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INTRODUCTION 

In this paper we report on a new computer with several 
novel features. These features are applications of the 
concept of tagged architecture, and although some 
of them are not unique to the Rice Research Computer 
(R-2), they focus our attention on this radical design 
form, its advantages and disadvantages. Since the 
work is still in progress, we limit this report to a dis­
cussion of the architecture and a few of its ramifications. 

History of tagged architecture 

The R-2 computer is an adaptation of a design of the 
Basic Language Machine (BLM)1 of Iliffe. In his book 
and paper2 he presents an argument for the utilization of 
a fraction of each memory word as tag bits. These tag 
bits are to be interpreted by the hardware as informa­
tion about the data found in the referenced location, or 
its status with respect to the program or operating 

t system. 
The basic concept of tag bits is not new. Almost all 

computers employ a parity bit which the hardware 
uses to detect memory failure. In addition, many 
computers utilize a lock byte which limits access to an 
area of storage to the operating system or to those who 
have a key byte that opens the locked area. 

Early machines also employed bits which were of 
special significance to the hardware. The Burroughs 
B5500 employed a flag bit to inform the hardware that 
the word at the location addressed possessed a non-
numeric value which must be interpreted by the 
operating system.3 The Rice Computer (R-l),4 circa 
1959, employed two bits for every word which could be 
set by the operating system or the programmer. These 
bits were used in an extensive debugging system wherein 
tracing, monitoring, or other procedures were carried 

* This work is supported in part by the Atomic Energy Commis­
sion under grants AT-(40-l)-2572 and AT-(40-l)-4061. 

out when a tagged data word or instruction was 
encountered. 

Today the EAI8400 employs two tag bits for similar 
purposes. The Telefunken TR4 and TR4405 employ 
two tag bits to denote the numeric type of data at an 
addressed location. The Burroughs B67006-7,8 and 
B7700 which were developed concurrently and in­
dependently of the R-2 employ three tag bits to 
identify types of numeric operands and special informa­
tion used by the operating system. 

What is new about Iliffe's concept is that it represents 
a rejection of the classical von Neumann machine in 
favor of something which may be better. In the von 
Neumann machine program and data are equivalent in 
the sense that the data which the program operates on 
may be the program itself. The loop which modifies its 
own addresses or changes its own instructions is an 
example of this. While this practice may be permissible 
in a minicomputer with a single user, it constitutes 
gross negligence in the case of a multi-user machine 
where sharing of code and/or data is to be encouraged. 

Instead, Iliffe presents a different conjecture. All 
information which the algorithm needs to know about 
the data ought to be contained indivisibly in the data 
itself. For example, an algorithm to perform a /or-loop 
on arrays ought to be the same whether the array is of 
length ten or length 100. Rather than record this 
information in a variable and use a loop with an index, 
Iliffe proposes to record the length of the array with the 
pointer to the array itself, as in Figure 1. 

Rather than have several different algorithms for 
add integer, add floating, add double precision, and 
add complex, he proposes to make the data self-repre­
senting. An integer can only be used as an integer, a 
floating quantity as a floating quantity, etc. This idea 
is the fundamental difference between the class of 
machines represented by the BLM, the R-2, and the 
Burroughs B6700 on the one hand, and by those of more 
conventional architecture on the other. 

Once the fundamental decision has been made to 
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Figure 1—A typical array pointer and its array 

adopt this goal in hardware, and the commitment to the 
use of memory bits for tags has been made, a great 
many benefits result. One of the most important is that 
the hardware, once informed of what each piece of 
data is, can perform run-time checks for consistency 
of data and algorithms, e g., bounds checking and type 
conversion. 

General structure of the R-2 

We now turn to the general structure of the R-2 as 
shown in Figure 2, which represents only a minor 
modification from the original design which began in 
January 1969. The system consists of three major 
asynchronous subsystems: a memory system of 24K 
64-bit words of core memory, a Digital Equipment 
Corporation PDP-11 1-0 controller, and the CPU 
complex. While the details of the first and second sub­
system are of interest, we will not be concerned with 
them in this paper. 

The CPU complex consists of a set of 64 16-bit 
scratch-pad memory circuits organized as 64-bit 
registers (designated X0 through XI5), whose cycle 
time is approximately 40 nanoseconds, an arithmetic 
unit and a CPU. The latter two units are built from 
RCA ECL integrated circuits with typical delays 
of from 3 to 5 nanoseconds. This results in a typical 
add time for two 54-bit floating quantities on the order 
of 50-200 nanoseconds, and a multiply consisting of 
additions and shifts typically requiring 3 microseconds. 

The address calculator in the CPU is one of the most 
important features of the system. It functions as an 
automatic base-bounds calculator and is responsible 

for the high security of the system programs. For every 
fetch from memory the address calculator is given 
four quantities, a base address B of 20 bits, an initial 
index I of 14 bits, a length L of 14 bits, and the element 
selector D of 14 bits. In 150 to 200 nanoseconds the 
calculator performs the following algorithm: 

Temp: = D-I; 
if Temp < O then Low error 1; 
if Temp > L then High error 1; 
Actual address: = B+Temp; 

I is a number between — (213—1) and (213—1) in one's 
complement form. D has a maximum value of 214—1 
and this is the largest segment which one can practically 
use. This should be sufficient for all but the largest 
one-dimensional arrays of data. The base address B is 
of sufficient size for any program (or memory) that we 
can currently foresee, on the order of 1 million words. 

Data formats 

Before we can discuss the operation of the CPU we 
must understand the various data formats which the 
R-2 can deal with. These formats are given in Figure 3. 
Each word currently consists of 62 bits of information. 
A two bit field in every word contains a parity bit Z 
and a write lock bit L. The remaining 60 bits may be 
divided into four classes of words: numeric words, 
control words, address words (or partition words), and 
instruction words. The first three classes contain six 
bits used for tags as Iliffe suggested. Four bits are used 
to distinguish types and two may be set by the program­
mer to generate interrupts. The type codes are listed in 
Table I. 
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Figure 2—Subsystems of the R-2 Computer 
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The format of the various numeric types is of little 
interest. They are the same as those found in the 
original Rice Computer.4 See Table I. 

We should take greater note of the formats for address 
words. In addition to containing a base field (B), an 
initial index field (I) and a length field (L), each address 
word also contains an indirect reference field which in­
dicates the type of the object in the block described by 
the address word. Two more bits are used. One indi­
cates whether the block which is described is in core 
memory or in secondary storage (P). The other indicates 
whether the block may be relocated. (Q). 

Control words are an innovation. They are the only 
method of intersegment communication. They contain 
a 21-bit halfword pointer to an instruction (R-2 instruc­
tions are packed two per word). A mode field of 11 
bits indicates the operating state of the computer at the 
time a jump to a subroutine is made. A two-bit con­
dition code at the time the jump is made is stored in 
field C. Since the routine may be disk resident, a P field 
is provided to signal the routine's presence or absence 
in core memory. A chain field is provided in each control 
word. This field may be used to link together control 
words which are on the stack or are in a common 
linkage segment. Rather than scan storage linearly to 
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Figure 3—Diagram of R-2 word formats 

TABLE I—Data Tag Assignment 

TAG Number Meaning 

0000 MIXED OR UNTAGGED 
0001 (unassigned) 
0010 (unassigned) 
0011 (unassigned) 
0100 REAL, SINGLE PRECISION 
0101 54 BIT BINARY STRING OR INTEGER 
0110 DOUBLE PRECISION (real, fl. pt.) 
0111 COMPLEX (two single precision fl. pt. words) 
1000 UNDEFINED FOR NORMAL OPERATIONS 
1001 PARTITION WORD 
1010 RELATIVE CONTROL WORD 
1011 ABSOLUTE CONTROL WORD 
1100 RELATIVE ADDRESS, UNCHAINED 
1101 ABSOLUTE ADDRESS, UNCHAINED 
1110 RELATIVE ADDRESS, CHAINED 
1111 ABSOLUTE ADDRESS, CHAINED 

find the previous control word, one merely follows the 
chain of links. Finally, a four-bit mark field may be used 
to indicate the level of the subroutine or the level of the 
subtask in the operating system. These marks are 
especially useful when employed with the control 
stack for exiting blocks and reestablishing an appro­
priate environment. 

Processor foxilities 

Two major resources are available for use by the 
instruction unit. The first is the hardware stack and 
stacking mechanism. The second is the register set 
(previously described). The stack is maintained in 
memory and utilizes an address word held in register 
X0 as a stack pointer and bound. In order to utilize the 
address calculator in a consistent manner, the top of the 
stack is the location addressed by the base field of the 
address word and the bottom of the (accessible) stack 
is determined using the length field. Special words called 
partition words are stored by the operating system to 
denote the absolute beginning and end of the stack 
region or to point to a continuation of the stack in 
another segment (see Figure 4). Any word of the acces­
sible stack within 214—1 of the top may be accessed by 
an instruction. Partition words cannot be overwritten 
by normal stacking and unstacking operations. 

Two hardware registers U and R constitute XI, the 
double length accumulator for arithmetic and logical 
operations. If XI is loaded with an item of double 
precision or complex data, the second word is held in 
the R register. Special instructions are available to 
address the R register independently of U. 
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Figure 4—The stack pointer and stack layout 

four bits labeled X/V in Figure 3 are interpreted differ­
ently in two classes of instructions. The first features a 
four bit result register field X. The second uses this 
field as a variant code for the operation, and for this 
class (which includes arithmetic and logic) the first 
operand is implicitly XI, which also contains the 
result. 

Instructions are customarily written in the form 
S A X O P Y ± N o r S A O P Y ± N where the function 
is to perform X OP Yeff—>X. The first operand X is 
either stated explicitly or is implicit in the instruction. 
Yeff depends on the contents of Y, the number N and 
the immediate bit A. 

Rather than describe the operation of the addressing 
algorithm for Yeff exhaustively by flow diagrams, we 
will describe instruction sequences for short algorithms. 
This will show the effect of Iliffe's conjecture, as well 
as illustrating the machine design. 

EXAMPLE PROGRAMS 

Registers X2 through X15 are implemented with the 
scratchpad memory integrated circuits mentioned 
previously, and a reserved, fixed core memory location is 
associated with each register to hold the second word of 
double word data when it appears. By recognizing 
the data tags "complex" and "double precision," the 
hardware automatically performs the appropriate 
double word transfers and storage so that no special 
programming is required. Thus, to the programmer XI 
through X15 appear to be a set of general purpose 
double word registers. Since X0 is always used as the 
stack pointer, the hardware rejects (by interrupt) any 
attempt to store a word into X0 unless it is tagged as 
an address word. 

All of the other registers except X15 may be used for 
temporary storage of numbers, addresses, or control 
words. X15 must contain an address word which de­
scribes where the interrupt vector is located. All 
interrupts transfer relative to this address. In the event 
of a catastrophe when there might not be an address 
word in X15, interrupts transfer to locations relative 
to absolute address 0. 

Instruction formats 

Every instruction contains a one bit software tag 
denoted by S and six bit function code field labeled OP 
in Figure 3. Each instruction also features an immediate 
bit labeled A, a numeric offset labeled N which may be 
plus or minus, and a register field Y. The remaining 

Example 1—Accessing vector elements 

All elements must be accessed through an address 
word. Address words can be constructed by the op­
erating system in a manner to be described in a following 
example. Suppose we have an address word in X2 
which points to a vector in the manner of Figure 1, and 
suppose we wish to add the element with index ten 
of the array to a numeric quantity in XL We could use 
the following instruction: 

ADD X2.10 / / Select the element of X2 indexed by 
10 and add to XI. Suppose the initial index of X2, 
I(X2) is —4, the length 15, and the base address 1000. 
The sequence of computations would proceed as follows. 
The computer would check X2 and determine that it 
contained an address. I t would issue B = 1000, I = — 4, 
L = 15, and D = 10 to the address calculator. The 
calculator would compute D-I (10—(—4)) or 14 
which is greater than —1 and less than L. Since the 
element is within the vector, an address of 1014 would 
be generated and the element would be brought to the 
arithmetic unit. If the element is an integer it would be 
immediately added to the integer in XI and the 
condition code would be set to reflect whether the 
result was less than, greater than, or equal to zero. If 
the element is real (fixed or floating point fraction), the 
computer would convert XI to floating point form and 
perform the addition. If the element is anything but a 
numeric type, an exception occurs and an interrupt to a 
fixed location relative to the address in X15 takes place. 
If the instruction also invokes the auto-store option, 
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denoted ADD-
into 1014. 

»X2.10, the result would be stored back that the initial indices are 0. Then we could use: 

Example 2—Accessing array elements 

On the R-2 we usually represent arrays in a tree 
structure. The first index is used to determine an 
element in a vector composed of address words. The 
second index is used with this address element to select 
an element from a second vector which is an address 
word and so on until the last index which is used to 
select the desired element. This kind of an array is 
illustrated in Figure 5. Because of the fact that each 
address word carries with it the length of the vector 
it addresses, such arrays may be uniform or nonuniform 
as desired. They may also be so large that only one 
vector of data will fit in core memory at any time. 

Two different methods of addressing such arrays 
can be used. These methods are considerably more 
efficient than that used on the Burroughs 6700 because 
of the scratchpad registers X2-X14 which are available. 
One method involves element selection as in the first 
example. It is generally used when we wish to select 
only Xt,/,*> element of an array rather than to deal 
with every element. The following sequence of instruc­
tions indicates how this may be accomplished. 

Suppose X2 contains the address word pointing to 
the vector and we desire to select Z 3 I I I 5 and assume 

ADDRESS 

FORMATS 

INTEGER REAL 
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X2 DOT = 3 / / Replaces the contents of X2 
with the third element of 
first level tree. 

X2 DOT = 1 / / Replaces of the contents of 
X2 with the first element of 
second level. 

X2 MOD = 5 / / Generates the address of 
Z8li>8 in X2. 

ADD -» X2 / / Adds (XI) to ZM ,B and auto-
stores back into the array. 

This set uses the immediate address form of the 
instruction. 

An alternative form might employ a vector of sub­
scripts. Suppose that X3 contains the address word of a 
vector of subscripts to be applied to Z, i.e. (3, 1, 5). The 
following sequence indicates how this may be done. 

X2 DOT X3.1 / / Obtains the 
first level. 

X2 DOT X3.2 / / Obtains the 

third element of 

first element of 

X2 MOD X3.3 
ADD 

second level. 
/ / Generates a 

X2• / / Adds (XI) to Z8,i,6 
stores. 

pointer to Z3,i,5. 
and auto-

This sequence of computations is as follows. The first 
element of X3 (since I(X3) =0) is selected and brought 
to the CPU. I t has the value 3. If X3 had 
contained a number originally, 1 would have been 
added to that number and the resultant would have 
been used. This value is then used to obtain the third 
element of Z's first level subtree (denoted Z3>*,*). 
This is left in X2. The next operation obtains an address 
word which is the first element of Z's second level tree 
of the third branch (Z3,i,*). The next operation indexes 
this address to make its location field point to the 
desired element. This element is presumably a number 
(integer, real, complex, or double precision). It is added 
to the contents of the U register (XI), and the result 
placed in XI and in Z3,i>5, thus smoothly implementing 
the ALGOL 68 statement: Z[3,1,5]+ : ^ V; where V was 
the contents of XI. If the value of (X3.1), (X3.2), or 
(X3.2) had not been a number then an exception 
would have occurred. 

Examples—Array processing 

Figure 5—A nonuniform three dimensional array 
In some cases vector processing is desired. For this 

purpose a different kind of access is desired. In this 
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mode one systematically examines all the elements of an 
array or vector in turn, and performs some operation 
on them. For example, to sum a vector pointed to by an 
address word in register X2, one might use the following 
sequence of instructions. Assume (I(X2)) equals 0. 

X3 LOAD 4 / / To sum five elements of 
vector X2 

XI LOAD 0 / / Initialize XI to Zero 
AGAIN ADD X2.0 / / Add first element of 

vector 
X2 MOD = 1 / / Adjust X2 to point to 

the next element 
X3 JGE AGAIN / / Continue to CONT if 

X3 is zero or negative 
CONT / / Decrement and jump to 

AGAIN otherwise. 

This sequence loads X3 with the number 4 and XI 
with the number 0. The next instruction causes the 
number pointed to by the B field of X2 to be added to 
the number in XI . If the length field is set to —1, an 
exception will occur. The next instruction uses the 
literal 1 to decrement the L field of the address in X2 
and simultaneously increase the B field by 1. If L is 
less than zero an exception will occur. The next instruc­
tion examines X3. If it is a number less than or equal 
to 0, the next sequential instruction is taken. Otherwise 
the number is decremented by one and control passes 
to AGAIN. Using this sequence the first five elements 
of the vector pointed to by X2 are summed. If there 
are fewer than six elements in this vector, an exception 
occurs. If there are exactly five elements in the vector 
when the program gets to CONT, L(X2) equals zero. 
An attempt to do X2 MOD = l again will cause an 
error exception. Otherwise the new L(X2) is five less 
than before and the new B(X2) is five more than 
previously. 

A shorter sequence may be used if it is desired to 
sum all the elements of the vector. Here the programmer 
need not even know how long the vector is. 

XI LOAD = 0 / / Set XI to zero 
AGAIN ADD X2.0 / / Add elements to XI 

X2 JNL AGAIN / / See the discussion below 

The last instruction checks to see if L(X2) is greater 
than 0. If it is it performs X2 MOD = 1 and transfers 
control to AGAIN. If it is not, control passess to the 
next instruction. 

As a final example of the power of this approach, 
assume that we have three arrays A, BT, and C and 

that we desire to compute ; 

3=0 

This can be calculated simply in the following routine 
assuming X2 is an address word pointing to A, X4 is an 
address word pointng to BT, and X6 is an address word 
pointing to C. 

INIT X9 COPY X4 / / Copies (X4) to X9 
BEGIN X7 LOAD X6 / / Get rth subtree of 

C 
FIRST X3 LOAD X2 / / Get ith subtree of 

A 
X5 LOAD X4 / / Get fcth subtree of 

ZERO X7.0 / / PutzeroinC i ) f c 

SECOND XI LOAD X3.0 //GetAitj 

MUL X5.0 / / Multiply by BkJ
T 

ADD-* X7.0 / / Add and autostore 
to d,k 

X5 MOD = 1 / / Next consider 
Bk,j+1T 

X3 JNL SECOND / / Next consider 
A i, y+i 

CONT / / if no more j con­
tinue here 

X4 MOD = 1 / / Next consider 

X7 JNL FIRST / / Consider Ci>k+1 if 
any left 

X6 MOD = 1 / / Consider Ci+l,k 

X4 COPY X9 / / Start over with 

-#0,0 

X2 JNL BEGIN / / Consider Ai+1J if 
any left. 

This routine destroys pointers located in X2, X4, and 
X6. The steps 

MUL X5.0 
X5 MOD = l 

may be combined into MUL! X5 which uses a variant 
option for the arithmetic operation code to modify the 
address word in X5 after the element has been fetched. 

Example 5—Use of the stack 

The stack may be used for intermediate storage in 
the following manner. It is first necessary to get the 
operand in a scratchpad register. Suppose we wish to 
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stack X5. Then we write X5 STORE X0. The contents 
of X5 is pushed onto the stack. On the other hand, X5 
STORE X0.7 stores the contents of X5 in the seventh 
location of the stack without altering other elements. 
If there are less than seven elements on the accessible 
stack an exception occurs. The top element of the stack 
may be changed without pushing by the use of X5 
STORE X0.1. 

Elements are removed from the stack in an analogous 
manner. For example, ADD X0 adds the top element 
of the stack to the accumulator and pops the top 
element. ADD X0.1 adds the top element of the stack 
but does not pop it; ADD X0.7 adds the seventh ele­
ment of the stack without affecting the stack. 

This stack arrangement affords many conveniences 
in arithmetic operations. An example of this is the 
instruction save and fetch. Take as an example X2 
SVF X3.12. This instruction gets the twelfth element 
of the array pointed to by X3, after saving the old 
value of X2 on the stack, and places the new value in 
X2. In compiling, the instruction XI SVF Xi.N will 
occur frequently. Intermediate results can be saved 
on the stack for later use. Alternatively, when the value 
is to be used many times they can be stored in a register 
using COPY. 

The stack is also useful in control actions. The 
instruction JUMP AND SET MARK, e.g., 4 JSM 
LABEL, causes a control word to be made up pointing 
to the next sequential instruction. This control word 
contains the current mode, the current condition code, 
and the mark specified by the JSM instruction, in this 
case 4. The chain field is loaded with the current value 
of L(X0). The resulting control word is pushed on the 
stack. X0 is then updated to reflect a new stack regime. 
L(X0) is set to 0 and B is set to the location that is one 
less than that occupied by the control word. This stack 
regime is completely disconnected from the prior one; 
there is no way save through the registers or memory 
constants to reach any of the members of the previous 
stack regime (see Figure 6). One can return to the previ­
ous environment by the use of the return instruction: 
RET 4. The previous control word is found by examin­
ing the address B(X0)-f-L(X0)-+l. This address con­
tains the last control word or a partition word pointing 
to another section of the stack regime or a partition 
word marking the absolute beginning of the stack. If a 
control word occupies this position, B(X0) is set to point 
to this address. The chain field of the control word is 
copied into L(X0), the mode field to the mode register, 
the condition code to the condition code register, and the 
21 bit address to the program counter. If the mark field 
is less than the literal used with the return instruction, 
the computer resumes processing. Otherwise the process 
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Figure 6—The use of the stack in programming systems 

described above is repeated until a partition word 
marking the absolute beginning of stack is encountered. 
If the beginning of stack is encountered, an error 
exception will result. This form of return has the 
advantage that it is efficient and can be used to return 
several levels in a block structured language. 

Relative addressing 

In an earlier section we stated that all addressing 
was done via an address word. In fact this is not quite 
true. Addresses may be relative to the program counter 
or to the location in which the address word or control 
word is stored. One may then jump minus five halfword 
instructions. This feature was available on the R-l in 
1959 and made possible the development of very 
efficient relocatable code. It is frequently found on 
machines today. One can also access fullword data in 
the same manner so that constants can be stored with 
the code. 

In the same way relative codewords and addresswords 
can be used to address other quantities. The address of 
the location in which the address or control word is 
stored must be determinable by the computer. An 
offset relative to this address is used to point to the 
jump location or to the data. This feature makes 
possible relocation of large blocks of data in a very 
efficient manner and minimizes the number of address 
words which contain absolute addresses. This is 
important because it drastically reduces overhead in the 
reorganization of storage. Only a few locations need to 
be modified to relocate all programs and their data. 

Chained Addressing 

A second kind of addressing is also provided. Chained 
addressing provides for efficient parameter passing 
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mechanisms, particularly of the call by reference 
variety. The addressing algorithm is modified to include 
indirection. When a chained address or control word is 
encountered the machine causes an indirect reference 
through the address or control word to the next quan­
tity. A counter is employed to assure that chaining 
beyond 32 levels is not allowed. Special instructions are 
employed to defeat chaining for loading and storing. 
These instructions allow complete control of the 
addressing mechanism. 

Miscellaneous instructions 

The R-2 is designed to be used with compilers rather 
than assemblers. I t has many useful miscellaneous in­
structions including reverse divide, variants of pre-
and post-complemented addition and logical operations, 
and integer and floating multiplication and division. 
Various instructions allow extraction and replacement 
of the predefined data and instruction fields. A large 
number of shift, bit count, and test instructions 
complement the arithmetic and logical set of instruc­
tions, thus facilitating the development of operating 
systems and compilers. 

Ramifications of tagged architecture in the R-2 

The use of tagged architecture has many ramifica­
tions. In a future paper we will discuss them more fully. 
Here we will comment on a few of interest to those who 
write or use compilers and operating systems or who 
must debug programs. 

Compilers can be made simple and more efficient. 
Since tags indicate what each numeric quantity is and 
since the hardware will correctly perform the appropri­
ate operation on all legal combinations of data, the 
compiler need not deal with semantic operations 
referring to basic types of identifiers. This is now 
handled conveniently at run-time. The problem of 
temporary storage is largely solved by the stack whose 
implementation is greatly facilitated by the address 
calculator and the tagged address type. The tagged 
registers allow simple manipulation and mechanization 
of vector and array operations and allow dynamic 
variables much more freedom than do previous ma­
chines. They also permit the optimum calculation of 
expressions of type address and type numeric. Finally, 
tagged addresses and numbers greatly simplify the 
problems of run-time systems for use with particular 
compilers; note that even undefined quantities have a 
distinct representation. 

Operating system design is facilitated by tagging. 
The difference between a label and an address can be 
determined at run-time. This means that one cannot 

jump through an address word or a number but only 
to approved points in a subroutine via a control word. 
Attempting to do otherwise produces an interrupt. 

Secondly, addresses can only be manipulated by 
means of a special set of instructions. The more powerful 
instructions may be denied to the user and he may be 
given the use of MOD, TAG, and LIM. TAG is an 
instruction with an immediate operand. The compiler 
monitors all TAG instructions assuring that no un­
authorized user can construct illegal address or control 
words. Any user may employ MOD or LIM. They 
modify an address to point to a subset of the elements 
in an addressed space. Since an unprivileged user may 
never generate an address outside the initial space to 
which he has been given access, protection of user 
programs is enhanced if not insured. This protection 
mechanism appears to be exactly what is required for 
recursively denned operating systems. 

The design and use of debugging systems is greatly 
simplified. A program can be written to dump core 
memory using the type of each datum. This means that 
complex, double precision, floating, integer, and un­
defined types can be used to interpret the data con­
tained in the cells. This can be used in the analysis of 
dumps. Addresses and labels are also distinct in this 
scheme; the fact that they are not in other systems 
has been a recurring problem for those who must debug. 

Dynamic debugging is also easily implemented. By 
the use of symbolic locations, relative locations, or 
absolute locations, data or instructions may be tagged 
with software tags. Whenever such tagged data is 
encountered, an interrupt occurs. The programmer may 
supply his own programs to analyze or monitor the data 
values which are encountered. The software tag in 
each of the instructions may also be set to cause inter­
rupts related to tracing any or all control actions. 
Again the user may write a program to analyze the 
results. Finally since the tag bits may be set either at 
compile time by the compiler, or arbitrarily at run­
time by the user through the operating system, code 
which is verified as being correct need not be recompiled, 
thus simplifying and expediting the process of 
debugging. 

SUMMARY 

This paper has reported the state of the Rice Research 
Computer in its development. I t has emphasized the 
features of the R-2 which arise from accepting the 
principle of tagged architecture. For a particular 
implementation, we have shown by example the power 
of tagged architecture in application to compilers, 
operating systems, and debugging systems. 
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