array or vector in turn, and performs some operation
on them. For example, to sum a vector pointed to by an
address word in register X2, one might use the following
sequence of instructions. Assume (I(X2)) equals 0.

X3 LOAD 4 / / To sum five elements of
vector X2

XI LOAD 0 / / Initialize XI to Zero
AGAIN ADD X2.0 / / Add first element of

vector
X2 MOD = 1 / / Adjust X2 to point to

the next element
X3 JGE AGAIN / / Continue to CONT if

X3 is zero or negative
CONT / / Decrement and jump to

AGAIN otherwise.

This sequence loads X3 with the number 4 and XI
with the number 0. The next instruction causes the
number pointed to by the B field of X2 to be added to
the number in XI . If the length field is set to —1, an
exception will occur. The next instruction uses the
literal 1 to decrement the L field of the address in X2
and simultaneously increase the B field by 1. If L is
less than zero an exception will occur. The next instruc­
tion examines X3. If it is a number less than or equal
to 0, the next sequential instruction is taken. Otherwise
the number is decremented by one and control passes
to AGAIN. Using this sequence the first five elements
of the vector pointed to by X2 are summed. If there
are fewer than six elements in this vector, an exception
occurs. If there are exactly five elements in the vector
when the program gets to CONT, L(X2) equals zero.
An attempt to do X2 MOD = l again will cause an
error exception. Otherwise the new L(X2) is five less
than before and the new B(X2) is five more than
previously.

A shorter sequence may be used if it is desired to
sum all the elements of the vector. Here the programmer
need not even know how long the vector is.

XI LOAD = 0 / / Set XI to zero
AGAIN ADD X2.0 / / Add elements to XI

X2 JNL AGAIN / / See the discussion below

The last instruction checks to see if L(X2) is greater
than 0. If it is it performs X2 MOD = 1 and transfers
control to AGAIN. If it is not, control passess to the
next instruction.

As a final example of the power of this approach,
assume that we have three arrays A, BT, and C and

that we desire to compute ;

3=0

This can be calculated simply in the following routine
assuming X2 is an address word pointing to A, X4 is an
address word pointng to BT, and X6 is an address word
pointing to C.

INIT X9 COPY X4 / / Copies (X4) to X9
BEGIN X7 LOAD X6 / / Get rth subtree of

C
FIRST X3 LOAD X2 / / Get ith subtree of

A
X5 LOAD X4 / / Get fcth subtree of

ZERO X7.0 / / PutzeroinC i) f c

SECOND XI LOAD X3.0 //GetAitj

MUL X5.0 / / Multiply by BkJ
T

ADD-* X7.0 / / Add and autostore
to d,k

X5 MOD = 1 / / Next consider
Bk,j+1T

X3 JNL SECOND / / Next consider
A i, y+i

CONT / / if no more j con­
tinue here

X4 MOD = 1 / / Next consider

X7 JNL FIRST / / Consider Ci>k+1 if
any left

X6 MOD = 1 / / Consider Ci+l,k

X4 COPY X9 / / Start over with

-#0,0

X2 JNL BEGIN / / Consider Ai+1J if
any left.

This routine destroys pointers located in X2, X4, and
X6. The steps

MUL X5.0
X5 MOD = l

may be combined into MUL! X5 which uses a variant
option for the arithmetic operation code to modify the
address word in X5 after the element has been fetched.

Example 5—Use of the stack

The stack may be used for intermediate storage in
the following manner. It is first necessary to get the
operand in a scratchpad register. Suppose we wish to

The Rice Research Computer 375

stack X5. Then we write X5 STORE X0. The contents
of X5 is pushed onto the stack. On the other hand, X5
STORE X0.7 stores the contents of X5 in the seventh
location of the stack without altering other elements.
If there are less than seven elements on the accessible
stack an exception occurs. The top element of the stack
may be changed without pushing by the use of X5
STORE X0.1.

Elements are removed from the stack in an analogous
manner. For example, ADD X0 adds the top element
of the stack to the accumulator and pops the top
element. ADD X0.1 adds the top element of the stack
but does not pop it; ADD X0.7 adds the seventh ele­
ment of the stack without affecting the stack.

This stack arrangement affords many conveniences
in arithmetic operations. An example of this is the
instruction save and fetch. Take as an example X2
SVF X3.12. This instruction gets the twelfth element
of the array pointed to by X3, after saving the old
value of X2 on the stack, and places the new value in
X2. In compiling, the instruction XI SVF Xi.N will
occur frequently. Intermediate results can be saved
on the stack for later use. Alternatively, when the value
is to be used many times they can be stored in a register
using COPY.

The stack is also useful in control actions. The
instruction JUMP AND SET MARK, e.g., 4 JSM
LABEL, causes a control word to be made up pointing
to the next sequential instruction. This control word
contains the current mode, the current condition code,
and the mark specified by the JSM instruction, in this
case 4. The chain field is loaded with the current value
of L(X0). The resulting control word is pushed on the
stack. X0 is then updated to reflect a new stack regime.
L(X0) is set to 0 and B is set to the location that is one
less than that occupied by the control word. This stack
regime is completely disconnected from the prior one;
there is no way save through the registers or memory
constants to reach any of the members of the previous
stack regime (see Figure 6). One can return to the previ­
ous environment by the use of the return instruction:
RET 4. The previous control word is found by examin­
ing the address B(X0)-f-L(X0)-+l. This address con­
tains the last control word or a partition word pointing
to another section of the stack regime or a partition
word marking the absolute beginning of the stack. If a
control word occupies this position, B(X0) is set to point
to this address. The chain field of the control word is
copied into L(X0), the mode field to the mode register,
the condition code to the condition code register, and the
21 bit address to the program counter. If the mark field
is less than the literal used with the return instruction,
the computer resumes processing. Otherwise the process

500

400

XO 109

109

-200

100

BEGINNING OF STACK

C [15 |99|CClMODEJPC

C| l4 [89|CC|MODEjPC

TOP OF STACK

END OF STACK

f REGIME 1

REGIME 2
/310

/REGIME 3

Figure 6—The use of the stack in programming systems

described above is repeated until a partition word
marking the absolute beginning of stack is encountered.
If the beginning of stack is encountered, an error
exception will result. This form of return has the
advantage that it is efficient and can be used to return
several levels in a block structured language.

Relative addressing

In an earlier section we stated that all addressing
was done via an address word. In fact this is not quite
true. Addresses may be relative to the program counter
or to the location in which the address word or control
word is stored. One may then jump minus five halfword
instructions. This feature was available on the R-l in
1959 and made possible the development of very
efficient relocatable code. It is frequently found on
machines today. One can also access fullword data in
the same manner so that constants can be stored with
the code.

In the same way relative codewords and addresswords
can be used to address other quantities. The address of
the location in which the address or control word is
stored must be determinable by the computer. An
offset relative to this address is used to point to the
jump location or to the data. This feature makes
possible relocation of large blocks of data in a very
efficient manner and minimizes the number of address
words which contain absolute addresses. This is
important because it drastically reduces overhead in the
reorganization of storage. Only a few locations need to
be modified to relocate all programs and their data.

Chained Addressing

A second kind of addressing is also provided. Chained
addressing provides for efficient parameter passing

376 Spring Joint Computer Conference, 1972

mechanisms, particularly of the call by reference
variety. The addressing algorithm is modified to include
indirection. When a chained address or control word is
encountered the machine causes an indirect reference
through the address or control word to the next quan­
tity. A counter is employed to assure that chaining
beyond 32 levels is not allowed. Special instructions are
employed to defeat chaining for loading and storing.
These instructions allow complete control of the
addressing mechanism.

Miscellaneous instructions

The R-2 is designed to be used with compilers rather
than assemblers. I t has many useful miscellaneous in­
structions including reverse divide, variants of pre-
and post-complemented addition and logical operations,
and integer and floating multiplication and division.
Various instructions allow extraction and replacement
of the predefined data and instruction fields. A large
number of shift, bit count, and test instructions
complement the arithmetic and logical set of instruc­
tions, thus facilitating the development of operating
systems and compilers.

Ramifications of tagged architecture in the R-2

The use of tagged architecture has many ramifica­
tions. In a future paper we will discuss them more fully.
Here we will comment on a few of interest to those who
write or use compilers and operating systems or who
must debug programs.

Compilers can be made simple and more efficient.
Since tags indicate what each numeric quantity is and
since the hardware will correctly perform the appropri­
ate operation on all legal combinations of data, the
compiler need not deal with semantic operations
referring to basic types of identifiers. This is now
handled conveniently at run-time. The problem of
temporary storage is largely solved by the stack whose
implementation is greatly facilitated by the address
calculator and the tagged address type. The tagged
registers allow simple manipulation and mechanization
of vector and array operations and allow dynamic
variables much more freedom than do previous ma­
chines. They also permit the optimum calculation of
expressions of type address and type numeric. Finally,
tagged addresses and numbers greatly simplify the
problems of run-time systems for use with particular
compilers; note that even undefined quantities have a
distinct representation.

Operating system design is facilitated by tagging.
The difference between a label and an address can be
determined at run-time. This means that one cannot

jump through an address word or a number but only
to approved points in a subroutine via a control word.
Attempting to do otherwise produces an interrupt.

Secondly, addresses can only be manipulated by
means of a special set of instructions. The more powerful
instructions may be denied to the user and he may be
given the use of MOD, TAG, and LIM. TAG is an
instruction with an immediate operand. The compiler
monitors all TAG instructions assuring that no un­
authorized user can construct illegal address or control
words. Any user may employ MOD or LIM. They
modify an address to point to a subset of the elements
in an addressed space. Since an unprivileged user may
never generate an address outside the initial space to
which he has been given access, protection of user
programs is enhanced if not insured. This protection
mechanism appears to be exactly what is required for
recursively denned operating systems.

The design and use of debugging systems is greatly
simplified. A program can be written to dump core
memory using the type of each datum. This means that
complex, double precision, floating, integer, and un­
defined types can be used to interpret the data con­
tained in the cells. This can be used in the analysis of
dumps. Addresses and labels are also distinct in this
scheme; the fact that they are not in other systems
has been a recurring problem for those who must debug.

Dynamic debugging is also easily implemented. By
the use of symbolic locations, relative locations, or
absolute locations, data or instructions may be tagged
with software tags. Whenever such tagged data is
encountered, an interrupt occurs. The programmer may
supply his own programs to analyze or monitor the data
values which are encountered. The software tag in
each of the instructions may also be set to cause inter­
rupts related to tracing any or all control actions.
Again the user may write a program to analyze the
results. Finally since the tag bits may be set either at
compile time by the compiler, or arbitrarily at run­
time by the user through the operating system, code
which is verified as being correct need not be recompiled,
thus simplifying and expediting the process of
debugging.

SUMMARY

This paper has reported the state of the Rice Research
Computer in its development. I t has emphasized the
features of the R-2 which arise from accepting the
principle of tagged architecture. For a particular
implementation, we have shown by example the power
of tagged architecture in application to compilers,
operating systems, and debugging systems.

The Rice Research Computer 377

ACKNOWLEDGMENTS

I would like to acknowledge the work of the designers
of R-2 including John Iliffe, I.C.L. (London, England),
Walter Orvedahl (Colorado State University), Dr.
Sigsby Rusk (Rice University), Douglass DeLong
(Graduate Student, Rice University), Dr. Ernest
Sibert (Syracuse University), and Dr. Robert C.
Minnick (Rice University). Also, I owe thanks to Dr.
J. Robert Jump and the graduate and undergraduate
students at the Rice University Laboratory for Com­
puter Science and Engineering who have made and are
making the machine a reality.

REFERENCES

1 J K I L I F F E
Basic machine principles
American Elsevier New York 1968

2 J K ILIFFE
Elements of BLM
Computer Journal 12 August 1969 pp 251-258

3 A narrative description of the Burroughs B5500 disk file
master control program
Burroughs Corporation Detroit Michigan Revised October
1966

4 Basic machine operation
Rice University Computer Project Houston Texas January
1962

5 TRlf.lf.0 eigenschaften des RD^l
AEG Telefunken Manual DBS 180 0470 Konstanz
Germany March 1970 (German)

6 Burroughs B6500 information processing systems reference
manual
Burroughs Corporation Detroit Michigan 1969

7 J G CLEARY
Process handling on the Burroughs B6500
Proceedings of the Fourth Australian Computer Conference
Griffin Press Adelaide South Australia 1969 pp 231-239

8 E I ORGANICK J G CLEARY
A data structure model of the B6700 computer system
SIGPLAN Symposium on Data Structures and Program
Languages ACM New York New York 1971 pp 83-145

\

/

