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INTRODUCTION SYSTEM DESCRIPTION 

The use of highly parallel processing units for comput­
ing problems that are highly parallel in structure has 
been widely studied. The range of systems varies from 
the duplication of complete processing elements,1 

through the provision of a set of specially tailored 
small processors attached to a main processor,2 to the 
use of cellular arrays;3 other writers have exploited the 
inherent parallelism of associative memories as com­
ponents of parallel processing systems.*-7 

Associative memories have been proposed either as 
true content addressable memories,5 or as processing 
units.4-6 In general, for use as a processing unit, each 
word in the memory, or possibly pairs or groups of 
words, is regarded as a serial by bit processing unit, all 
operating in parallel and controlled by a single pro­
gram. These proposals have included rather compli­
cated control systems to perform bit indexing and other 
functions necessary to sequence the memory through a 
program. 

An important extension to the concept of associative 
memories as processing elements was proposed by 
McKeever,8 who described the use of three state storage 
elements with increased logic function at each storage 
cell; a memory with this feature is referred to here as 
an associative functional memory. The use of three 
state cells as a general system technology for conven­
tional sequential processors has been described;9-10 it is 
the purpose of this paper to demonstrate that: 

1. An associative functional memory with suitable 
peripheral features could be used to implement 
many of its own control functions as well as 
performing processing operations, and could 
readily be assembled into a complete auxiliary 
parallel processor, 

2. Such a processor would be an attractive means 
of enhancing the performance of small conven­
tional processors in a wide range of problems. 

The associative processor to be described here is in­
tended for use as a programmable auxiliary processor 
to assist a conventional main processor in special prob­
lems. Programs are loaded from the main processor 
and are used to load data, to process it, and to return 
results to the main processor. The main processor has 
at all times the ability to force the auxiliary processor 
to accept a new program or to branch to a specified 
location in its program. For applications involving the 
processing and reduction of very large amounts of raw 
data, for example, radar signal processing, it would be 
wasteful to transfer data to the associative processor 
by way of the memory and channels of the main pro­
cessor. In these circumstances, the associative pro­
cessor could be modified to accept data directly from 
its source, that is, to act as a pre-processor, but would 
not be expected to exercise control over the data source. 

The overall design goals have been simplicity of 
implementation and generality of application. Simplic­
ity of implementation has been achieved by construc­
tion from units which could be standard modules9 

with a minimum of additional special logic, and has led 
to a potentially fast cycle time. Generality of applica­
tion has been achieved by implementing many control 
functions in memory and by the inclusion of some extra 
associative memory features which are not necessarily 
required in all applications. The proposed processor 
consists of two main components (Figure 1): a 1024 
word X 64 cell associative functional memory and a 
512 word X 50 bit read/write control store. The as­
sociative memory is used to store both data being pro­
cessed and control information. An alternative would 
have been to have used separate memories; however, 
the use of a single unit permits the ratio of data to con­
trol information to be tailored to any given problem 
and enables a very simple control system to be used. 
On the other hand, the single array approach reduces 
the speed of data processing since many associative 
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Figure 1—Block diagram of the proposed associative processor 

memory cycles have to be used for control operations. 
I t tends to be wasteful in the use of associative cells 
for control tables, and requires the introduction of extra 
features to reduce the interference between data and 
control. 

Control sequences for the execution of a program are 
contained in a read/write control store normally 
operating in a read-only mode. Conditional branches 
in the program may be made by testing the condition 
of various signals in the processor and its I/O inter­
faces. Program loading, i.e., writing into the control 
store, is performed under the control of a short, perma­
nent, initial load program. 

Input and output data transfers are made by way of 
the associative array bit control unit. Basic interface 
control is carried out by the control store which can 
generate outgoing and test incoming control signals; 
more complex I /O control, such as an IBM Standard 
Interface, requires the addition of an interface control 
unit. Attachment closer to the main processor (e.g., 
interfacing the main memory) would give higher per­
formance but would imply modifications to the main 
processor. 

Associative processing array 

The associative processing array is a two-dimensional 
array of three state (0, 1, X = "don't care") associative 
storage cells with arbitrarily chosen dimensions of 1024 
words X 64 cells. The array is connected in the word 
direction to the word control unit and in the bit direc­
tion to the bit control unit. In an LSI implementation, 
the basic module could be a self-contained associative 
functional memory unit of, say, 128 words, complete 
with bit and word controls. Modules could readily be 
extended in the word direction by suitable intercon­
nection of data and control lines; extension in the bit 
direction may be simulated by software. 

Three basic operations may be performed on the 
array: search, read, and write. 

Search 

A ternary search argument is generated in the bit 
control unit between the specified data register (Rl, 
R2) and the specified mask (M, all l 's, all 0's) on a bit 
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by bit basis: 
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1 
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1 

X = don't care 

Generation of search arguments. 

Write 

Two write commands are provided: Write Normal, 
and Write Special. In either case a ternary argument is 
generated in the same manner as a Search argument and 
acts on the contents of cells in selected words, as de­
fined by the specified selector register in true or comple­
ment form (P, S, all 0). The effects on a cell are shown 
in the two truth tables below: 

All cells, in parallel, compare their contents with the 
search argument for that bit column and generate a 
mis-match signal in accordance with the truth table: 

Cell Content 

Write Argument Write Argument 

Search 
Argument 

0 

1 

X 

0 

0 

1 

0 

1 

1 

0 

0 

X 

0 

0 

0 

Generation of mismatch signals 

Mismatch signals for a cell are ORed to give a mis­
match signal for the word; word mismatch signals, in 
true or complement form, are sent to the word control 
unit where they may be ANDed or ORed with, or re­
place the contents of one of two sets of selector latches 
( P a n d S ) . 

Read 

The contents of a specified set of selector latches (P, 
S, all 0's) in true or complement form are used to select 
words to be read. The contents of cells from selected 
words are ORed in the bit direction onto a read bus (an 
X state reads as zero) and sent to the bit control unit 
where they are used to load a specified register (Rl, 
R2, M) based on the value of mask specified (M, all 0, 
all 1): 
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X 
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Effect of Read operation on specified register. 

Write Normal Write Special 

The word control unit may also perform a one bit 
shift of a selector register up or down with end around 
carry, or fill with 0 or 1; a shift takes the same time as 
an array operation or may be overlapped with an ad­
jacent preceding array operation using the same selector 
register. This provides the only parallel means of com­
municating vertically between words. Other writers 
(e.g., McKeever, Reference 8) have usually specified 
other operations in the word control unit, such as iso­
late first match. Although provided by our simulator 
we have found little use for such operations, which 
tend to be serial in nature, and for the most part found 
that they can be economically simulated by software, 
e.g., by use of a code field. The exception was sorting 
with an arbitrary number of identical items, when a 
means of separately identifying multiple matches is 
necessary. 

The bit control unit contains three registers: two 
data registers (Rl, R2) defining a data source or sink 
for an array operation; and one mask register(M) de­
fining a field for an array operation. Any array opera­
tion may use either data register and the mask register, 
or may replace the mask by a source of all 0's or all l 's. 
In addition, the control store may specify directly the 
leftmost four bits each for the mask and data registers. 
These bits (the immediate field) are ORed into the 
register outputs without affecting the contents of the 
register. A non-array operation, a single bit shift 
operation on any register may be specified; this feature 
is assumed to take the same time as an array operation 
unless it is overlapped with an adjacent array operation 
in which the register being shifted is a data source or 
sink; again, fill with 0 or 1 may be specified. 
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Input-output operations 

Input-output operations for the associative processor 
take place through the bit control data register R l . 
The register is divided into fields each of the same 
width as the I/O interface data busses. Data may be 
gated to or from the register under program control 
and is interlocked with the main processor by interface 
synchronizing signals. Outgoing interface control sig­
nals are generated by the control store and by the run 
control logic. Incoming interface control signals are 
either tested as machine conditions by the program, or 
act directly on the run control logic. 

Operation as a pre-processor, taking data from but 
not controlling another source, would require the ability 
to transfer into the processor from another interface 
and generate and test another set of I /O synchroniza­
tion signals. This modification requires at least two extra 
bits in the control word and some extra logic, but is not 
expected to be very difficult to implement. 

Control store 

The control store (Figure 2) is a conventional (as op­
posed to associative) read/write store used to hold a 
program defining the sequence of operations to be per­
formed by the associative memory.11 During the execu­
tion of a program, the control store normally operates 
in a read-only manner. Each word read out specifies the 
operations to be performed in the array and also the 
address of the next program word. The next address 
may be modified by a condition in the machine, speci­
fied by the program word, enabling conditional branches 
to be made in the program. 

The control store contains 512 words of 50 bits, 
though these numbers may vary, depending on the 
features included. When formed into groups of mutually 
exclusive options, the operation options to be speci­
fied for the array processing unit fall into rather small 
groups, so that coding within a group is not very ad­
vantageous, and bit significant operation has been 
chosen. This has other advantages as it increases flexi­
bility and eliminates timing delays through decoders. 

I t is expected that a semiconductor memory will be 
necessary to be able to operate at the same speed as the 
array. Such a memory will have nondestructive read 
out so that writing into the control store will require 
special control features. Subroutining capability is pro­
vided by a data path to the bit control register R l , 
enabling subroutine return addresses to be stored in 
the associative array. 

Program loading 

Program loading is performed under the control of a 
small fixed routine held in the first few words of the con­
trol store. The program load routine assembles data from 
the I/O interface into the bit control register R l . This 
data is interpreted as a control word and the address 
of the location in the control store into which it is to 
be stored. The program load routine then gives a special 
signal "write next cycle" which causes the run control 
logic to break its normal cycle of read-only operation, 
and to spend one cycle writing into the control store 
from Rl . Note that the control store data register is not 
altered and is available for normal operation on the 
cycle after the write operation is performed. The 
"write next cycle" control also permits the transfer of 
programs from the associative array to the control 
store. 

Programming techniques 

The guiding principle behind the design of the control 
system has been to make the hardware simple whilst 
keeping the system flexible. This principle led to the 
use of a single associative memory, controlled by a single 
conventional control store, with both data and control 
information stored and processed in the associative 
memory. 

Three classes of control information are held in the 
associative memory: 

(1) mask and data register contents for operating on 
data. In the case of relatively simple operations, 
such as addition, these register contents are 
stored in consecutive locations in the sequence in 
which they will be needed, and are accessed by 
shifting a selector register reserved for the pur­
pose. In more complicated operations, such as 
multiplication, where the total number of masks 
is proportional to p2 (where p is the field width) 
and may be large, it may be advantageous to 
process the masks as data in the manner de­
scribed in References 9 and 10, and to generate 
the required sequence of masks; the number of 
control words now becomes essentially propor­
tional to p. 

(2) program flow logic, including counts and logical 
decisions. These may be programmed directly 
or, in simple cases, may be implemented by in­
serting blank words in mask sequences and test-
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Figure 3b—Program for addition: A' = A + B 

ing for an all zero read out. Note that the only 
internal condition tests available to the pro­
grammer are zero tests on the bit and word 
registers; an alternative would have been a test 
on a single bit. 

(3) partitioning. The immediate field provides a 
fast software technique for partitioning the 
single array into groups of words. The four bits 
of the field permit 16 interleaved partitions of 
arbitrary size. This feature is particularly valu­
able for distinguishing and separating data and 
control information; for example, a 0 in the left­
most bit position may signify data while a 1 
signifies control. 

A further consequence of the use of a single array is 
the need to load and store the mask register from and to 
the array. The three array operations have been gen­
eralized for this purpose. 

Programming example: Serial-by-bit addition 

This example is given to show: 

(1) the use of the immediate field 
(2) the use of the associative array for both data and 

control information 
(3) the ability to define fields independently of the 

program by means of control tables. 

Suppose we wish to perform the addition of two 
fields, A and B, the result to overwrite field A, i.e., 
A' = A-\-B. The minimum possible number of array 
operations per bit is 6 (4 Search and 2 Write); however, 
this assumes no performance loss handling control 
operations. The addition algorithm given below takes 
11 operations (9 if the inner loop is expanded to handle 
two bits consecutively). The algorithm uses 2 p + 3 mem­
ory words to store masks and data register contents (p 
is the field width); we have found that, in general, it is 
possible to trade less speed for less control storage. 
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The algorithm is illustrated in Figure 3. The first six 
instructions locate the start of an addition control 
table, load the two data registers R l and R2 with 
constants which remain unchanged throughout the al­
gorithm, load an initial pattern into the mask register, 
and initialize the immediate field. Three bits of the im­
mediate field are used: bit 1 indicates data or control 
words, bit 2 is an activity marker used to indicate 
whether a word has been completely processed in the 
current bit position, and bit 3 is a carry and is initially 
zero. 

Instructions 20-31 make up the main loop of the al­
gorithm which proceeds in a serial by bit manner start­
ing with the least significant bit. At each bit position 
the no change condition in the A and carry bits is de­
tected, and these words are marked as inactive. The 
remaining words are tested for changes in the A field 
and are updated. Indexing across the fields is achieved 
by the mask register contents, which are read sequen­
tially from the control table. Execution of the loop 
ceases when an all zero mask is read out. 

APPLICATIONS 

The principal mode of parallel processing employed 
in this associative processor is serial by bit, parallel by 
word, over some selected subset of words in the mem­
ory. Thus a memory of 1024 words has a potential 
processing parallelism of up to 1024. Operating in a 
serial-by-bit manner across fields inherently requires 
more cycles than a conventional machine with bit 
parallel processing. This is particularly significant in 
arithmetic operations; for example, 16 bit addition re­
quires about four times as many control cycles as a 
System/360 Model 30, 32 bit addition requires about 
eight times as many, and this must be more than can­
celled by the parallelism used. At present we are limited 
to fixed or block floating point operation; normalization 
in general floating point is prohibitively time consum­
ing. In bit manipulation operations, the programmable 
field feature (i.e., the ability to define fields by mask 
control tables stored in the associative memory) may 
enable the associative processor to take fewer opera­
tions than a sequential machine. 

The overall performance of the associative processor 
is affected by a number of overheads. I t is assumed that 
the processor would be used for repetitive execution of 
a program, so that program and control table loading 
times need not be included in the problem-solving time. 
Input and output of data is sequential by word and can 
be very significant. In general, the processor as described 
with a single I /O data path is only suited to problems 
with a high processing to I /O ratio; however, multiple 

I/O data paths could be provided to each of a number 
of partitions. After each stage of parallel computation 
(e.g., after a vector addition) it is generally necessary to 
reorganize the data for a subsequent stage of processing; 
this too can use significant amounts of time and must 
be minimized by careful algorithm selection and mem­
ory organization. 

The performance of the processor has been studied 
with the assistance of a very flexible simulator program 
which allowed function truth tables to be defined at 
object time. Execution times, including processing, 
input/output, and data reorganization, have been com­
puted assuming a cycle time of 100 nsec, which is be­
lieved to be within the capability of an LSI technology. 

A wide range of examples have been studied for the 
associative processor and are discussed here without de­
tails of programming techniques. The aim in choosing 
examples has been to investigate the versatility of the 
associative processor and to demonstrate its perform­
ance on problems for which special purpose processors 
are being built. The examples are summarized in Table 
I; performance figures for the associative processor are 
based on a cycle time of 100 nsecs and an I/O data rate 
of 1.5 n sees per byte. 

Picture 'processing 

The functional memory may be regarded as a two-
dimensional array of storage cells. Given a memory with 
suitable dimensions, two-dimensional pictures may be 
stored in two-dimensional form and, since neighboring 
point relationships are preserved, local processing 
operations may be performed directly and with a high 
degree of parallelism. Analog picture element values 
may be coded into a number of adjacent bits in either 
the bit or word direction; pictures too large for the 
memory may be partitioned and processed in separate 
pages, but this requires care in piecing the edge results 
together. 

As an example, consider the application of a two-
dimensional binary mask operator (nxXny) to a binary 
picture (NxXNy) stored in the functional memory. The 
algorithm proceeds by searching sequentially for each 
line of the operator, centered on one column of the 
picture. The result of the first search operation is loaded 
into a selector register and shifted one position; the re­
sults of subsequent searches are ANDed into the pre­
vious selector register contents before shifting. After 
ny search operations, the selector register contains the 
full result of applying the operator to the column and 
may be either stored back into the memory or output; 
further columns may be processed sequentially. With 
Nx=Ny = 144, application of 25 operators with nx = ny = 
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7 takes 120 milliseconds and is estimated to be 610 times 
faster than a 360/30. Note that this problem gains 
performance through both the parallelism of the associ­
ative processor and its ability to tailor data fields to 
the needs of the current algorithm. 

An alternative approach, suitable for on-line charac­
ter recognition, would be to exploit the symmetry of 
the picture-operator system and hold the mask opera­
tors in the memory and search them with the picture as 
received from a scanner. This operation is the "feature 
extraction" process of character recognition; the result­
ant feature vector may subsequently be matched against 
a stored library of standard reference feature vectors; 
in both operations the three call states may be used to 
represent ternary data. Distance measures between the 
feature vector and all the reference vectors may then 
be computed in a serial-by-bit manner; the recognition 
process may be completed by testing for the minimum 
distance using parallel search techniques. 

Lewin sorting algorithm 

The Lewin sorting algorithm12 was originally pro­
posed for an associative memory with a special hard­
ware feature to indicate whether a column contained all 
0's or all l 's. This feature may readily be simulated by 
software on this processor; for example, searching for 1 
on a data column and a subsequent read of a marker 
column containing all l's will indicate whether or not 
the data column contains all 0's. An all l 's condition 
may be similarly detected. 

The algorithm finds, for example, the largest of a set 

TABLE I—Summary of the Performance of the 
Associative Processor 

Distribution of total processing time 

Picture 
Processing 

Sorting 

Matrix Mult. 

Fourier 
Transform 

Hadamard 
Transform 

1-D Filter 

2-D Filter 

ing 

97% 

70% 

3 1 % 

17% 

4 % 

40% 

50% 

ization 

— 

7% 

44% 

4 6 % 

— 

— 

I /O 

3 % 

30% 

6 2 % 

3 9 % 

50% 

60% 

50% 

ing Time 

122 
millisec. 

20 
millisec. 

1 
millisec. 

31 
millisec. 

12 
millisec. 

10 
millisec. 

20 sec. 

360/30 

610 X 

110X 

78 X 

75 X 

79 X 

280 X 

510X 

of numbers by searching for columns containing a mix­
ture of 0's and l's. If no such columns exist, all the 
numbers are identical and are equal to the largest one. 
Otherwise, the leftmost mixed column is searched for 
numbers with 1 in this position, and the operation is 
repeated on this new subset. 

The number of operations taken by the associative 
processor to execute the algorithm is very data de­
pendent; worst-case figures are given in Table I for an 
internal sort of 1000 items using 16 bit keys and show a 
speed up of a factor of 110 over a 360/30. 

As mentioned previously, a sort of identical items 
requires a means of isolating the components of mul­
tiple matches; in this example, where an arbitrary num­
ber of identical items may be present software tech­
niques require a wide code field and are therefore ex­
pensive. We have assumed the existence of an isolate 
first hit feature. 

Tree searching 

One of the major problems in artificial intelligence is 
to perform efficient tree searching. Since the number of 
nodes of a tree grows exponentially with respect to the 
depth of the tree, the tree searching time also increases 
exponentially, rendering deeper search impractical. I t is 
clear that in tree searching the same sequence of com­
putation and condition testing is performed on every 
node. Thus the basic requirement of "Single Program 
Multiple Data" processing is satisfied and we can per­
form computations upon all nodes in parallel. The tree 
may still have to be grown step by step, but this is 
probably unavoidable. 

I t is difficult to define a typical tree searching prob­
lem and, since performance of both the associative pro­
cessor and a conventional processor are highly problem 
dependent, no performance comparisons are given. 
However, we note that the performance improvements 
in the region of 2-3 orders of magnitude have been 
found in simple game-playing problems. 

Matrix operations 

Many matrix operations are inherently parallel in 
nature and may readily be programmed for the associ­
ative processor. Vector addition, subtraction, and 
multiplication operations, and summation of elements 
of a vector, may be executed very efficiently; division 
may be performed only with difficulty. Thus, matrix 
multiplication is very attractive, but operations involv­
ing a high proportion of divisions is not likely to show 
any great advantage on the associative processor. 
When only a small number of divisions are required. 
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they may be performed by the main processor (e.g., 
pivotal element normalization in matrix inversion2). 

Fixed point multiplication of 10X10 matrices at 16 
bit precision gives a performance improvement of 78 
times. Larger matrix sizes may be partitioned to fit the 
processor and show approximately the same processing 
performance improvement because I/O time dominates. 

Fast Fourier and Hadamard transforms 

The fast Fourier13 and Hadamard14 transforms are 
closely related operations used particularly in signal 
and image processing. The radix-2 fast Fourier trans­
form computes the Fourier transform of a set of points 
Ai0'' 'An° by means of a sequence of transformations 
A0—>A1^"-Am~1 , where n=2m. Each of these trans­
formations is made up on n/2 pairs of elementary opera­
tions of the form 

ApH-^Aj+Wp'AS 

Aq
i+l = Ap

i-Wp
iAq

i 

where Wp* is a complex 2i+1th root of unity in the fast 
Fourier transform, and 1 in the Hadamard transform. 
Each of the pairs of elementary operations in a trans­
form may be performed in parallel and consists of a 
complex multiplication followed by a complex addition 
and subtraction; the result of a transformation may 
overwrite the input to the transformation. 

Many algorithms have been proposed for the selec­
tion of the pairs of indices p and q. The procedure chosen 
for use here selects the indices in a regular manner and 
allows efficient use to be made of the select latches as a 
means of parallel communication between words. For 
the first transformation A°—*A1,AP and Aq are n/2 
words apart; for A1—>A2, ra/4 words apart, etc. How­
ever, this procedure has the disadvantage that if the 
input data are in order, the results will be permuted 
with their addresses in bit reversed form, though this 
may be corrected when the results are transferred back 
to the main processor. The basic steps of the algorithm 
have already been described15 for an associative pro­
cessor with external storage and separated data and 
control functions. 

The implementation of a useful size of Fourier trans­
form within this associative processor requires the use 
of a larger memory array. The principal reasons are 
the need to store the complex roots of unity and the 
inclusion of an address field to enable blocks of operands 
to be identified rapidly. A 1024 point complex trans­
form with 14 bit precision may be fitted into an as­
sociative memory of 1273 words of 89 bits with a per­
formance approximately 75 times faster than a 360/30. 

The Hadamard transform may be regarded as a 

square wave analog of the sine and cosine wave Fourier 
transform and has many advantages from a computa­
tional point of view. In particular, the use of square 
waves of amplitude±l makes multiplication unneces­
sary, and an ability to generate square wave transition 
lengths for a transform of length 2N from a transform 
of length N removes the need for a stored table of 
coefficients. The Hadamard transform also has a fast 
Hadamard transform algorithm. Performance on the 
associative processor for a 1024 point real transform is 
shown in Table I. Note that in both these transforms 
data reorganization becomes very significant. 

Digital filtering 

Digital convolutional filters of the form: 

n 

y(t)=Ttx(t-r)g(t) 
T = l 

where g(t) is a filter of length n 

x(t) is the filter input 

y(f) is the filter output 

may be implemented on the associative processor in a 
number of ways, the choice depending principally on 
the dimensions of the problems, e.g., filter length, data 
record length, and number of filters. The most efficient 
method, in the sense that I /O operations are minimized, 
is to store the filter vector g permanently in the mem­
ory and to regard the data points as scalar inputs 
operating on all elements of the filter vector. This 
method is applicable when N ~ number of words in the 
memory, where N represents either a single long filter 
or a number of shorter filters of equal length. Note that, 
in the Single Program Multiple Data form of parallel 
processing, a scalar operation on a vector differs from 
element operations between a pair of vectors in that it 
is now possible to perform look-ahead operations when 
processing the scalar quantity, thereby approximately 
halving the execution time. 

The algorithm assumes that the memory is parti­
tioned into two fields of equal size, one for the filter 
vector g and the other for partial results. Processing 
proceeds in a pipeline manner—a new data point is re­
ceived and used as a scalar multiplier on the filter vec­
tor, the products being added into the adjacent partial 
result field. The partial results are shifted one word 
position and the process repeated with the next data 
point. After the first n data points have been processed, 
one output result will be available for each filter held 
in the memory; thereafter, output results are available 
after each new data point has been processed. 
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An alternative method to be used when the filter is 
short is to load the memory to capacity with data points 
and to apply the filter coefficients as external scalars. 
When the whole filter has been applied, all the results 
may be read out. The processing time for this method 
is the same as that for the stored filter, but the I /O 
time is significantly greater. 

Two examples have been considered, both using the 
stored data method. The first is a typical seismic signal 
processing problem and has a 1000-point data record, a 
25-point filter, and operates at 16 bit precision. The 
second is a picture processing problem similar to that 
posed by Mariner pictures with a picture of 600X684 
elements, a two-dimensional filter of 15X15 points, and 
operates at 8 bit precision. 

The results are shown in Table I. In spite of the I/O 
overheads, the performance improvements are large; 
in particular, the space picture processing performance 
reflects the ability of the associative processor to tailor 
its field lengths to the problem. 

Convolutional decoding 

In this example, the associative processor is used to 
perform error-correcting decoding operations. The 
Viterbi decoding algorithm16 is given as an example; 
however, in order to understand the decoding algorithm 
it is necessary to first describe the coding process. 

The encoder has the canonical form of a shift register 
of length S. Each time an information digit is encoded, 
the contents of the shift register are shifted right, the 
rightmost bit being discarded, and the information digit 
is stored in the leftmost bit of the register. The encoded 
message bits are the modulo 2 sums of some bits in the 
shift register; the ratio of information bits to encoded 
message bits is known as the code rate. 

The present contents of the shift register may be re­
garded as the state of the encoder, and a state transition 
diagram may be constructed for every input of an in­
formation bit. The Viterbi decoding algorithm is based 
on storing, for each possible state of the encoder, a 
history of the most probable, in some sense, sequence 
of information digits to reach that state. Each state and 
its history has a distance measure associated with it. 
When a new set of encoded message bits are received, 
the histories are updated by computing the error dis­
tance between the received bits and the true bits cor­
responding to each state transition, and adding this to 
the distance measure for the corresponding history. The 
histories are arbitrarily restricted to a length 3(#—1) 
and, after each updating, the bit 3($—1) bits away in 
the history with the lowest distance measure is output 
as a decoded bit. 

A number of examples have been studied with various 
values of S and code rate. Comparisons have not been 
made with a conventional machine because special 
purpose processors are being built for these decoding 
problems. For $ = 6, rate = 3^, the associative processor 
takes 100 juseconds per bit, i.e., 10K bits/sec. For S=9, 
rate = 3̂ > the processor takes 370 /isecs. per bit, i.e., 
2.7K bits/sec. This variation in performance with shift 
register length S is almost entirely caused by an in­
crease in data reorganization overheads caused by a 
larger number of encoder states. 

CONCLUSIONS 

The auxiliary associative processor described in this 
paper has been shown to have a high performance on a 
wide range of problems which are inherently parallel in 
structure. The major drawbacks have been found to be 
in the processor's ability to handle only fixed point or 
block floating point arithmetic, and the difficulty of 
performing division. The principal system problems 
have been in the operating overheads of I /O and data 
reorganization. The I /O overhead could be reduced by 
integrating the associative processor into the main 
processor, which would also permit more complex inter­
action between the processors or by providing multiple 
I/O paths. The data reorganization overhead is caused 
mainly by long shift operations in the selector latches; 
these could be reduced by hardware and/or software 
partitioning of the memory, enabling inactive blocks of 
words to be by-passed. In Reference 17 the data re­
organization problem is studied in detail. 

The consequences of using a single array to hold both 
data and control information are hard to isolate. In 
operation time the overhead for control operations is 
always less than 50 percent (arithmetic operations) and 
is generally much less. In memory space, the price is at 
least one bit of each word (the immediate field) and up 
to 25 percent increase in size (Fourier transform). In 
contrast, the flexible partition between data and con­
trol, and the ability to tailor fields to the problem have 
proved very powerful. 

The decision to use the three-state cells of McKeever8 

was based on the aim for generality of application. In 
parallel binary arithmetic operations only two of the 
three states have been used; however, the third state 
has been used for data representation in picture pro­
cessing and tree searching, and for implementation of 
control functions in all examples. In practice the three-
state cell may be implemented by 2 two-state cells; 
the possibility then exists of having two-state cells in­
dividually for 2 state operations, and in conjunction 
for larger numbers of states. In this paper we have not 
pursued such an approach. 
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Economic realization of the processor requires the 
availability of high performance, low-cost integrated 
circuit technologies. However, the system design has 
aimed at the use of only a small number of different com­
ponents, most of which are memory rather than random 
logic. The components used could be a standard tech­
nology suitable for both conventional and parallel sys­
tems. 

The performance figures quoted in this paper have 
been obtained with the aid of a software simulator at 
the microprogram level. Little work has been done on 
the development of a higher level language or assembler 
for the processor. 

ACKNOWLEDGMENT 

We are indebted to Dr. R. Lyons for drawing the Lewin 
sorting algorithm to our attention and pointing out its 
suitability for execution on an associative functional 
processor. 

REFERENCES 

1 D L SLOTNIK W C BORCK 
R C MCREYNOLDS 
The Solomon Computer 
Proc FJCC pp 97-107 1962 

2 B A CRANE J A GITHENS 
Bulk processing in a distributed logic memory 
IEEE Trans on Elect Computers Vol EC 14 pp 186-196 
April 1965 

3 J H HOLLAND 
A universal computer capable of executing an arbitrary 
number of sub-programs simultaneously 
Proc FJCC pp 108-113 1959 

4 G ESTRIN R FULLER 
. Algorithms for content-addressable memories 

Proc IEEE pp 118-130 Pacific Computer Conf 1963 
5 R G EWING P M DAVIES 

An associative processor 
Proc FJCC pp 147-158 1964 

6 R H FULLER R M BIRD 
An associative parallel processor with applications to picture 
processing 
Proc FJCC pp 105-115 1965 

7 J A GITHENS 
An associative, highly parallel computer for radar data 
processing 
Parallel Processor Systems Technologies and Applications 
editor L C Hobbs pp 71-86 Spartan Books 1970 

8 B T MCKEEVER 
The associative memory structure 
Proc FJCC pp 371-388 1965 

9 M FLINDERS P L GARDNER J G MINSHULL 
R J LLEWELYN 
Functional memory as a general purpose systems technology 
1970 IEEE Computer Group Conference June 1970 

10 P L GARDNER 
Functional memory and its microprogramming implications 
IEEE Trans on Computers Vol C20 No 7 pp 764-755 
July 1971 

11 D A SAVITT H H LOVE 
Association storing processor study 
Hughes Aircraft Technical Report No TR-66-174 
(AD 488538) June 1966 

12 M H LEWIN 
Retrieval of ordered lists from a content addressed memory 
RCA Review June 1962 pp 215-229 

13 G-AE SUBCOMMITTEE ON MEASUREMENT 
CONCEPTS 
What is the fast Fourier transform 
IEEE Trans Audio and Electroacoustics Vol AV-15 pp 
44-55 June 1967 

14 W K PRATT J KANE H C ANDREWS 
Hadamard transform image coding 
Proc IEEE Vol 57 No 1 Jan 1969 pp 58-68 

15 M A WESLEY 
Associative parallel processing for the fast Fourier transform 
IEEE Trans on Audio and Electroacoustics Vol Au-17 No 2 
pp 162-165 June 1969 

16 A J VITERBI 
Error bounds for convolutional codes and an asymptotically 
optimum decoding algorithm 
IEEE Trans on Inf Theory April 1967 Vol IT-13 No 2 
pp 260-269 

17 S K CHANG 
Parallel computation of local operations 
Proc Third ACM Symposium on Theory of Computing 
May 1971 pp 101-115 




