
Cyclic redundancy checking by program

by P. E. BOUDREAU and R. F. STEEN

IBM Corporation
Research Triangle Park, N.C.

INTRODUCTION

Recent advances in the use of mini-computers as
control elements of a computer complex and as in­
telligent terminals1 are indicative of a trend toward
relocation of certain hardware functions to micro­
program or machine level program. One such function
which is a particularly good candidate, for various
reasons, has already been moved into program in
several machines (e.g., IBM System 360/25 Integrated
Communication Adapter2 and the IBM 11303). This
function is error control using an error detection Cyclic
Redundancy Check (CRC). A CRC is a variable
length shortened cyclic code in which a message is a
code word if, and only if, the message polynomial
M(x) is divisible by the generator polynomial G(x).

Error detection and correction codes have been
studied extensively for more than 15 years. The most
comprehensive references,4-5 as well as the majority of
papers written in the area, measure the encoding and
decoding complexity in terms of the cost of hardware
and the time for decoding. With some notable excep­
tions,6'7 very little attention is given to the problem of
encoding and decoding using machine level or micro­
instructions. However, in some cases such as the
Berlekamp algorithm3 for BCH codes, it may very
possibly be easier to write a program for certain steps
of the decoding procedure than to design hardware.
Programmed error correction is especially appealing for
use with high rate codes when error probabilities are
low, since, in this case, a major portion of the correction
process need only be performed when errors actually
occur. Allocation of a significant amount of hardware for
these relatively infrequent events is expensive. Further­
more, rapidly advancing memory technology helps to
make program-controlled devices not only economically
feasible but attractive.

One part of the problem is addressed in this paper.
It is the problem of encoding or generating check bits.
The solution, however, also applies to the decoding
problem for error detection codes of this type. A similar
approach, based on the properties of the companion
matrix, has been used for parallel hardware devices.8-9

With this approach, efficient and attractive programs
can be developed for software or firmware. Subroutines
developed here require as few as six instructions with
sequential instruction execution to update a 16-bit
remainder for eight new information bits. A program
directly simulating a shift register would require at
least three instructions (EXCLUSIVE OR, SHIFT,
and BRANCH) per bit, or 24 instructions for an eight-
bit update.

MATRIX APPROACH TO CYCLIC CODES

In this section, we review the relationship between
multiplication by the companion matrix and poly­
nomial division used to generate a code word. We then
generalize the operation to an m-bit character-by-
character operation developing a matrix equation to
update the calculated redundancy m bits at a time. The
appendix will be helpful to those familiar with the shift
register in order to further justify the connection be­
tween the shift register operation and the matrix
multiplication.

Generally, the check bit generation process is one of
determining R (x) =xhI(x) mod G(x) where I(x) is the
polynomial whose coefficients are the information bits
and h is the number of check bits. We can next let the
coefficients of R (x) be an h bit vector, R, and let G be
the h by h companion matrix shown below. The binary
digits, gi, i = l, 2, 3 . . . h — 1, are the coefficients of the
generator polynomial.

9

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1479064.1479067&domain=pdf&date_stamp=1972-05-16

10 Fall Joint Computer Conference, 1971

G =

0 1 0

0 0 1

0 0 0

.1 0i 02 Qh-l_

Then, if we let 6(1) = 4 - i be the first information bit
(the k— l th coefficient of I(x)) and b(k) =i0 be the
last information bit, it is clear (see the appendix or
Reference 7) that the remainder R can be calculated
iteratively using the following formula:

A{t+l).= \A(t)+[p,0,...,0Mt+l)l\;Q (1)

and setting R=A(k). I t should be noted that A(t)
represents the remainder of xhIt(x) divided by G(x)
which is the calculated redundancy after the first t
information bits, It(x), have been taken into account.

We now define B(t+1) =[0 , 0, . . . , 0, 6(H-1)] and
rewrite Equation (1 or A2) as

A(t+l)=tA(i)+B(t+l)lG. (2)

Equation (2) is the basic matrix description of the
polynomial division process (circuit function) on a
bit-by-bit basis. The advantage of the matrix approach
is realized when one extends it to a multibit or char­
acter level. We can do this for m bits-per-character as
follows, assuming m<h. Repeated use of Equation
(2) yields:

A{t+m) = [_A (H - m - 1) +B(t+m)]-G

= {[A(t+m-2)+B{t+m-l)~]>G

+B(t+m)}-G

=A (0 .£"•+ 2 B(t+j) >Gm~*\ (3)

Equation (3) expresses the remainder at time t-\-m in
terms of the remainder at time t and the next m input
bits b(t+l), b(t+2); ..., b(t+m). This equation can
be put into a better form by using the "shifting"
property of the companion matrix G.

A(t+m)=A(t)-Gm

+ [0 , 0, . . . , 0, b(t+m), b(t+m-l), . . . , 6(H-1)]•(?».

(4)

If indeed we are operating with m bits per character and
A(t) is the remainder after some character has been
sent, then A{t-\-m), given by Equation (4), is the
remainder after the next character has been sent and
b(t+m), b(t-\-m—l),...,b(t+l) is the bit string of
length m representing that next character, where
b(t-\-l) is the first bit sent.

Since we will be using this from now on, it is con­
venient to make a slight change of notation. We define

Aj=\jlo,3;
 al,h • • •> ah-l,jJ

as the remainder after the jth. character, and

Cj= [0, 0, 0, . . . , 0, Coj, cij, . . . , cm-x,j]

as an h component vector where

Co J, Ci,j, C2,j. .

is the bit string of length m representing the jth char­
acter and Cm-ij is the first bit of the character trans­
mitted. That is

and

ai,j = a>i(t) for i = 0, 1, . . . , h— 1

Co,i = b(t-\-m)

Cij = b(t-\-m—l)

cm-i,j = b{t+l).

With this notation Equation (5) becomes the char­
acter-by-character version of Equation (2)

A m = CA i +C i 4 i> (^ . (5)

This equation expresses the remainder after j-\-l
characters as a function of the remainder after j char­
acters and the .7+1st character for m<h bits per
character. I t is the fundamental result which we apply
below.

MATRIX IMPLEMENTATION OF CYCLIC
CODES

This matrix description of cyclic checking leads
directly and intuitively to several different programmed
checking implementations. I t is this feature which
makes the approach valuable. Since instruction sets,
core availability, and instruction execution times vary
widely, three approaches will be described.

It is very convenient to describe these subroutines in
APL10 with a single line of APL representing a single
machine language instruction. For those interested in
the exact operation of the simulated machine language
instruction, a knowledge of basic APL is required;
otherwise, the marginal machine instructions and

Cyclic Redundancy Checking by Program 11

comments should clearly indicate the general nature of
the operation on each line of code. It is assumed that
there are four 16-bit registers which are available to
the programmer. These are represented by the APL
vector variables RA, RB, and RC with the fourth being
the base register which is used for the return branch to
the main program. In APL, RA[1 Q represents the high
order byte of register RA and RA[2;] represents the
low-order byte of the same register. The storage area
for tables is represented by the matrix SA which is as
large as necessary.

Although we have assumed a 16-bit data path for the
three examples, it is easy to write similar subroutines
for an eight-bit ALU by partitioning the G8 matrix
in a different manner. We will use the terms, "byte"
and "halfword" to mean eight and 16 bits respectively.

In general, our methods below are iterative schemes
for finding the remainder using the recurrence relation­
ship

Aj+1 = lAj+Cj+1lG™.

For simplicity we define what we call a "working
remainder" Wj+i,

= [>o ,j) • • •> Q>h—m—l,j, \Q>h—m,y©Co,y+l),

. . . , ((Ih-ljQCm-ij+i)]

= [Wo,j+i, Wij+i, . . . , Wh-l,j+iJ

Basically, our problem is to find A3+i given WJ+x and
Gm using

Aj+1 = Wj+1G™.

Since TF/+i is a binary vector of length h, it can take
no more than 2h values. The following methods, called
the "one-256-halfword-table look-up," the "two-32-
halfword-table look-up," and the "binary summation"
method, are various ways to perform this job.

Purely for ease of notation, we now fix the values of
h and m. We will let the number of parity bits be
16 (h = 16) and the number of bits per character be
eight (m = 8). Substitution in (5) gives us the funda­
mental equation

Aj+1 = Wj+1G
8 (6)

where

Wj+1=Aj+Cj+1

^ o = [0 ,0 ,0 , . . . , 0 , 0]

Aj=_ao,j, aij, . . . , ais.yj

C/= [0, 0, . . . , 0, c0>/, Cij, . . . , c7,i]

are all 16-bit vectors, and

G8 = the companion matrix raised to the 8th power.

We note again for emphasis that c7,y is the first bit of
the jih. character while the j= 1st character is the first
character transmitted or received.

One-256-halfword-table look-up method

This is a simple one-table look-up method which
requires a significant amount of storage and frequently
will be impractical for codes with more than eight
bits-per-character. However, it embodies most of the
basic ideas of the matrix approach and is a good starting
place. In an instruction set with the logical EXCLUSIVE
OR operation, the forming of Wj+i is trivial. The next
stepjs to find Aj+% which can be found by multiplying
Wj+i by Gs. This can be done very rapidly by table
look-up. Rather than blindly storing all 216 halfwords
which can result from this operation, we notice that G8

has the form

Gs =
0|7
X

Thus Wj+iG8 can be written

T f i + 1 w z e T F y + 1 w [0 | /]

where Wj+i(H) is an eight-bit vector comprising the
high-order eight bits of Wj+i and Wj+iw represents the
low-order eight bits of W3-+i. If byte operations are
available, the product Wj+x(H) • [0 | 7] is simply moving
the byte from the high-order half of a 16-bit register to
the low-order half. The second instruction in Table I
performs this operation. The second product above
requires a table look-up for one of 256 halfwords
representing all possible values of Wj+i(L)'X. This is
done in instruction four after the program has shifted
the address left one bit in order to force the address to
a halfword boundary. The table is assumed to be
located on a 512 byte boundary. Its address is stored in
the seven low-order bits of the high-order byte of the
RB register. The two results are EXCLUSIVE ORed
together in the fifth instruction and the table address is
restored in the last instruction before the return branch.
Table I shows the program which will update the CRC
for a full eight-bit character.

This is called the one-table, one-step look-up method.
I t is very fast but may be impractical because of the
quantity of core required.

Two-32-halfword-table look-up method

A more practical subroutine for CRC character
update relative to core storage requirements is the two-
table method. In this method, we further partition the
matrix X above into two matrices Y and Z. Thus we

12 Fall Joint Computer Conference, 1971

TABLE I—Subroutine Using One-256-Halfword Look-up

Initial conditions for all subroutines:
Register RA contains the old CRC, Aj
Register RB2 contains the new character, Cy+i.

Final conditions for all subroutines:
Register RA contains the new CRC, A3-+i.

EXCLUSIVE OR RB2, RA2
MOVE RB2, RA1
SHIFT LEFT RB, 1
LOAD RA, RB
EXCLUSIVE OR RA, RC
ROTATE LEFT RB, 15
BRANCH RETURN

VCRC1

[1] RB[2;] *- RB[2;] ^ RA[2;]
[2] RC[2;]«-RA[1;]
[3] RB <- ((15pl), 0) A l<^(16pRB)
[4] RA *- 2 8 p(16P2) T SA[2 ± RB]
[5] RA[2;] <- RA[2;] ^ RC[2;]
[6] RB «- 2 8 P(15tf>RB)

V

Form Wj+i^
Form Wj+i^lO
Form address
Load Wj+1^X
Form Aj+i
Reset address
Return

/]

write Gs as

G* = o\r
lY/Z]

Here, the Y and Z matrices are four by 16 binary-
matrices and TFj+i(L) is broken into two four-bit vectors
Wj+iiLL) and Wj+i(LH). Thus, the new calculation
becomes

Aj+1 = Wj+SLH> -Y®Wj+SLL> >Z®Wj+1™ >[0 | /] .

Each of the products is a 16-bit row vector. The program
now requires two look-up operations for the first two
terms and a byte move for the last term. All three
terms must then be E X C L U S I V E ORed together. The
program is shown in Table I I .

Binary summation method

Finally, it is possible to perform this whole operation
without tables. This is done by performing the matrix
multiplication by program rather than by table look-up.
This requires a par i ty test as a condition on the branch
instruction, however. This branching condition will be

called P T Y R C , the even par i ty of register R C . Looking
back to the defining equation

Aj+1 = [Cy+1 + A y] • G* = Wj+x • G\

Let Dk = Zd0,k, dx,k, ...,dis,k~\ be the kth. column of
G8. Then the high-order position of the new remainder
Aj+i is given by

15

ao,/+i= 2~i di,i'Wi,j+i

which is operationally the same as ANDing the first
column of the matrix Gs with the working remainder
Wj+i and finding the even par i ty of the result. This
par i ty is the value of a0j+i. Similarly, we can find
the remaining bits by ANDing JPy+i with each
column Dk+i and find the even par i ty to determine
akj+i 0 < & < 1 5 .

15

ak,j+i= / , dj.k4-i'Wj.i4-i
i=0

This operation can be carried out in a program as
illustrated in Table I I I .

The program shown here requires more than 80 words

EXCLUSIVE OR RB2, RA2
MOVE RA2, RB2
AND RB2, H'FO'
ROTATE LEFT RB2
LOAD RC, RB
EXCLUSIVE OR RC2, RA1
MOVE RB2, RA2
AND RB2, H'OF'
EXCLUSIVE OR RB2, H'10'
ROTATE LEFT RB, 1
LOAD RA, RB
EXCLUSIVE OR RA, RC
BRANCH RETURN

TABLE II—Subroutine Using Two-32-Halfword Look-up

VCRC2

[1] RB[2;]<-RB[2;]^RA[2;]
[2] RA[2;]^RB[2;]
[3] RB[2;]^-RB[2;]A 1 1 1 1 0 0 0 0
[4] RB[2;]«- <*>RB[2;]
[5] RC*-2 8 p(16P2) TSA[2+2± 16PRB]
[6] RC[2;]<-RC[2;]?*RA[1;]
[7] RB[2;]<-RA[2;]
[8] RB[2;]<-RB[2;]A0 0 0 0 1 1 1 1
[9] RB[2;]<-RB[2;]^0 0 0 1 0 0 0 0

[10] RB[2;]<-1<*>RB[2;]
[11] RA^-2 8 p(16P2) TSA[2+2± 16PRB]
[12] RA*-RA^RC

Form Wj+i^
Save TFy+i«->
Mask address
Form address
Load Wj+i(LH)Y
TFy+i<*>[0I]©Wy+i<unr

Get Wi+l™
Form address
Form address
Form address
Load Wj+i^Z
Form Aj+i
Return

Cyclic Redundancy Checking by Program 13

TABLE III—Subroutine for Binary Summation Method

V CRC3

EXCLUSIVE OR RB, RA
LOAD RA, ZERO
LOAD RC, D l
AND RC, R B
B R A N C H [7], P T R C
EXCLUSIVE OR RA, H'8000'
LOAD RC, D2
AND RC, RB
BRANCH 111], P T R C
EXCLUSIVE OR RA, H'4000'

And so on for the third through the 15th bits

LOAD RC, D16
AND RC, RB
BRANCH [16], P T R C
EXCLUSIVE OR RA, H'0001'
BRANCH R E T U R N

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]

th bits

[12]
[13]
[14]
[15]

RB<-2 8 P(16pRB) ^(16PRA)
RA<-2 8 P0
RC«-SA[1;]
R C ^ 2 8pRCA(16PRB)
-*(?*/(l, 16PRC))/SECONDBIT
RA[1;]*-RA[1;]^1 0 0 0 0 0 0 0
SECONDBIT :RC^SA[2;]
RC<-2 8pRCA(16PRB)
-•(5^/(1, 16pRC))/THIRDBIT
RA[1;]*-RA[1;H0 1 0 0 0 0 0 0

.

SIXTEENTHBIT :RC<-SA[16;]
RC<-2 8 PRCA(16pRB)
- » (^ / (l , 16PRC))/OUT
RA[2;]«-RA[2;]^0 0 0 0 0 0 0 1

[16] OUT:->0

Form Wj+i
Set Aj+i to zero
Load Di
Calculate DiW}+i
Branch if ao,}-+i = 0
Set aoj+i — 1
Load Di
Calculate DiWj+i
Branch if ai,y+i = 0
Set ai.y+i = 1

Load Di6
Calculate DisTTy+i
Branch if auj+i = 0
Set ai5,,-+i = l
Return

of storage. However, a reduction in the storage require­
ment is possible by forming a loop to calculate the 16
binary sums. Further reduction is also possible when a
specific polynomial is chosen and a combination of this
and other schemes is used. For example, using G(x) =
x16-\-x15+x2-\-l, the number of instructions can be
reduced to less than 20, making this method com­
petitive with the other two given here. The key to this
method is the branch instruction which tests the
condition of the parity of the 16 bits in the accumulator.
This is the last of the three matrix-oriented methods to
be discussed and generally requires less core storage and
more execution time than the previous two.

Other methods which partition the Gs matrix in
other ways are possible and may be better in specific
cases.

SUMMARY

Using a matrix description of the operations required
to generate the check bits in a cyclic redundancy error-
detection scheme leads to new approaches to the soft­
ware implementation problem. Certain variations are
in use today and have proven to be superior to direct
shift register simulation programs in most cases. With
an apparent increase in programmable terminals and
multiplexers, such approaches are likely to become even
more important in the future.

REFERENCES

1 W L SCHILLER R L ABRAHAM R M FOX
A VAN DAM
A microprogrammed intelligent graphics terminal
I E E E Transactions on Computers Vol C20 No 7 1971

2 A W MAHOLIC H H SCHWARZELL
Integrated microprogrammed communications control
Computer Design November 1969

3 IBM 1130 synchronous communications adapter subroutine
SRL File 1130-30 Form C26-3706-4 I B M Corporation
White Plains New York

4 W W PETERSON
Error-correcting codes
The M.I.T. Press Cambridge Mass 1961

5 E R BERLEKAMP
Algebraic coding theory
McGraw-Hill Book Company New York 1968

6 I B OLDHAM R T CHIEN D T TANG
Error detection and correction in a photo-digital
storage system
I B M Journal of Research and Development Vol 12
No 6 1968

7 R T CHIEN
Burst-correcting codes with high-speed decoding
I E E E Transactions on Information Theory Vol IT-15
No 1 January 1969

8 M Y HSIAO K Y SIH
Serial to parallel transformation of feedback shift
register circuits
I E E E Transactions on Electronic Computers
Vol EC-13 pp 738-740 December 1964

9 A M PATEL
A multi-channel CRC register
AFIPS Conference Proceedings Vol 38 pp 11-14
Spring 1971

10 K E IVERSON
A Programming Language
Wiley New York 1962

APPENDIX

Here, we will show how a shift register is used to
perform the functions required to generate or verify a
code word (calculate the proper h bits of redundancy).
Then it can be shown that the operation of a shift

14 Fall Joint Computer Conference, 1971

»fl) 1 ><#*• 2 »» 3

0
1
0
0
0
0

0
0
1
0
0
1

0
0
0
1
0
1

0
0
0
0
1
0

INITAL STATE
STATE 1
STATE 2
STATE 3
STATE 4
STATE 5

Figure Al—An elementary shift register

register on a bit-by-bit basis can be written in terms of
matrix operations on vectors. Using this approach, it is
possible to justify the several table look-up software
schemes which are developed in the main text.

A feedback shift register is a device which stores
bits in a serial string and is capable of shifting the string
one bit at a time. There may be EXCLUSIVE OR and
AND gates associated with the shift register which will
operate when a shift takes place. The structure of a
shift register is shown in Figure Al. The bit storage
positions are indicated by a box (•) and the EX­
CLUSIVE OR gates are indicated by the " © . " If
the storage positions are denoted as shown, we can
illustrate the operation by assuming that bit positions
1, 2, and 3 contain zero and that a one bit is placed on
the " IN" lead. A single shift of the register by a clock
pulse (not shown) will cause the " IN" to be EXCLU­
SIVE ORed with the feedback from position 3 and
placed in position 1. Thus position 1 = 1(1 ©0 = 1).
Now, let us assume that " IN" is set to zero and then
another clock pulse occurs. Position 3 © " I N " = 0 is
placed in position 1. Position 1 ©position 3(1©0 = 1) is
placed in position 2.

A general shift register which performs division by

G(x) =1+013+ • • -gh-xx^+x11

is shown schematically in Figure A2. The AND gates
are represented by the " O . " Although the output does
represent the quotient, of major interest to us is the

£ 0-V2 Q~Vi

i©* •*<£>> -*<+>* -Mi>*

contents of the shift register which is the h bit remainder

R(x) =r0+rix+ • • • +rh^ixh-1

of the bits shifted in at any time. Thus, if we shift
information bits

/ (x) = ia+i\x + • • • 4-i#f t -1

into the shift register, highest degree coefficient first,
we will have the remainder of I(x) after all k bits have
been entered. However, we would prefer to have the
remainder of xhI{x) rather than the remainder of I(x)
so that we may append the remainder bits directly to
the information. One way to do this would be to shift
fhe shift register h times after I(x) has been entered.
However, this represents wasted time since we can wire
the shift register differently in order to cause it to
"pre-multiply" by xh. This shift register is shown in
Figure A3, and the remainder at time t will be denoted
by the polynomial A(x, t). After shifting I(x) into this
circuit, the remainder R(x) of xhI{x) divided by G(x)
will be contained without further shifts; that is,
A(x, k) = R(x). If R(x) is appended to xhI(x), a code
word will be formed (R (x)-\-xhI (x)). At the receiver,
exactly the same circuit or program may be used to
determine whether the received block is a code word.

In order to further illustrate the operation of the
shift register, it is possible to develop a set of functional
relationships between the bits that have entered the
shift register and the contents of the register. These
are the circuit equations for the shift register.

Let the bits in the shift register (Figure A3) at time
t be represented by

a0(t), ax(t), a2(t), ..., ah-i(t)

where a0(t) is the leftmost bit in]the shift register.
We will also denote the bits which are shifted into the
shift register as b(t). That is, the contents of the shift
register at time T include the effects of all 6(0 for
0<i<T r . Since the bits come at discrete times, both

(•)., G> (•xT

v> *@—•••-nv2
(t) rK+H vi(,) r*w

A(x,t) = a 0 (t) + o (Ox + a 2 (t) \-2^-2 +\-l«*h-]

Figure A2—A general division shift register
Figure A3—A shift register for pre-multiplication by xh and

division by G{x)

69> 6 g2

b(.+ !) + <> At)

0s
9 | [b (t+D •<.,,_, <t)] g , [b (.* !) +a (.)] *,., N+'>+Vi('J

-*•<£>*• °i(,) • * © — • • • - -K±>> U*

Figure A4—Development of circuit equations from the
pre-multiply shift register

t and T are integers. Figure A4 may help the reader
visualize this operation. From the figure, we can write
the circuit equations directly.

oo(<+l)=6(«+l)ea f r _i(0

ai(H-l) =a 0 (0 eflfi[6(J+l) ea*_i(0]

aj(H-l) =a i (0 ©<72[6(^+l) ea*_ i (0]

: (AD

aA_i(«+l)=aA_4(0efliA-i[6(«+l)ea*-i(0]

Since we set the register to zero before beginning to
calculate the remainder, we have the initial conditions

a0(0)=a1(0)=o8(0) = aA_i(0)=0.

Cyclic Redundancy Checking by Program 15

With these we can calculate any di(T) given the
b(t)(0<t< T) and the generator polynomial

G(x) = l+gix+grf-i \-gh-iX
h-1+xh.

These circuit equations will be used in the development
of the matrix equations which are the subject of the
main section.

In order to develop a matrix approach to the genera­
tion of a set of parity or check bits, we define a vector
which consists of h binary components and represents
the bits in the shift register at time t as defined above:

A(t) =[ao(0> ai(0i ^(O* • ..,ah-2{t), ah-i{t)~\.

Next, we define G to be the companion matrix of the
polynomial G(x) as shown in the main text.
' From the circuit equations (Al) , it is apparent that

A(*+l)=[ao(<+l) ,a i («- | - l) ,02(<+l) , . . . , o * - i (« + l)]

= [0, a0(t),ai(t), . . . ,a*_8(0]

+ [0,0, . . . ,0 ,&(H-l)©aA-i (0>G-

Equation (A2) below follows immediately if one merely
observes that

[oo(0,«i(0, . . . , O A _ « (0 , 0] - (?

= [0, a0(t), ai(t), ..., a^-2(0]•

A(t+l) = {A(t) + [p,Q, . . . , 0 , 6 (* + l)] } - G . (A2)

This is equation (1) of the main text.

