
User engineering principles for interactive systems

by WILFRED J. HANSEN

Argonne National Laboratory
Argonne, Illinois

INTRODUCTION

The 'feel' of an interactive system can be compared to
the impressions generated by a piece of music. Both
can only be experienced over a period of time. With
either, the user must abstract the structure of the sys
tem from a sequence of details. Each may have a
quality of 'naturalness' because successive actions fol
low a logically self-consistent pattern. Finally, a good
composer can write a new pattern which will seem,
after a few listenings, to be so natural the observer
wonders why it was never done before.

Just as a composer follows a set of harmonic prin
ciples when he writes music, the system designer must
follow some set of principles when he designs the se
quence of give and take between man and machine.
This paper reports a set of principles—called user en
gineering principles—which where employed while
designing the Emily text editing system. These princi
ples evolved during the course of the project, but were
originally based on the author's experiences with a num
ber of other text editing systems.2,3,4's

In text editing applications, the user sits at a console
and creates, views, or modifies a document, be it pro
gram, speech, article or a chapter of his next book.
Here the computer is a tool for the creative worker
and the emphasis must be on capturing his thoughts
with minimal interference. More common in commer
cial environments are interactive systems designed as
tools to coordinate the work of many clerical workers.
Examples are order entry, point-of-sale, inventory con
trol, defense surveillance, and the like. The principles
outlined below, though originally intended for creative
work, are equally applicable to clerical work. Some
times more so, because clerks may not have the com
mitment of the creative worker.

* The work reported here was supported by the U.S. Atomic
Energy Commission. The text is taken from the second and
fourth chapters of the author's thesis.1

One restriction on a few of the principles below is
that they apply to systems with display devices for
output. This is essential, because a basic principle is
that the system respond to the user as fast as possible.
A visual display can present more information in less
time than available hardcopy devices. The 'economy'
of the terminal device must be weighed against the
cost of attention-wander-time as the user interacts
with the system. Other than the terminal, cost is not
a problem in the application of these user engineering
principles. In general, they dictate features that are in
expensive to design into a system. They are, however,
often expensive to include after implementation is
under way.

Disciplines similar to user engineering have been
called human engineering, human factors, and ergo
nomics, but these terms most often refer to analog
systems like airplane cockpits where the pilot guides a
process. User engineering applies to digital systems
where the goal is to store or retrieve information. D.
Engelbart6 refers to these principles as 'User Feature
Design.' His point is that this term emphasizes that
the features are being designed for the user rather
than the other way around. In fact, though, any inter
active system will require retraining of the users and
some systems—like Emily—may require the user to
alter thinking habits of many years standing. (But let
there be no mistake, the author is deeply committed
to a policy of modifying the system to fit the user.)
Other sets of user engineering principles have been re
ported by L. B. Smith7 and J. G. Mitchell.8 Their sug
gestions are compatible with those below, but less
comprehensive. The reader should also read R. B.
Miller's paper-9 in which he attempts to estimate a
maximum permissible response time in seventeen inter
active contexts.

The user engineering principles in the second section
below are illustrated by reference to the Emily text
editing system. For this reason, the Emily system is
sketched in the first section. More complete descrip-

523

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1479064.1479159&domain=pdf&date_stamp=1972-05-16

524 Fall Joint Computer Conference, 1971

1 <STMT> : DO <ARITHV> = <ARITHX> TO

<ARITHX>; <STMT*> END;

2 : <ASGN STMT>

3 <STMT*> : <STMT>

4 <ASGN STMT> : <ARITH> = <ARITHX>;

5 <ARITHX> : <ARITH>

6 : <ARITHV>

7 : <NUMBER>

8 : <ARITHX> + <ARITHX>

9 <ARITHX*> : <ARITHX>

10 <ARITHV> : <ARITH>

11 : <ARITH> (<ARITHX*>)

12 <ARITH> IS AN IDENTIFIER

13 <NUMBER> IS A CONSTANT

Figure 1—Portion of syntax for PL/I
Each rule specifies a possible replacement for the non-terminal to
the left of the colon. If the left side is omitted, it is the same as the
previous line. Rules 12 and 13 specify special classes of terminal

symbols

tions are available elsewhere.101,11 Emily has been im
plemented for an IBM 2250 Graphic Display Unit,
model 3. The 2250 displays lines and characters on a
12" by 12" screen. The user can give commands to the
system with a light pen, a program function keyboard,
and an alphameric keyboard.

THE EMILY SYSTEM

Emily is primarily intended for construction and
modification of computer programs written in higher
level languages. Many such systems exist, but all
existing systems require the programmer to enter his
text as a sequence of characters. With Emily, the user
constructs his text by selecting choices from the menu
to replace certain symbols in the text. For example,
the symbol (STMT) might be replaced by

DO <ARITHV)=(ARITHX)TO (ARITHX);
(STMT*)

END;

Replaceable symbols begin with ' (' , end with ') ' , and
contain a name that usually has some relation to the
meaning of the string generated by the symbol. Such
symbols are called non-terminal symbols, because of
their role in the Backus-Naur Form (BNF) notation
for describing programming languages.12

In BNF a syntax for a formal language has three
parts—a set of terminal symbols, a set of non-terminal
symbols, and a set of syntactic rules. The terminal sym
bols are those characters and strings of characters
(punctuation, reserved words, identifiers, constants)
that can be part of the completed text. The non
terminal symbols are a specific set of symbols intro
duced only to help describe the structure of the formal
language. Every non-terminal symbol must be replaced
by terminal symbols before the entire text is complete,

|<STMT>| 1

DO |<ARITHV>1 = <ARITHX> TO <ARITHX>; 10

<STMT*>

END;

DO |<ARITH>| = <ARITHX^ TO <ARITHX>; 12

<STMT*>

END;

DO I = |<ARITHX>| TO <ARITHX>; 7

<STMT*>

END;

• • • 13,7,13,3,2

DO I = 1 TO 20; 4

|<ASGN STMT>|

END;

12,8,5,12,6,11,
12,9,5,12

DO I = 1 TO 20;

S = S + A(I);

END;

Figure 2—Steps in the generation of a DO loop
In each step, the non-terminal in the rectangle is replaced

according to the rule whose number appears at the right

User Engineering Principles 525

/» <COMMENT> xi
<ASGN STMT>
<PROC>

DO; <STHT«> END;
DO <VAR> = <ITER SPE.
IF <BITX> THEN<STMT>
RETURN;
ALLOCATE <ALLOC ITEM.
<l/0 STMT>

MORE

EDITING FILE: TEXT

/» <COMMENT> »/
DECLARE <OECL E L O ;
CALL <ENTRYNMXARG»>>
DO WHILE <<B1TX>>| <.
DO <ARITHV> = <ARITH.
IF <B1TX> TMEN<STMT>.
RETURN <<EXP>>;
FREE <FREE !TEM«>;

FRAG: EXAMPLE

X :ARITH>
<STRUCT»>
<ENTRVNM>

EDITING F ILE: TEXT

<AR1TM> KARITHXO)
<STRUCT»>.<ARITH> <<.
<ENTRYNM> <<ARG<>)
<STRUCT»>. <PTR>-XAR.
<STRUCT»>. <PTR>-XST.
<STRUCT»>. <PTR>-XAR.
<STRUCT»> . <PTR>-XST .

FRAG: EXAMPLE

<AR1TH«> TO <A»ITHX>i

ENTER <ARITH> .

1 = kt»lTH»M TO <ARITMX>.

^<ARITM>
^•<NUHBER>

<BITX>
<ARITHX> + <ARITHX>
<AR1THX>*<AR1THX>
<AR1THX>»KARITHX>

EDITING FILE: TEXT

<ARITHV>
(<ARITHX>)
-<ARITHX>
<CHARX>
<AR1THX> - <ARITHX>
<AR1THX>/<AR1TMX>

FRAG: EXAMPLE

gZ5SEXC &

ARITH> = <ARITHX>;
<VAR> = <EXPR>i
<BITV> = <BITX>;
<PTRV> = <PTRX>;

EDITING FILE: TEXT

<ARITHV> = <ARITHX>i
<VAR*> = <EXPR>:
<CHARV> = <CHARX>:

FRAG: EXAMPLE

DO 1 = 1 TO 2*1
S = S • A I

ENDs

EDITING FILE: TEXT FRAG: EXAMPLE

Figure 3—Generation of a DO loop with Emily
These photographs show the same steps as shown in Figure 2. The menu displays all the choices available in the implemented PL/I
syntax. An arrow indicates the syntax rule the user will select next. Up to twenty-two lines of text may be shown in the text area,

so it appears empty with only 3 lines

but the only allowable replacements for a given non
terminal are specified by the syntactic rules. In
each rule, the given non-terminal is on the left followed
by a colon followed by the sequence of symbols that
may replace the non-terminal. As an example, Figure 1
shows a portion of the syntax for PL/I . Figure 2 shows
a DO loop generated using this syntax.

I t is important to note that a string generated ac
cording to a syntax is not simply a sequence of char
acters, but can be divided into hierarchies of substrings
on the basis of the syntactic rules. Each non-terminal
in the sequence of symbols for a rule generates a sub
sequence. The DO statement in Figure 2 can be one
of a sequence of statements in some higher DO loop
and can also contain a subordinate sequence of state
ments (generated by (STMT*)). Replacement of a
non-terminal by a rule can be thought of as replacing
the non-terminal with a pointer to a copy of the rule.

The non-terminals in this copy can be further replaced
by pointers to copies of other rules. In a diagram each
syntactic rule used in the generation of the string is
represented by a node (a rectangle). The node contains
one pointer to a subordinate node for each non-terminal
in the syntactic rule. The subordinate node is called a
subnode or a descendant, while the pointing node is
called the parent.

Emily text structure

Text in the Emily system is stored in a file, which
may contain any number of fragments. Each fragment
has a name and contains a piece of text generated by
some non-terminal symbol. Generated text is physically
stored in a hierarchical structure like that described
above. Each node is a section of memory containing
(a) the number of the syntax rule for which this node

526 Fall Joint Computer Conference, 1971

was generated, and (b) one pointer to each subnode. In
a completed text, there is one descendant node for each
non-terminal in the syntax rule and the pointer to a
descendant is the address of the section of memory
where it is stored. If no text has been generated for a
non-terminal symbol, there is no subnode and the cor
responding pointer is replaced by a code representing
the non-terminal symbol. If a subnode of a node is an
identifier, the pointer points at a copy of the identifier
in a special area. All pointers at a given identifier point
to the same copy in this identifier area. Other than
identifiers, each node is pointed at exactly once within
the text structure. This guarantees that if a node is
modified, only one piece of text is affected.

Notice that punctuation and reserved words do not
appear in this representation of text. Instead, they can
be generated because the syntax rule number identifies
the appropriate rule. Two tables in Emily contain
coded forms of the syntax rules. One table, called the
abstract syntax, controls the hierarchical structure of
generated text. I t specifies which syntax rules can re
place a given non-terminal symbol and the sequence of
non-terminal symbols on the right-hand-side of each
syntax rule. Another table, the concrete syntax, tells how
to display each rule; it includes punctuation, reserved
words, and formatting information like indentation and
line termination.

Creating text

The Emily user creates hierarchical text in a series
of steps very similar to Figure 2. In each step the right
side of a rule is substituted for a non-terminal symbol.
Before the user creates any text, the fragment contains
a single non-terminal symbol. In the case of Figure 2,
that symbol is (STMT). The user sees the result of
each step on the 2250 display. Figure 3 shows the steps
of Figure 2 as they appear on the screen.

While using the Emily system the 2250 screen ap
pears to be divided into three areas: text, menu, and
message. The text area occupies the upper two-thirds
of the screen and displays the text the user is creating.
The lower third of the screen is the menu where Emily
displays the strings the user can substitute in the text.
The bottom line of the screen is the message area, where
Emily requests operands and displays status and error
messages.

Non-terminal symbols** in the text area are under
lined to make them stand out. One of the non-terminals

** When it is displayed, a non-terminal is the end (or terminal)
of a branch of the hierarchical structure. It is called a non-termi
nal because it must be replaced with a string of terminals before
the text is complete.

is the current non-terminal and is surrounded by a
rectangle. The menu normally displays all strings that
can be substituted for the current non-terminal. These
strings are simply the right sides of the syntax rules
that have the current non-terminal on the left.

When the user points the light pen at an item in the
menu Emily substitutes that item for the current non
terminal. Usually, the substitution string contains
more than one non-terminal and the new current non
terminal is the first of these. The user can also change
the current non-terminal by pointing the fight pen at
any non-terminal in the display. Emily moves the rec
tangle to that non-terminal and changes the menu ac
cordingly. When the current non-terminal is an identi
fier, the menu displays identifiers previously entered in
the required class (some of the classes for PL/ I are
(ARITH), <CHAR>, and <ENTRYNM». The user
may select one of these, or he may enter a new identifier
from the keyboard. Constants are also entered from the
keyboard.

Viewing text

Since text is stored hierarchically within Emily, it
can be viewed with operations that take advantage of
that structure. The user may wish to descend into the
structure and examine the details of some minor sub
structure. Alternatively, he may wish to view the
highest levels of the hierarchy with substructures repre
sented by some appropriate symbol. Both of these
viewing operations are possible with Emily.

The symbol displayed to represent a substructure is
called a holophrast. This symbol begins and ends with
an exclamation mark and contains two parts separated
by a colon. The first part is the non-terminal symbol
that generated the substructure and the second part is
the first few characters of the represented string. Fig
ure 4 shows three examples of holophrasts. Note that
contraction to a holophrast only changes the view of
the file and it does not modify the file itself. Moreover,
the user never enters a holophrast from the keyboard;
they are displayed only as a result of contracting text.

The user contracts a structural unit in the display
by pushing a button on the program function keyboard
and then pointing at some character in the text. The
selected character is part of the text generated by some
node in the hierarchical structure. The display of this
node is replaced by a holophrast. If the user points at
a holophrast, the father of the indicated node contracts
to a holophrast which subsumes the earlier one. To ex
pand a holophrast back to a string, the user returns to
normal text construction mode and points the light pen
at the holophrast.

User Engineering Principles 527

The operations to ascend and descend in the text
hierarchy are also invoked by program function but
tons. To descend in the hierarchy the user pushes the
IN button and points at a part of the text. The selected
node becomes the new display generating node; subse
quent displays show only this node and its subnodes.
The OUT button lets the user choose among the an
cestors of the display generating node and then makes
the selected ancestor the new display generator.

System environment

At Argonne National Laboratory, the 2250 is at
tached to an IBM 360 model 75. The 75 is under con
trol of the MVT version of OS/360. Unit record input/
output is controlled by ASP in an attached 360/50. The
360/75 has one million bytes of main core and one
million bytes of a Large Capacity Storage Unit.

The Emily system itself requires 60K bytes of main
core (the maximum permitted for a 2250 job at Ar
gonne) and about 400K bytes of LCS. Emily is written
in PL/ I and uses the Graphic Subroutine Package to
communicate with the 2250. Files for Emily are stored
on a 2314 disk pack. Emily is table driven and can
manipulate text in any formal language. To date,
tables have been created for four languages: PL/I ,

i J r
!STMT;D0 I = !

punctuation

non-terminal that
generated string

DO I = 1 TO 20;

!STMT:S = S +!

END;

DO I = 1 TO 20;

S = !ARITHX:S + A(I!;

END;

first N characters of
string represented by
this holophrast

Figure 4—Examples of holophrasts
All three examples show the DO loop, but each has been con
tracted differently. The user may change N, the number of
characters of the substring. In the examples, N is seven

GEDANKEN,13 a simple hierarchy language for writing
thesis outlines, and a language for creating syntax
definitions.

USER ENGINEERING PRINCIPLES

The first principle is KNOW THE USER. The system
designer should try to build a profile of the intended
user: his education, experience, interests, how much
time he has, his manual dexterity, the special require
ments of his problem, his reaction to the behavior of
the system, his patience. One function of such a profile
is to help make specific design decisions, but the de
signer must be wary of assuming too much. Improper
automatic actions can be an annoying system feature.

A more important function of the first principle is to
remind the designer that the user is a human. He is
someone to whom the designer should be considerate
and for whom the designer should expend effort to pro
vide conveniences. Furthermore, the designer must
remember that human users share two common traits:
they forget and they make mistakes. With any inter
active system problems will arise—whether the user is
a high school girl entering orders or a company presi
dent asking for a sales breakdown. The user will forget
how to do what he wants, what his files contain, and
even—if interrupted—what he wanted to do. Good sys
tem design must consider such foibles and try to limit
their consequences. The Emily design tried to limit
these consequences by explicitly including a fallible
memory and a capacity for errors in the intended user
profile. Other characteristics assumed are:

curious to learn to use a new tool,
skilled at breaking a problem into sub-problems,
familiar with the concept of syntax and the general

features of the syntax for the language he is using,
manually dextrous enough to use the light pen,
not necessarily good at typing.

Throughout the following discussion, reference is
made to 'modularity' and 'modular design.' These
terms refer to the structure of the program, but have
important consequences for user engineering. A modu
lar program is partitioned into subroutines with dis
tinct functions and distinct levels of function. For
instance, a high level modular subroutine implements
a specific user command but modifies the data structure
only by calls on lower level modules. To be useful for
the general case, the lower modules must have no func
tions dependent on specific user commands. In the
Emily system, for example, there are user commands to
MOVE and COPY text and there are low level routines

528 Fall Joint Computer Conference, 1971

User Engineering Principles

First principle: Know the user

Minimize Memorization

Selection not entry

Names not numbers

Predictable behavior

Access to system information

Optimize Operations

Rapid execution of common operations

Display inertia

Muscle memory

Reorganize command parameters

Engineer for Errors

Good error messages

Engineer out the common errors

Reversible actions

Redundancy

Data structure integrity

Figure 5—User engineering principles

for the same functions. These low level routines always
destroy the existing information at the destination,
but the user commands are defined to move that exist
ing information to the special fragment *DUMP*. The
low level routines must be called twice (destination—>
DUMP; source—destination) to implement the user
commands, but these same routines are used in several
other places in the system. Designing adequate modu
larity into a system requires careful planning at an
early stage, but pays off with a system that takes less
time to implement, is easier to modify, and can be de
bugged with fewer problems and more confidence of
success.

Specific user engineering principles to help meet the
first principle can be categorized into

MINIMIZE MEMORIZATION,

OPTIMIZE OPERATIONS,

ENGINEER FOR ERRORS.

The principles are outlined in Figure 5.

Minimize memorization

Because the user forgets, the computer memory
must augment his memory. One important way this
can be accomplished is by observing the principle
SELECTION NOT ENTRY. Rather than type a character
string or operation name, the user should select the
appropriate item from a list displayed by the computer.
In a sense, the entire Emily system is based on this
principle. The user selects syntax rules from the menu
and never types text. Even when an identifier is to be
entered, Emily displays previously entered identifiers;
though the user must type in new identifiers. Because
the system is presenting choices, the user need not re
member the exact syntax of statements in the language,
nor the spelling of identifiers he has declared. Moreover,
each selection—a single action by the user—adds many
characters to the text. Thus if the system can keep up
with the user, he can build his text more quickly than
by keyboard entry.

The principle of 'selection not entry' is central to
computer graphics and by itself constitutes a revolution
in work methods. The author first saw the principle in
the work of George14 and Smith7 but has since observed
it in many systems. The fact is that a graphic display—
attached to a high bandwidth channel—can display
many characters in the time it would take a user to
type very few. If the choices displayed cover the user's
needs, he can enter information more quickly by selec
tion. Ridsdale15 has reported a patient note system used
in a British hospital that is based on the principle of
selection. In this system, selection is not by fight pen
but by typing the code that appears next to the de
sired choice in the menu.

Experience with Emily suggests that keyboard code
entry is better than light pen selection because of two
user frustrations. First, the menu does not provide a
target for the light pen while the display is changing;
and second, the delay can vary depending on system
load. With keyboard codes, the user can go at full
speed in making selections he is familiar with, but
when he gets to unfamiliar situations he can slow down
and wait for the display. Thus, his behavior can travel
the spectrum from typing speed to machine paced
selection.

The second principle to avoid memorization is
NAMES NOT NUMBERS. When the user is to select from
a set of items he should be able to select among them
by name. In too many systems, choices are made by
entering a number or code which the system uses to
index into a set of values. Users can and do memorize
the codes for their frequent choices, though this is one
more piece of information to obscure the problem at

User Engineering Principles 529

hand. But when an uncommon choice is needed, a code
book must be referenced. Symbol tables are understood
well enough that there is no excuse for not designing
them into systems so as to replace code numbers with
names. In Emily, there are names for files, fragments,
display statuses, syntaxes, and non-terminals. Con
ceivably, the user could even supply a name to be dis
played in each holophrast. In practice, though, so
many holophrasts are displayed that the user would
never be done making up names. For this reason, the
holophrast contains the non-terminal and the first few
characters of the text—a system generated 'name' with
a close relation to the information represented by that
name.

It is also possible to forget the meaning of a name, so
a system should also provide a dictionary. System
names should be predefined and the user should be al
lowed to annotate any names he creates. The lack of a
dictionary in Emily has sometimes been a nuisance
while trying to remember what different text fragments
contain.

The next principle, PREDICTABLE BEHAVIOR, is not
easy to describe. The importance of such behavior is
that the user can gain an 'impression' of the system and
understand its behavior in terms of that impression.
Thus by remembering a few characteristics and a few
exceptions, the user can work out for himself the details
of any individual operation. In other words, the system
ought to have a 'Gestalt' or 'personality' around which
the user can organize his perception of the system. In
Emily all operations on text appear to make it expand
and contract. Text creation expands a non-terminal to
a string and the viewing operations expand and con
tract between strings and holophrasts. This commonal
ity lends the unity of predictable behavior to Emily.

Predictable behavior is also enhanced by system
modularity. If the same subroutine is always used for
some common interaction, the user can become accus
tomed to the idiosyncracies of that interaction. For
instance, in Emily there is one subroutine for entering
names and other text strings so that all keyboard inter
actions follow the same conventions.

The last memory minimization principle is ACCESS TO

SYSTEM INFORMATION. Any system is controlled by
various parameters and keeps various statistics. The
user should be given access to these and should be
able to modify from the console any parameter that he
can modify in any other way. With access to the system
information, the user need not remember what he said
and is not kept in the dark about what is going on.
Emily provides means of setting several parameters,
but fails to have any mechanism for displaying their
values. This oversight is due to a failure to remember

that the user might not have written the system.
Another such oversight is a failure to provide error
messages for many trivial user errors. Even worse, the
'MULTIPLE DECLARATION' error message origi
nally failed to say which identifier was so declared. This
has been corrected, but should have been avoided by
attention to the 'Access to system information' principle
of user engineering.

Optimize operations

The previous section stressed the design—the logical
facilities—of the set of commands available to the user.
'Optimize operations' stresses the physical appearance
of the system—the modes and speeds of interaction and
the sequence of user actions needed to invoke specific
facilities. The guiding principle is that the system
should be as unobstrusive as possible, a tool that is
wielded almost without conscious effort. The user
should be encouraged to think not in terms of the fight
pen and keyboard, but in terms of how he wants to
change the displayed information.

The first step in operation optimization is to design
for RAPID EXECUTION OF COMMON OPERATIONS. Be

cause Emily text is frequently modified in terms of its
syntactic organization, a data structure to represent
text was chosen so as to optimize such modification.
The text display is regenerated frequently, so consider
able effort was expended to optimize that routine. More
effort is required, though; it is still slow largely because
a subroutine is called to output each symbol. Less fre
quent operations like file switching do not justify special
optimization. Lengthy operations, however, should
display occasional messages to indicate that no diffi
culty has occurred. For instance, while printing a file
Emily displays the line number of each tenth line as it
is printed.

As the system reacts to a user's request, it should
observe the principle of DISPLAY INERTIA. This means
the display should change as little as necessary to carry
out the request. The Emily DELETE operation re
places a holophrast (and the text it represents) with a
non-terminal symbol. The size and layout of the dis
play do not change drastically. Text cannot be deleted
without first being contracted to a holophrast, thus
deletion—a drastic and possibly confusing operation—
does not add the disorientation of a radically changed
display. The Emily display also retains inertia in that
the top line changes only on explicit command. Some
linear text systems always change the display so the
line being operated on is in the middle of the display.
Because the perspective is constantly shifting, the user

530 Fall Joint Computer Conference, 1971

is sometimes not sure where he is. The Emily automatic
indentation provides additional assistance to the user.
As text is created in the middle of the display, the
bottom line moves down the display. Since this line is
often not indented as far as the preceding line, its
movement makes a readily perceptible change in the
display.

One means of reducing the user's interaction effort is
to design the system so the user can operate it on
'MUSCLE MEMORY.' Very repetitive operations like driv
ing a car or typing are delegated by the conscious mind
to the lower part of the brain (the medulla oblongata).
This part of the brain controls the body muscles and
can be trained to perform operations without continual
control from the conscious mind. One implication of
muscle memory is that the meaning of specific inter
actions should have a simple relation to the state of
the system. A button should not have more than a few
state dependent meanings and one button should be
reserved to always return the system to some basic con
trol state. With such a button, the muscle memory can
be trained to escape from any strange or unwanted
state so as to transfer to a desired state. In Emily the
buttons of the program function keyboard obey these
principles. The NORMAL button always returns the
entire system to a basic state waiting for commands.
Other buttons have very limited meanings and it is
almost always possible to abort one command and in
voke another simply by pushing the other button (with
out pushing NORMAL first).

A second implication of muscle memory for system
design is that the system must be prepared to accept
commands in bursts exceeding ten per second. (Typing
100 words per minute is 10 characters per second. A
typing burst can be faster.) I t is not essential that the
system react to commands at this rate, because inter
active computer use is characterized by command
bursts followed by pauses for new inspiration. But if
command bursts are not accepted at a high rate, the
muscle memory portion of the brain cannot be given
full responsibility for operations. The conscious brain
has to scan the system indicators waiting for GO. Com
mand bursts from muscle memory account for the un-
suitability of the fight pen for rule selection as discussed
under 'selection not entry.'

In addition to optimizing the interaction time, the
system designer must be prepared to REORGANIZE

COMMAND PARAMETERS. Observation of users in action
will show that some commands are not as convenient
as their frequency warrants while other commands are
seldom used. Inconvenient commands can be simplified
while infrequent commands can be relegated to sub
commands. Such reorganization is simplified if the origi

nal system design has been adequately modularized.
High level command routines can be rewritten without
rewriting low level routines and the latter can be used
without fear that they depend on the higher level.

A good example of command reorganization in Emily
has been the evolution of the view expansion commands.
In the earliest version, pointing the light pen at a holo-
phrast expanded it one level, so that each of the sub-
nodes of the holophrast became a new holophrast. With
this mechanism, many interactions were required to
view the entire structure represented by a holophrast.
Very soon the system-designer/user added a system
parameter called 'expansion depth.' This parameter
dictated how many levels of a holophrast were to be
expanded. To set the expansion depth, the user pushed
a button (on the program function keyboard) and
typed in a number (on the alphameric keyboard). I t
soon became obvious that users almost always set the
expansion depth to either one or all. Consequently, two
buttons were defined, so that the user could choose
either option quickly. Later, the button for typing in
the expansion depth was removed and that function
placed under a general 'set parameters' command. Fur
ther experience may show that only the 'expand one
level' button is required. I t would take effect only
during the next holophrast expansion. At all other
times, holophrasts would always be expanded as far as
possible.

Engineer for errors

Modern computers can perform billions of operations
without errors. Knowing this, system designers tend to
forget that neither users nor system implementers
achieve perfection. The system design must protect the
user from both the system and himself. After he has
learned to use a system, a serious user seldom commits
a deliberate error. Usually he is forgetful, or pushes the
wrong button without looking, or tries to do something
entirely reasonable that never occurred to the system
designer. The learner, on the other hand, has a power
ful, and reasonable, curiosity to find out what happens
when he does something wrong. A system must protect
itself from all such errors and, as far as possible, protect
the user from any serious consequences. The system
should be engineered to make catastrophic errors diffi
cult and to permit recovery from as many errors as
possible.

The first principle in error engineering is to provide
GOOD ERROR MESSAGES. These serve as an invaluable
training aid to the learner and as a gentle reminder to
the expert. With a graphic display it is possible to pre-

User Engineering Principles 531

sent error messages rapidly without wasting the user's
time. Error messages should be specific, indicating the
type of error and the exact location of the error in the
text. Emily does not have good messages for user
errors. Currently, the system blows the whistle on the
2250 and waits for the next command from the user.
Each error is internally identified by a unique number,

/ and it will not be difficult to display the appropriate
message for each number.

I t is not enough to simply tell the user of his errors.
The system designer must also be told so he can apply
the principle ENGINEER OUT THE COMMON ERRORS. If an

error occurs frequently, it is not the fault of the user,
it is a problem in the system design. Perhaps the key
board layout is poor or commands require too much
information. Perhaps consideration must be given to
the organization of basic operations into higher level
commands.

Emily provides several means of feedback from the
user to the system designer. (Though for the most
part, they have been one and the same.) A log is kept
of all user interactions, user errors, and system errors.
There is a command to let the user type a message to
be put in the log and this message is followed by a
row of asterisks. When the user is frustrated he can
push a 'sympathy' button. In response, Emily displays
at random one of ten sympathetic messages. More im
portantly, frustration is noted in the log and the system
designer can examine the user's preceding actions to
find out where his understanding differed from the sys
tem implementation.

'Engineering errors out' does not mean to make them
impossible. Rather they should be made sufficiently
more difficult that the user must pause and think be
fore he errs. In Emily, time consuming operations like
file manipulation always ask the user for additional
operands. If he does not want the time consuming
operation he can do something else. To delete text, the
user must think and contract it to a holophrast. This
means that large structures cannot be cavalierly
deleted.

A single erroneous deletion can inadvertently remove
a very large substructure from the file. To protect the
user the system must provide REVERSIBLE ACTIONS.

There ought to be one or more well understood means
for undoing the effects of any system operation. In
Emily, a deleted structure is moved to *DUMP*. If
the user has made a mistake, he can reach into this
'trash can' and retrieve the last structure he has de
leted. (Deletion does destroy the old contents of
DUMP.) A more general reversible action mechanism
would be a single button that always restored the state
existing before the last user interaction. Emily has no

such button, but the QED system16 supplies a file con
taining all commands issued during the console session.
The user can modify this file of commands and then
use it as a source of commands to modify the original
text file again.

Besides helping the user escape his own mistakes,
error engineering must protect the user from bugs in
the system and its supporting software. Modular design
is important to such protection because it minimizes
the dependencies among system routines. The imple-
menter should be able to modify and improve a routine
with confidence that his changes will affect only the
operation of that routine. Even if the changes introduce
bugs, the user will be protected if the designer has ob
served the principles of redundancy and data structure
integrity.

REDUNDANCY simply means that the system provides
more than one means to any given end. A powerful
operation can be backed up by combinations of simpler
operations. Then if the powerful operator fails, the user
can still continue with his work. Such redundancy is
most helpful while debugging a system, but very few
systems are completely debugged and any aids to the
debugger can help the user. As an adjunct of redun
dancy, the system must detect errors and let the user
act on them, rather than simply dumping memory and
terminating the run. In Emily, the PL/ I ON-condition
mechanism very satisfactorily catches errors. They are
passed to a subroutine in Emily that tells the user that
a catastrophe has occurred and names the offending
module. Control then returns to the normal state of
waiting for a command from the user, who has the op
tion to continue or call for a dump.

A system should provide sufficent DATA STRUCTURE

INTEGRITY that regardless of system or hardware trouble
some version of the user information will always be
available. This principle is especially applicable to
Emily where most of the information is encoded by
pointers. A small error in one pointer can lose a large
chunk of the file. Some effort has been spent ensuring
that errors in Emily will not damage the part of the
data structure kept in core during execution. But if an
error abruptly terminates Emily execution (such errors
are generally in the system outside Emily) the file on
the disk may be in a confused state. Currently, the only
protection is to copy the file before changing it, but
there are file safety systems that do not rely on the
user to protect himself, and one of these should be
implemented for Emily.

Protection and assistance for the user are keywords
in user engineering. The principles outlined in this
paper are not as important as the general approach of
tailoring the system to the user. Only by such an ap-

532 Fall Joint Computer Conference, 1971

proach can Computer Science divest the computer of
its image as a cold, intractable, and demanding ma
chine. Only by such an approach can the computer be
made sufficiently useful and attractive to take its place
as a valuable tool for the creative worker.

ACKNOWLEDGMENTS

I am grateful to Dr. John C. Reynolds and Dr. William
F. Miller. Any success of the Emily project is due to
their persistent advice and encouragement.

REFERENCES

1 W J HANSEN
Creation of hierarchic text with a computer display
Argonne National Laboratory ANL-7818 Argonne
Illinois 1971

2 J MCCARTHY D BRIAN G F E L D M A N
J ALLEN
THOR—a display based time sharing system
AFIPS Conf Proc Vol 30 (SJCC) 1967 pp 623-633

3 W WEIHER
Preliminary description of EDIT2
Stanford Artificial Intelligence Laboratory Operating
Note 5 Stanford California 1967

4 DEC LIBRARY
PDP-6 time sharing TECO
Stanford Artificial Intelligence Laboratory Operating
Note 34 Stanford California 1967

5 STANFORD UNIVERSITY COMPUTATION
CENTER
Wylbur reference manual
Campus Facility Users Manual Appendix E Stanford
California 1968

6 D C ENGELBART
Private communication
Stanford Research Institute Menlo Park California 1971

7 L B SMITH
The use of man-machine interaction in data-fitting problems
Stanford Linear Accelerator Center Report 96 Stanford
California 1969

8 J G MITCHELL
The design and construction of flexible and efficient
interactive programming systems
Department of Computer Science Carnegie-Mellon
University Pittsburgh Pennsylvania 1970

9 R B MILLER
Response times in man-computer conversational
transactions
AFIPS Conf Proc Vol 33 (FJCC) part 1 1968 pp 267-277

10 W J HANSEN
Graphic editing of structured text
in Advanced Computer Graphics R D PARSLOW
R E GREEN editors Plenum Press London 1971
pp 681-700

11 W J HANSEN
Emily user's manual
Argonne National Laboratory Argonne Illinois
forthcoming

12 J W BACKUS
The syntax and semantics of the proposed international
algebraic language of the Zurich ACM-GAMM
conference
Proc International Conf on Information Processing
UNESCO 1959 pp 125-132

13 J C REYNOLDS
GEDANKEN—a simple typeless language based on the
principle of completeness and the reference concept
Comm ACM Vol 13 No 5 1970 pp 308-319

14 J E GEORGE
Calgen—an interactive picture calculus generation system
Computer Science Department Report 114 Stanford
University Stanford California 1968

15 B RIDSDALE
The visual display unit for data collection and retrieval
in Computer Graphics in medical research and hospital
administration R D PARSLOW R E GREEN editors
Plenum Press London 1971 pp 1-8

16 K THOMPSON
QED text editor
Bell Telephone Laboratories Murray Hill New Jersey 1968

