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INTRODUCTION 

Recent advances in the use of mini-computers as 
control elements of a computer complex and as in­
telligent terminals1 are indicative of a trend toward 
relocation of certain hardware functions to micro­
program or machine level program. One such function 
which is a particularly good candidate, for various 
reasons, has already been moved into program in 
several machines (e.g., IBM System 360/25 Integrated 
Communication Adapter2 and the IBM 11303). This 
function is error control using an error detection Cyclic 
Redundancy Check (CRC). A CRC is a variable 
length shortened cyclic code in which a message is a 
code word if, and only if, the message polynomial 
M(x) is divisible by the generator polynomial G(x). 

Error detection and correction codes have been 
studied extensively for more than 15 years. The most 
comprehensive references,4-5 as well as the majority of 
papers written in the area, measure the encoding and 
decoding complexity in terms of the cost of hardware 
and the time for decoding. With some notable excep­
tions,6'7 very little attention is given to the problem of 
encoding and decoding using machine level or micro­
instructions. However, in some cases such as the 
Berlekamp algorithm3 for BCH codes, it may very 
possibly be easier to write a program for certain steps 
of the decoding procedure than to design hardware. 
Programmed error correction is especially appealing for 
use with high rate codes when error probabilities are 
low, since, in this case, a major portion of the correction 
process need only be performed when errors actually 
occur. Allocation of a significant amount of hardware for 
these relatively infrequent events is expensive. Further­
more, rapidly advancing memory technology helps to 
make program-controlled devices not only economically 
feasible but attractive. 

One part of the problem is addressed in this paper. 
It is the problem of encoding or generating check bits. 
The solution, however, also applies to the decoding 
problem for error detection codes of this type. A similar 
approach, based on the properties of the companion 
matrix, has been used for parallel hardware devices.8-9 

With this approach, efficient and attractive programs 
can be developed for software or firmware. Subroutines 
developed here require as few as six instructions with 
sequential instruction execution to update a 16-bit 
remainder for eight new information bits. A program 
directly simulating a shift register would require at 
least three instructions (EXCLUSIVE OR, SHIFT, 
and BRANCH) per bit, or 24 instructions for an eight-
bit update. 

MATRIX APPROACH TO CYCLIC CODES 

In this section, we review the relationship between 
multiplication by the companion matrix and poly­
nomial division used to generate a code word. We then 
generalize the operation to an m-bit character-by-
character operation developing a matrix equation to 
update the calculated redundancy m bits at a time. The 
appendix will be helpful to those familiar with the shift 
register in order to further justify the connection be­
tween the shift register operation and the matrix 
multiplication. 

Generally, the check bit generation process is one of 
determining R (x) =xhI(x) mod G(x) where I(x) is the 
polynomial whose coefficients are the information bits 
and h is the number of check bits. We can next let the 
coefficients of R (x) be an h bit vector, R, and let G be 
the h by h companion matrix shown below. The binary 
digits, gi, i = l, 2, 3 . . . h — 1, are the coefficients of the 
generator polynomial. 
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G = 

0 1 0 

0 0 1 

0 0 0 

.1 0i 02 Qh-l_ 

Then, if we let 6(1) = 4 - i be the first information bit 
(the k— l th coefficient of I(x)) and b(k) =i0 be the 
last information bit, it is clear (see the appendix or 
Reference 7) that the remainder R can be calculated 
iteratively using the following formula: 

A{t+l).= \A(t)+[p,0,...,0Mt+l)l\;Q (1) 

and setting R=A(k). I t should be noted that A(t) 
represents the remainder of xhIt(x) divided by G(x) 
which is the calculated redundancy after the first t 
information bits, It(x), have been taken into account. 

We now define B(t+1) =[0 , 0, . . . , 0, 6(H-1)] and 
rewrite Equation (1 or A2) as 

A(t+l)=tA(i)+B(t+l)lG. (2) 

Equation (2) is the basic matrix description of the 
polynomial division process (circuit function) on a 
bit-by-bit basis. The advantage of the matrix approach 
is realized when one extends it to a multibit or char­
acter level. We can do this for m bits-per-character as 
follows, assuming m<h. Repeated use of Equation 
(2) yields: 

A{t+m) = [_A ( H - m - 1 ) +B(t+m) ]-G 

= {[A(t+m-2)+B{t+m-l)~]>G 

+B(t+m)}-G 

=A (0 .£"•+ 2 B(t+j) >Gm~*\ (3) 

Equation (3) expresses the remainder at time t-\-m in 
terms of the remainder at time t and the next m input 
bits b(t+l), b(t+2); ..., b(t+m). This equation can 
be put into a better form by using the "shifting" 
property of the companion matrix G. 

A(t+m)=A(t)-Gm 

+ [ 0 , 0, . . . , 0, b(t+m), b(t+m-l), . . . , 6(H-1)]•(?». 

(4) 

If indeed we are operating with m bits per character and 
A(t) is the remainder after some character has been 
sent, then A{t-\-m), given by Equation (4), is the 
remainder after the next character has been sent and 
b(t+m), b(t-\-m—l),...,b(t+l) is the bit string of 
length m representing that next character, where 
b(t-\-l) is the first bit sent. 

Since we will be using this from now on, it is con­
venient to make a slight change of notation. We define 

Aj=\jlo,3;
 al,h • • •> ah-l,jJ 

as the remainder after the jth. character, and 

Cj= [0, 0, 0, . . . , 0, Coj, cij, . . . , cm-x,j] 

as an h component vector where 

Co J, Ci,j, C2,j. . 

is the bit string of length m representing the jth char­
acter and Cm-ij is the first bit of the character trans­
mitted. That is 

and 

ai,j = a>i(t) for i = 0, 1, . . . , h— 1 

Co,i = b(t-\-m) 

Cij = b(t-\-m—l) 

cm-i,j = b{t+l). 

With this notation Equation (5) becomes the char­
acter-by-character version of Equation (2) 

A m = CA i +C i 4 i> (^ . (5) 

This equation expresses the remainder after j-\-l 
characters as a function of the remainder after j char­
acters and the .7+1st character for m<h bits per 
character. I t is the fundamental result which we apply 
below. 

MATRIX IMPLEMENTATION OF CYCLIC 
CODES 

This matrix description of cyclic checking leads 
directly and intuitively to several different programmed 
checking implementations. I t is this feature which 
makes the approach valuable. Since instruction sets, 
core availability, and instruction execution times vary 
widely, three approaches will be described. 

It is very convenient to describe these subroutines in 
APL10 with a single line of APL representing a single 
machine language instruction. For those interested in 
the exact operation of the simulated machine language 
instruction, a knowledge of basic APL is required; 
otherwise, the marginal machine instructions and 
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comments should clearly indicate the general nature of 
the operation on each line of code. It is assumed that 
there are four 16-bit registers which are available to 
the programmer. These are represented by the APL 
vector variables RA, RB, and RC with the fourth being 
the base register which is used for the return branch to 
the main program. In APL, RA[1 Q represents the high 
order byte of register RA and RA[2;] represents the 
low-order byte of the same register. The storage area 
for tables is represented by the matrix SA which is as 
large as necessary. 

Although we have assumed a 16-bit data path for the 
three examples, it is easy to write similar subroutines 
for an eight-bit ALU by partitioning the G8 matrix 
in a different manner. We will use the terms, "byte" 
and "halfword" to mean eight and 16 bits respectively. 

In general, our methods below are iterative schemes 
for finding the remainder using the recurrence relation­
ship 

Aj+1 = lAj+Cj+1lG™. 

For simplicity we define what we call a "working 
remainder" Wj+i, 

= [>o ,j) • • •> Q>h—m—l,j, \Q>h—m,y©Co,y+l), 

. . . , ((Ih-ljQCm-ij+i)] 

= [Wo,j+i, Wij+i, . . . , Wh-l,j+iJ 

Basically, our problem is to find A3+i given WJ+x and 
Gm using 

Aj+1 = Wj+1G™. 

Since TF/+i is a binary vector of length h, it can take 
no more than 2h values. The following methods, called 
the "one-256-halfword-table look-up," the "two-32-
halfword-table look-up," and the "binary summation" 
method, are various ways to perform this job. 

Purely for ease of notation, we now fix the values of 
h and m. We will let the number of parity bits be 
16 (h = 16) and the number of bits per character be 
eight (m = 8). Substitution in (5) gives us the funda­
mental equation 

Aj+1 = Wj+1G
8 (6) 

where 

Wj+1=Aj+Cj+1 

^ o = [0 ,0 ,0 , . . . , 0 , 0 ] 

Aj=\_ao,j, aij, . . . , ais.yj 

C/= [0, 0, . . . , 0, c0>/, Cij, . . . , c7,i] 

are all 16-bit vectors, and 

G8 = the companion matrix raised to the 8th power. 

We note again for emphasis that c7,y is the first bit of 
the jih. character while the j= 1st character is the first 
character transmitted or received. 

One-256-halfword-table look-up method 

This is a simple one-table look-up method which 
requires a significant amount of storage and frequently 
will be impractical for codes with more than eight 
bits-per-character. However, it embodies most of the 
basic ideas of the matrix approach and is a good starting 
place. In an instruction set with the logical EXCLUSIVE 
OR operation, the forming of Wj+i is trivial. The next 
stepjs to find Aj+% which can be found by multiplying 
Wj+i by Gs. This can be done very rapidly by table 
look-up. Rather than blindly storing all 216 halfwords 
which can result from this operation, we notice that G8 

has the form 

Gs = 
0|7 
X 

Thus Wj+iG8 can be written 

T f i + 1 w z e T F y + 1 w [ 0 | / ] 

where Wj+i(H) is an eight-bit vector comprising the 
high-order eight bits of Wj+i and Wj+iw represents the 
low-order eight bits of W3-+i. If byte operations are 
available, the product Wj+x(H) • [0 | 7] is simply moving 
the byte from the high-order half of a 16-bit register to 
the low-order half. The second instruction in Table I 
performs this operation. The second product above 
requires a table look-up for one of 256 halfwords 
representing all possible values of Wj+i(L)'X. This is 
done in instruction four after the program has shifted 
the address left one bit in order to force the address to 
a halfword boundary. The table is assumed to be 
located on a 512 byte boundary. Its address is stored in 
the seven low-order bits of the high-order byte of the 
RB register. The two results are EXCLUSIVE ORed 
together in the fifth instruction and the table address is 
restored in the last instruction before the return branch. 
Table I shows the program which will update the CRC 
for a full eight-bit character. 

This is called the one-table, one-step look-up method. 
I t is very fast but may be impractical because of the 
quantity of core required. 

Two-32-halfword-table look-up method 

A more practical subroutine for CRC character 
update relative to core storage requirements is the two-
table method. In this method, we further partition the 
matrix X above into two matrices Y and Z. Thus we 
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TABLE I—Subroutine Using One-256-Halfword Look-up 

Initial conditions for all subroutines: 
Register RA contains the old CRC, Aj 
Register RB2 contains the new character, Cy+i. 

Final conditions for all subroutines: 
Register RA contains the new CRC, A3-+i. 

EXCLUSIVE OR RB2, RA2 
MOVE RB2, RA1 
SHIFT LEFT RB, 1 
LOAD RA, RB 
EXCLUSIVE OR RA, RC 
ROTATE LEFT RB, 15 
BRANCH RETURN 

VCRC1 

[1] RB[2;] *- RB[2;] ^ RA[2;] 
[2] RC[2;]«-RA[1;] 
[3] RB <- ((15pl), 0) A l<^(16pRB) 
[4] RA *- 2 8 p(16P2) T SA[2 ± RB] 
[5] RA[2;] <- RA[2;] ^ RC[2;] 
[6] RB «- 2 8 P(15tf>RB) 

V 

Form Wj+i^ 
Form Wj+i^lO 
Form address 
Load Wj+1^X 
Form Aj+i 
Reset address 
Return 

/ ] 

write Gs as 

G* = o\r 
lY/Z] 

Here, the Y and Z matrices are four by 16 binary-
matrices and TFj+i(L) is broken into two four-bit vectors 
Wj+iiLL) and Wj+i(LH). Thus, the new calculation 
becomes 

Aj+1 = Wj+SLH> -Y®Wj+SLL> >Z®Wj+1™ >[0 | / ] . 

Each of the products is a 16-bit row vector. The program 
now requires two look-up operations for the first two 
terms and a byte move for the last term. All three 
terms must then be E X C L U S I V E ORed together. The 
program is shown in Table I I . 

Binary summation method 

Finally, it is possible to perform this whole operation 
without tables. This is done by performing the matrix 
multiplication by program rather than by table look-up. 
This requires a par i ty test as a condition on the branch 
instruction, however. This branching condition will be 

called P T Y R C , the even par i ty of register R C . Looking 
back to the defining equation 

Aj+1 = [Cy+1 + A y ] • G* = Wj+x • G\ 

Let Dk = Zd0,k, dx,k, ...,dis,k~\ be the kth. column of 
G8. Then the high-order position of the new remainder 
Aj+i is given by 

15 

ao,/+i= 2~i di,i'Wi,j+i 

which is operationally the same as ANDing the first 
column of the matrix Gs with the working remainder 
Wj+i and finding the even par i ty of the result. This 
par i ty is the value of a0j+i. Similarly, we can find 
the remaining bits by ANDing JPy+i with each 
column Dk+i and find the even par i ty to determine 
akj+i 0 < & < 1 5 . 

15 

ak,j+i= / , dj.k4-i'Wj.i4-i 
i=0 

This operation can be carried out in a program as 
illustrated in Table I I I . 

The program shown here requires more than 80 words 

EXCLUSIVE OR RB2, RA2 
MOVE RA2, RB2 
AND RB2, H'FO' 
ROTATE LEFT RB2 
LOAD RC, RB 
EXCLUSIVE OR RC2, RA1 
MOVE RB2, RA2 
AND RB2, H'OF' 
EXCLUSIVE OR RB2, H'10' 
ROTATE LEFT RB, 1 
LOAD RA, RB 
EXCLUSIVE OR RA, RC 
BRANCH RETURN 

TABLE II—Subroutine Using Two-32-Halfword Look-up 

VCRC2 

[1] RB[2;]<-RB[2;]^RA[2;] 
[2] RA[2;]^RB[2;] 
[3] RB[2;]^-RB[2;]A 1 1 1 1 0 0 0 0 
[4] RB[2;]«- <*>RB[2;] 
[5] RC*-2 8 p(16P2) TSA[2+2± 16PRB] 
[6] RC[2;]<-RC[2;]?*RA[1;] 
[7] RB[2;]<-RA[2;] 
[8] RB[2;]<-RB[2;]A0 0 0 0 1 1 1 1 
[9] RB[2;]<-RB[2;]^0 0 0 1 0 0 0 0 

[10] RB[2;]<-1<*>RB[2;] 
[11] RA^-2 8 p(16P2) TSA[2+2± 16PRB] 
[12] RA*-RA^RC 

Form Wj+i^ 
Save TFy+i«-> 
Mask address 
Form address 
Load Wj+i(LH)Y 
TFy+i<*>[0I]©Wy+i<unr 

Get Wi+l™ 
Form address 
Form address 
Form address 
Load Wj+i^Z 
Form Aj+i 
Return 
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TABLE III—Subroutine for Binary Summation Method 

V CRC3 

EXCLUSIVE OR RB, RA 
LOAD RA, ZERO 
LOAD RC, D l 
AND RC, R B 
B R A N C H [7], P T R C 
EXCLUSIVE OR RA, H'8000' 
LOAD RC, D2 
AND RC, RB 
BRANCH 111], P T R C 
EXCLUSIVE OR RA, H'4000' 

And so on for the third through the 15th bits 

LOAD RC, D16 
AND RC, RB 
BRANCH [16], P T R C 
EXCLUSIVE OR RA, H'0001' 
BRANCH R E T U R N 

[1] 
[2] 
[3] 
[4] 
[5] 
[6] 
[7] 
[8] 
[9] 

[10] 

th bits 

[12] 
[13] 
[14] 
[15] 

RB<-2 8 P(16pRB) ^(16PRA) 
RA<-2 8 P0 
RC«-SA[1;] 
R C ^ 2 8pRCA(16PRB) 
-*(?*/(l, 16PRC))/SECONDBIT 
RA[1;]*-RA[1;]^1 0 0 0 0 0 0 0 
SECONDBIT :RC^SA[2;] 
RC<-2 8pRCA(16PRB) 
-•( 5^/(1, 16pRC))/THIRDBIT 
RA[1;]*-RA[1;H0 1 0 0 0 0 0 0 

. 

SIXTEENTHBIT :RC<-SA[16;] 
RC<-2 8 PRCA(16pRB) 
- » ( ^ / ( l , 16PRC))/OUT 
RA[2;]«-RA[2;]^0 0 0 0 0 0 0 1 

[16] OUT:->0 

Form Wj+i 
Set Aj+i to zero 
Load Di 
Calculate DiW}+i 
Branch if ao,}-+i = 0 
Set aoj+i — 1 
Load Di 
Calculate DiWj+i 
Branch if ai,y+i = 0 
Set ai.y+i = 1 

Load Di6 
Calculate DisTTy+i 
Branch if auj+i = 0 
Set ai5,,-+i = l 
Return 

of storage. However, a reduction in the storage require­
ment is possible by forming a loop to calculate the 16 
binary sums. Further reduction is also possible when a 
specific polynomial is chosen and a combination of this 
and other schemes is used. For example, using G(x) = 
x16-\-x15+x2-\-l, the number of instructions can be 
reduced to less than 20, making this method com­
petitive with the other two given here. The key to this 
method is the branch instruction which tests the 
condition of the parity of the 16 bits in the accumulator. 
This is the last of the three matrix-oriented methods to 
be discussed and generally requires less core storage and 
more execution time than the previous two. 

Other methods which partition the Gs matrix in 
other ways are possible and may be better in specific 
cases. 

SUMMARY 

Using a matrix description of the operations required 
to generate the check bits in a cyclic redundancy error-
detection scheme leads to new approaches to the soft­
ware implementation problem. Certain variations are 
in use today and have proven to be superior to direct 
shift register simulation programs in most cases. With 
an apparent increase in programmable terminals and 
multiplexers, such approaches are likely to become even 
more important in the future. 
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APPENDIX 

Here, we will show how a shift register is used to 
perform the functions required to generate or verify a 
code word (calculate the proper h bits of redundancy). 
Then it can be shown that the operation of a shift 
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Figure Al—An elementary shift register 

register on a bit-by-bit basis can be written in terms of 
matrix operations on vectors. Using this approach, it is 
possible to justify the several table look-up software 
schemes which are developed in the main text. 

A feedback shift register is a device which stores 
bits in a serial string and is capable of shifting the string 
one bit at a time. There may be EXCLUSIVE OR and 
AND gates associated with the shift register which will 
operate when a shift takes place. The structure of a 
shift register is shown in Figure Al. The bit storage 
positions are indicated by a box ( • ) and the EX­
CLUSIVE OR gates are indicated by the " © . " If 
the storage positions are denoted as shown, we can 
illustrate the operation by assuming that bit positions 
1, 2, and 3 contain zero and that a one bit is placed on 
the " IN" lead. A single shift of the register by a clock 
pulse (not shown) will cause the " IN" to be EXCLU­
SIVE ORed with the feedback from position 3 and 
placed in position 1. Thus position 1 = 1(1 ©0 = 1). 
Now, let us assume that " IN" is set to zero and then 
another clock pulse occurs. Position 3 © " I N " = 0 is 
placed in position 1. Position 1 ©position 3(1©0 = 1) is 
placed in position 2. 

A general shift register which performs division by 

G(x) =1+013+ • • -gh-xx^+x11 

is shown schematically in Figure A2. The AND gates 
are represented by the " O . " Although the output does 
represent the quotient, of major interest to us is the 

£ 0-V2 Q~Vi 

i©* •*<£>> -*<+>* -Mi>* 

contents of the shift register which is the h bit remainder 

R(x) =r0+rix+ • • • +rh^ixh-1 

of the bits shifted in at any time. Thus, if we shift 
information bits 

/ (x) = ia+i\x + • • • 4-i#f t -1 

into the shift register, highest degree coefficient first, 
we will have the remainder of I(x) after all k bits have 
been entered. However, we would prefer to have the 
remainder of xhI{x) rather than the remainder of I(x) 
so that we may append the remainder bits directly to 
the information. One way to do this would be to shift 
fhe shift register h times after I(x) has been entered. 
However, this represents wasted time since we can wire 
the shift register differently in order to cause it to 
"pre-multiply" by xh. This shift register is shown in 
Figure A3, and the remainder at time t will be denoted 
by the polynomial A(x, t). After shifting I(x) into this 
circuit, the remainder R(x) of xhI{x) divided by G(x) 
will be contained without further shifts; that is, 
A(x, k) = R(x). If R(x) is appended to xhI(x), a code 
word will be formed (R (x)-\-xhI (x)). At the receiver, 
exactly the same circuit or program may be used to 
determine whether the received block is a code word. 

In order to further illustrate the operation of the 
shift register, it is possible to develop a set of functional 
relationships between the bits that have entered the 
shift register and the contents of the register. These 
are the circuit equations for the shift register. 

Let the bits in the shift register (Figure A3) at time 
t be represented by 

a0(t), ax(t), a2(t), ..., ah-i(t) 

where a0(t) is the leftmost bit in ]the shift register. 
We will also denote the bits which are shifted into the 
shift register as b(t). That is, the contents of the shift 
register at time T include the effects of all 6(0 for 
0<i<T r . Since the bits come at discrete times, both 

(•)., G> (•xT 

v> \*@—•••-nv2
(t) rK+H vi(,) r*w 

A(x,t) = a 0 ( t ) + o (Ox + a 2 ( t ) \-2^-2 +\-l«*h-] 

Figure A2—A general division shift register 
Figure A3—A shift register for pre-multiplication by xh and 

division by G{x) 
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Figure A4—Development of circuit equations from the 
pre-multiply shift register 

t and T are integers. Figure A4 may help the reader 
visualize this operation. From the figure, we can write 
the circuit equations directly. 

oo(<+l)=6(«+l)ea f r _i(0 

ai(H-l) =a 0 (0 eflfi[6(J+l) ea*_i(0 ] 

aj(H-l) =a i (0 ©<72[6(^+l) ea*_ i (0 ] 

: (AD 

aA_i(«+l)=aA_4(0efliA-i[6(«+l)ea*-i(0] 

Since we set the register to zero before beginning to 
calculate the remainder, we have the initial conditions 

a0(0)=a1(0)=o8(0) = aA_i(0)=0. 
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With these we can calculate any di(T) given the 
b(t)(0<t< T) and the generator polynomial 

G(x) = l+gix+grf-i \-gh-iX
h-1+xh. 

These circuit equations will be used in the development 
of the matrix equations which are the subject of the 
main section. 

In order to develop a matrix approach to the genera­
tion of a set of parity or check bits, we define a vector 
which consists of h binary components and represents 
the bits in the shift register at time t as defined above: 

A(t) =[ao(0> ai(0i ^(O* • ..,ah-2{t), ah-i{t)~\. 

Next, we define G to be the companion matrix of the 
polynomial G(x) as shown in the main text. 
' From the circuit equations (Al) , it is apparent that 

A(*+l)=[ao(<+l) ,a i («- | - l ) ,02(<+l) , . . . , o * - i ( « + l ) ] 

= [0, a0(t),ai(t), . . . ,a*_8(0] 

+ [0,0, . . . ,0 ,&(H-l )©aA-i (0>G-

Equation (A2) below follows immediately if one merely 
observes that 

[oo(0,«i(0, . . . , O A _ « ( 0 , 0 ] - ( ? 

= [0, a0(t), ai(t), ..., a^-2(0]• 

A(t+l) = {A(t) + [p,Q, . . . , 0 , 6 ( * + l ) ] } - G . (A2) 

This is equation (1) of the main text. 






