
A design for an auxiliary associative parallel processor

by M. A. WESLEY, S.-K. CHANG and J. H. MOMMENS

IBM Thomas J. Watson Research Center
Yorktown Heights, New York

INTRODUCTION SYSTEM DESCRIPTION

The use of highly parallel processing units for comput­
ing problems that are highly parallel in structure has
been widely studied. The range of systems varies from
the duplication of complete processing elements,1

through the provision of a set of specially tailored
small processors attached to a main processor,2 to the
use of cellular arrays;3 other writers have exploited the
inherent parallelism of associative memories as com­
ponents of parallel processing systems.*-7

Associative memories have been proposed either as
true content addressable memories,5 or as processing
units.4-6 In general, for use as a processing unit, each
word in the memory, or possibly pairs or groups of
words, is regarded as a serial by bit processing unit, all
operating in parallel and controlled by a single pro­
gram. These proposals have included rather compli­
cated control systems to perform bit indexing and other
functions necessary to sequence the memory through a
program.

An important extension to the concept of associative
memories as processing elements was proposed by
McKeever,8 who described the use of three state storage
elements with increased logic function at each storage
cell; a memory with this feature is referred to here as
an associative functional memory. The use of three
state cells as a general system technology for conven­
tional sequential processors has been described;9-10 it is
the purpose of this paper to demonstrate that:

1. An associative functional memory with suitable
peripheral features could be used to implement
many of its own control functions as well as
performing processing operations, and could
readily be assembled into a complete auxiliary
parallel processor,

2. Such a processor would be an attractive means
of enhancing the performance of small conven­
tional processors in a wide range of problems.

The associative processor to be described here is in­
tended for use as a programmable auxiliary processor
to assist a conventional main processor in special prob­
lems. Programs are loaded from the main processor
and are used to load data, to process it, and to return
results to the main processor. The main processor has
at all times the ability to force the auxiliary processor
to accept a new program or to branch to a specified
location in its program. For applications involving the
processing and reduction of very large amounts of raw
data, for example, radar signal processing, it would be
wasteful to transfer data to the associative processor
by way of the memory and channels of the main pro­
cessor. In these circumstances, the associative pro­
cessor could be modified to accept data directly from
its source, that is, to act as a pre-processor, but would
not be expected to exercise control over the data source.

The overall design goals have been simplicity of
implementation and generality of application. Simplic­
ity of implementation has been achieved by construc­
tion from units which could be standard modules9

with a minimum of additional special logic, and has led
to a potentially fast cycle time. Generality of applica­
tion has been achieved by implementing many control
functions in memory and by the inclusion of some extra
associative memory features which are not necessarily
required in all applications. The proposed processor
consists of two main components (Figure 1): a 1024
word X 64 cell associative functional memory and a
512 word X 50 bit read/write control store. The as­
sociative memory is used to store both data being pro­
cessed and control information. An alternative would
have been to have used separate memories; however,
the use of a single unit permits the ratio of data to con­
trol information to be tailored to any given problem
and enables a very simple control system to be used.
On the other hand, the single array approach reduces
the speed of data processing since many associative

461

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1479992.1480057&domain=pdf&date_stamp=1972-12-05

462 Fall Joint Computer Conference, 1972

Bit Control

' I/O Control
<

I/O Data

Program load

^ *

Control store

Conditions

Controls

Figure 1—Block diagram of the proposed associative processor

memory cycles have to be used for control operations.
I t tends to be wasteful in the use of associative cells
for control tables, and requires the introduction of extra
features to reduce the interference between data and
control.

Control sequences for the execution of a program are
contained in a read/write control store normally
operating in a read-only mode. Conditional branches
in the program may be made by testing the condition
of various signals in the processor and its I/O inter­
faces. Program loading, i.e., writing into the control
store, is performed under the control of a short, perma­
nent, initial load program.

Input and output data transfers are made by way of
the associative array bit control unit. Basic interface
control is carried out by the control store which can
generate outgoing and test incoming control signals;
more complex I /O control, such as an IBM Standard
Interface, requires the addition of an interface control
unit. Attachment closer to the main processor (e.g.,
interfacing the main memory) would give higher per­
formance but would imply modifications to the main
processor.

Associative processing array

The associative processing array is a two-dimensional
array of three state (0, 1, X = "don't care") associative
storage cells with arbitrarily chosen dimensions of 1024
words X 64 cells. The array is connected in the word
direction to the word control unit and in the bit direc­
tion to the bit control unit. In an LSI implementation,
the basic module could be a self-contained associative
functional memory unit of, say, 128 words, complete
with bit and word controls. Modules could readily be
extended in the word direction by suitable intercon­
nection of data and control lines; extension in the bit
direction may be simulated by software.

Three basic operations may be performed on the
array: search, read, and write.

Search

A ternary search argument is generated in the bit
control unit between the specified data register (Rl,
R2) and the specified mask (M, all l 's, all 0's) on a bit

Design for Auxiliary Associative Parallel Processor 463

by bit basis:

Mask

Data

0

1

0

X

0

1

X

1

X = don't care

Generation of search arguments.

Write

Two write commands are provided: Write Normal,
and Write Special. In either case a ternary argument is
generated in the same manner as a Search argument and
acts on the contents of cells in selected words, as de­
fined by the specified selector register in true or comple­
ment form (P, S, all 0). The effects on a cell are shown
in the two truth tables below:

All cells, in parallel, compare their contents with the
search argument for that bit column and generate a
mis-match signal in accordance with the truth table:

Cell Content

Write Argument Write Argument

Search
Argument

0

1

X

0

0

1

0

1

1

0

0

X

0

0

0

Generation of mismatch signals

Mismatch signals for a cell are ORed to give a mis­
match signal for the word; word mismatch signals, in
true or complement form, are sent to the word control
unit where they may be ANDed or ORed with, or re­
place the contents of one of two sets of selector latches
(P a n d S) .

Read

The contents of a specified set of selector latches (P,
S, all 0's) in true or complement form are used to select
words to be read. The contents of cells from selected
words are ORed in the bit direction onto a read bus (an
X state reads as zero) and sent to the bit control unit
where they are used to load a specified register (Rl,
R2, M) based on the value of mask specified (M, all 0,
all 1):

Mask

Read Bus
0

1—
1

0

No change

No change

1

0

1

Cell Content

0

0

1

1

X

No* change

0

X

1

X

X

No change

Effect of Read operation on specified register.

Write Normal Write Special

The word control unit may also perform a one bit
shift of a selector register up or down with end around
carry, or fill with 0 or 1; a shift takes the same time as
an array operation or may be overlapped with an ad­
jacent preceding array operation using the same selector
register. This provides the only parallel means of com­
municating vertically between words. Other writers
(e.g., McKeever, Reference 8) have usually specified
other operations in the word control unit, such as iso­
late first match. Although provided by our simulator
we have found little use for such operations, which
tend to be serial in nature, and for the most part found
that they can be economically simulated by software,
e.g., by use of a code field. The exception was sorting
with an arbitrary number of identical items, when a
means of separately identifying multiple matches is
necessary.

The bit control unit contains three registers: two
data registers (Rl, R2) defining a data source or sink
for an array operation; and one mask register(M) de­
fining a field for an array operation. Any array opera­
tion may use either data register and the mask register,
or may replace the mask by a source of all 0's or all l 's.
In addition, the control store may specify directly the
leftmost four bits each for the mask and data registers.
These bits (the immediate field) are ORed into the
register outputs without affecting the contents of the
register. A non-array operation, a single bit shift
operation on any register may be specified; this feature
is assumed to take the same time as an array operation
unless it is overlapped with an adjacent array operation
in which the register being shifted is a data source or
sink; again, fill with 0 or 1 may be specified.

464 Fall Joint Computer Conference, 1972

Input-output operations

Input-output operations for the associative processor
take place through the bit control data register R l .
The register is divided into fields each of the same
width as the I/O interface data busses. Data may be
gated to or from the register under program control
and is interlocked with the main processor by interface
synchronizing signals. Outgoing interface control sig­
nals are generated by the control store and by the run
control logic. Incoming interface control signals are
either tested as machine conditions by the program, or
act directly on the run control logic.

Operation as a pre-processor, taking data from but
not controlling another source, would require the ability
to transfer into the processor from another interface
and generate and test another set of I /O synchroniza­
tion signals. This modification requires at least two extra
bits in the control word and some extra logic, but is not
expected to be very difficult to implement.

Control store

The control store (Figure 2) is a conventional (as op­
posed to associative) read/write store used to hold a
program defining the sequence of operations to be per­
formed by the associative memory.11 During the execu­
tion of a program, the control store normally operates
in a read-only manner. Each word read out specifies the
operations to be performed in the array and also the
address of the next program word. The next address
may be modified by a condition in the machine, speci­
fied by the program word, enabling conditional branches
to be made in the program.

The control store contains 512 words of 50 bits,
though these numbers may vary, depending on the
features included. When formed into groups of mutually
exclusive options, the operation options to be speci­
fied for the array processing unit fall into rather small
groups, so that coding within a group is not very ad­
vantageous, and bit significant operation has been
chosen. This has other advantages as it increases flexi­
bility and eliminates timing delays through decoders.

I t is expected that a semiconductor memory will be
necessary to be able to operate at the same speed as the
array. Such a memory will have nondestructive read
out so that writing into the control store will require
special control features. Subroutining capability is pro­
vided by a data path to the bit control register R l ,
enabling subroutine return addresses to be stored in
the associative array.

Program loading

Program loading is performed under the control of a
small fixed routine held in the first few words of the con­
trol store. The program load routine assembles data from
the I/O interface into the bit control register R l . This
data is interpreted as a control word and the address
of the location in the control store into which it is to
be stored. The program load routine then gives a special
signal "write next cycle" which causes the run control
logic to break its normal cycle of read-only operation,
and to spend one cycle writing into the control store
from Rl . Note that the control store data register is not
altered and is available for normal operation on the
cycle after the write operation is performed. The
"write next cycle" control also permits the transfer of
programs from the associative array to the control
store.

Programming techniques

The guiding principle behind the design of the control
system has been to make the hardware simple whilst
keeping the system flexible. This principle led to the
use of a single associative memory, controlled by a single
conventional control store, with both data and control
information stored and processed in the associative
memory.

Three classes of control information are held in the
associative memory:

(1) mask and data register contents for operating on
data. In the case of relatively simple operations,
such as addition, these register contents are
stored in consecutive locations in the sequence in
which they will be needed, and are accessed by
shifting a selector register reserved for the pur­
pose. In more complicated operations, such as
multiplication, where the total number of masks
is proportional to p2 (where p is the field width)
and may be large, it may be advantageous to
process the masks as data in the manner de­
scribed in References 9 and 10, and to generate
the required sequence of masks; the number of
control words now becomes essentially propor­
tional to p.

(2) program flow logic, including counts and logical
decisions. These may be programmed directly
or, in simple cases, may be implemented by in­
serting blank words in mask sequences and test-

Design for Auxiliary Associative Parallel Processor 465

Program load and subroutining
from Bit Control Rl

Program load from Bit Control Rl

to I/O interference
Busy

(8)

Next Address

Condition

(1)

Cond,
Sel.

Immediate field
to bit control

Array operations

Bit control

Word control

Conditions
from bit and word
controls, and
I/O sync in.

I/O, including I/O sync, out

Misc.

Timing for controls

from I/O interface:
Stop
Reset and Branch
Start

Figure 2—Control store connections

466 Fall Joint Computer Conference, 1972

Immediate
Field

F i e l d A F i e l d B

O O O O i O O O O O O l l l l l l

0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

rr
• 0

0

1 1

1 °

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1 0

0 | 1

0 1

1 1

1 1

1 °
1 °

0

1

1

0

0

1

1

0

0

1

1

0

0 0

1 1

1

0

1

0

Data

Control (blank = 0)

Immediate field codes: 0 - - - data word

1 0 0 1 start of control sequence

1 0 0 0 control word

Immediate field allocation for data words:

b i t 1 0 : d a t a word

b i t 2 0 / 1 : n o t a c t i v e / a c t i v e m a r k e r

b i t 3 0 / 1 : c a r r y O / l

Figure 3a—Memory organization of addition: A' = A + B

Design for Auxiliary Associative Parallel Processor 467

Location

14

15

15

17

18

19

20

22

23

24

25

26

27

28

29

30

31

Operation

Search

Read

Read

Read

Search.

Write

Search

Search

Write

Read

Search

Write

Search

Write

Search

Read

Write

Immediate
Field

1001

0000

0000

0000

0

-10-

010-

011-

00—

0000

01—

001-

01—

000-

0

0000

- 1 —

Data Source
Selector or Sink

P

P, shift down R2

P, shift down Rl

P, shift down M

s

s

S R2

OR into S Rl

S

P, shift down M

S R2

S Rl

S Rl

S R2

S

P, shift down M

S

Mask

0

1

1

1

0

0

M

M

0

1

M

M

M

M

0

1

0

Next
Address

15

16

17

18

19

20

22

23

24

25

26

27

28

29

30

31

20/21
(M=0)

Comments

i load Rl, R2, M. keep mask table
I pointer in P.

reset carry and active markers
in data words

identify no change combinations
and mark as inactive

read new mask

identify a field bit changing
to 0; update

identify a field bit changing
to 1, update

1 set active markers

• read new mask

' test for mask = 0

21

Figure 3b—Program for addition: A' = A + B

ing for an all zero read out. Note that the only
internal condition tests available to the pro­
grammer are zero tests on the bit and word
registers; an alternative would have been a test
on a single bit.

(3) partitioning. The immediate field provides a
fast software technique for partitioning the
single array into groups of words. The four bits
of the field permit 16 interleaved partitions of
arbitrary size. This feature is particularly valu­
able for distinguishing and separating data and
control information; for example, a 0 in the left­
most bit position may signify data while a 1
signifies control.

A further consequence of the use of a single array is
the need to load and store the mask register from and to
the array. The three array operations have been gen­
eralized for this purpose.

Programming example: Serial-by-bit addition

This example is given to show:

(1) the use of the immediate field
(2) the use of the associative array for both data and

control information
(3) the ability to define fields independently of the

program by means of control tables.

Suppose we wish to perform the addition of two
fields, A and B, the result to overwrite field A, i.e.,
A' = A-\-B. The minimum possible number of array
operations per bit is 6 (4 Search and 2 Write); however,
this assumes no performance loss handling control
operations. The addition algorithm given below takes
11 operations (9 if the inner loop is expanded to handle
two bits consecutively). The algorithm uses 2 p + 3 mem­
ory words to store masks and data register contents (p
is the field width); we have found that, in general, it is
possible to trade less speed for less control storage.

468 Fall Joint Computer Conference, 1972

The algorithm is illustrated in Figure 3. The first six
instructions locate the start of an addition control
table, load the two data registers R l and R2 with
constants which remain unchanged throughout the al­
gorithm, load an initial pattern into the mask register,
and initialize the immediate field. Three bits of the im­
mediate field are used: bit 1 indicates data or control
words, bit 2 is an activity marker used to indicate
whether a word has been completely processed in the
current bit position, and bit 3 is a carry and is initially
zero.

Instructions 20-31 make up the main loop of the al­
gorithm which proceeds in a serial by bit manner start­
ing with the least significant bit. At each bit position
the no change condition in the A and carry bits is de­
tected, and these words are marked as inactive. The
remaining words are tested for changes in the A field
and are updated. Indexing across the fields is achieved
by the mask register contents, which are read sequen­
tially from the control table. Execution of the loop
ceases when an all zero mask is read out.

APPLICATIONS

The principal mode of parallel processing employed
in this associative processor is serial by bit, parallel by
word, over some selected subset of words in the mem­
ory. Thus a memory of 1024 words has a potential
processing parallelism of up to 1024. Operating in a
serial-by-bit manner across fields inherently requires
more cycles than a conventional machine with bit
parallel processing. This is particularly significant in
arithmetic operations; for example, 16 bit addition re­
quires about four times as many control cycles as a
System/360 Model 30, 32 bit addition requires about
eight times as many, and this must be more than can­
celled by the parallelism used. At present we are limited
to fixed or block floating point operation; normalization
in general floating point is prohibitively time consum­
ing. In bit manipulation operations, the programmable
field feature (i.e., the ability to define fields by mask
control tables stored in the associative memory) may
enable the associative processor to take fewer opera­
tions than a sequential machine.

The overall performance of the associative processor
is affected by a number of overheads. I t is assumed that
the processor would be used for repetitive execution of
a program, so that program and control table loading
times need not be included in the problem-solving time.
Input and output of data is sequential by word and can
be very significant. In general, the processor as described
with a single I /O data path is only suited to problems
with a high processing to I /O ratio; however, multiple

I/O data paths could be provided to each of a number
of partitions. After each stage of parallel computation
(e.g., after a vector addition) it is generally necessary to
reorganize the data for a subsequent stage of processing;
this too can use significant amounts of time and must
be minimized by careful algorithm selection and mem­
ory organization.

The performance of the processor has been studied
with the assistance of a very flexible simulator program
which allowed function truth tables to be defined at
object time. Execution times, including processing,
input/output, and data reorganization, have been com­
puted assuming a cycle time of 100 nsec, which is be­
lieved to be within the capability of an LSI technology.

A wide range of examples have been studied for the
associative processor and are discussed here without de­
tails of programming techniques. The aim in choosing
examples has been to investigate the versatility of the
associative processor and to demonstrate its perform­
ance on problems for which special purpose processors
are being built. The examples are summarized in Table
I; performance figures for the associative processor are
based on a cycle time of 100 nsecs and an I/O data rate
of 1.5 n sees per byte.

Picture 'processing

The functional memory may be regarded as a two-
dimensional array of storage cells. Given a memory with
suitable dimensions, two-dimensional pictures may be
stored in two-dimensional form and, since neighboring
point relationships are preserved, local processing
operations may be performed directly and with a high
degree of parallelism. Analog picture element values
may be coded into a number of adjacent bits in either
the bit or word direction; pictures too large for the
memory may be partitioned and processed in separate
pages, but this requires care in piecing the edge results
together.

As an example, consider the application of a two-
dimensional binary mask operator (nxXny) to a binary
picture (NxXNy) stored in the functional memory. The
algorithm proceeds by searching sequentially for each
line of the operator, centered on one column of the
picture. The result of the first search operation is loaded
into a selector register and shifted one position; the re­
sults of subsequent searches are ANDed into the pre­
vious selector register contents before shifting. After
ny search operations, the selector register contains the
full result of applying the operator to the column and
may be either stored back into the memory or output;
further columns may be processed sequentially. With
Nx=Ny = 144, application of 25 operators with nx = ny =

Design for Auxiliary Associative Parallel Processor 469

7 takes 120 milliseconds and is estimated to be 610 times
faster than a 360/30. Note that this problem gains
performance through both the parallelism of the associ­
ative processor and its ability to tailor data fields to
the needs of the current algorithm.

An alternative approach, suitable for on-line charac­
ter recognition, would be to exploit the symmetry of
the picture-operator system and hold the mask opera­
tors in the memory and search them with the picture as
received from a scanner. This operation is the "feature
extraction" process of character recognition; the result­
ant feature vector may subsequently be matched against
a stored library of standard reference feature vectors;
in both operations the three call states may be used to
represent ternary data. Distance measures between the
feature vector and all the reference vectors may then
be computed in a serial-by-bit manner; the recognition
process may be completed by testing for the minimum
distance using parallel search techniques.

Lewin sorting algorithm

The Lewin sorting algorithm12 was originally pro­
posed for an associative memory with a special hard­
ware feature to indicate whether a column contained all
0's or all l 's. This feature may readily be simulated by
software on this processor; for example, searching for 1
on a data column and a subsequent read of a marker
column containing all l's will indicate whether or not
the data column contains all 0's. An all l 's condition
may be similarly detected.

The algorithm finds, for example, the largest of a set

TABLE I—Summary of the Performance of the
Associative Processor

Distribution of total processing time

Picture
Processing

Sorting

Matrix Mult.

Fourier
Transform

Hadamard
Transform

1-D Filter

2-D Filter

ing

97%

70%

3 1 %

17%

4 %

40%

50%

ization

—

7%

44%

4 6 %

—

—

I /O

3 %

30%

6 2 %

3 9 %

50%

60%

50%

ing Time

122
millisec.

20
millisec.

1
millisec.

31
millisec.

12
millisec.

10
millisec.

20 sec.

360/30

610 X

110X

78 X

75 X

79 X

280 X

510X

of numbers by searching for columns containing a mix­
ture of 0's and l's. If no such columns exist, all the
numbers are identical and are equal to the largest one.
Otherwise, the leftmost mixed column is searched for
numbers with 1 in this position, and the operation is
repeated on this new subset.

The number of operations taken by the associative
processor to execute the algorithm is very data de­
pendent; worst-case figures are given in Table I for an
internal sort of 1000 items using 16 bit keys and show a
speed up of a factor of 110 over a 360/30.

As mentioned previously, a sort of identical items
requires a means of isolating the components of mul­
tiple matches; in this example, where an arbitrary num­
ber of identical items may be present software tech­
niques require a wide code field and are therefore ex­
pensive. We have assumed the existence of an isolate
first hit feature.

Tree searching

One of the major problems in artificial intelligence is
to perform efficient tree searching. Since the number of
nodes of a tree grows exponentially with respect to the
depth of the tree, the tree searching time also increases
exponentially, rendering deeper search impractical. I t is
clear that in tree searching the same sequence of com­
putation and condition testing is performed on every
node. Thus the basic requirement of "Single Program
Multiple Data" processing is satisfied and we can per­
form computations upon all nodes in parallel. The tree
may still have to be grown step by step, but this is
probably unavoidable.

I t is difficult to define a typical tree searching prob­
lem and, since performance of both the associative pro­
cessor and a conventional processor are highly problem
dependent, no performance comparisons are given.
However, we note that the performance improvements
in the region of 2-3 orders of magnitude have been
found in simple game-playing problems.

Matrix operations

Many matrix operations are inherently parallel in
nature and may readily be programmed for the associ­
ative processor. Vector addition, subtraction, and
multiplication operations, and summation of elements
of a vector, may be executed very efficiently; division
may be performed only with difficulty. Thus, matrix
multiplication is very attractive, but operations involv­
ing a high proportion of divisions is not likely to show
any great advantage on the associative processor.
When only a small number of divisions are required.

470 Fall Joint Computer Conference, 1972

they may be performed by the main processor (e.g.,
pivotal element normalization in matrix inversion2).

Fixed point multiplication of 10X10 matrices at 16
bit precision gives a performance improvement of 78
times. Larger matrix sizes may be partitioned to fit the
processor and show approximately the same processing
performance improvement because I/O time dominates.

Fast Fourier and Hadamard transforms

The fast Fourier13 and Hadamard14 transforms are
closely related operations used particularly in signal
and image processing. The radix-2 fast Fourier trans­
form computes the Fourier transform of a set of points
Ai0'' 'An° by means of a sequence of transformations
A0—>A1^"-Am~1 , where n=2m. Each of these trans­
formations is made up on n/2 pairs of elementary opera­
tions of the form

ApH-^Aj+Wp'AS

Aq
i+l = Ap

i-Wp
iAq

i

where Wp* is a complex 2i+1th root of unity in the fast
Fourier transform, and 1 in the Hadamard transform.
Each of the pairs of elementary operations in a trans­
form may be performed in parallel and consists of a
complex multiplication followed by a complex addition
and subtraction; the result of a transformation may
overwrite the input to the transformation.

Many algorithms have been proposed for the selec­
tion of the pairs of indices p and q. The procedure chosen
for use here selects the indices in a regular manner and
allows efficient use to be made of the select latches as a
means of parallel communication between words. For
the first transformation A°—*A1,AP and Aq are n/2
words apart; for A1—>A2, ra/4 words apart, etc. How­
ever, this procedure has the disadvantage that if the
input data are in order, the results will be permuted
with their addresses in bit reversed form, though this
may be corrected when the results are transferred back
to the main processor. The basic steps of the algorithm
have already been described15 for an associative pro­
cessor with external storage and separated data and
control functions.

The implementation of a useful size of Fourier trans­
form within this associative processor requires the use
of a larger memory array. The principal reasons are
the need to store the complex roots of unity and the
inclusion of an address field to enable blocks of operands
to be identified rapidly. A 1024 point complex trans­
form with 14 bit precision may be fitted into an as­
sociative memory of 1273 words of 89 bits with a per­
formance approximately 75 times faster than a 360/30.

The Hadamard transform may be regarded as a

square wave analog of the sine and cosine wave Fourier
transform and has many advantages from a computa­
tional point of view. In particular, the use of square
waves of amplitude±l makes multiplication unneces­
sary, and an ability to generate square wave transition
lengths for a transform of length 2N from a transform
of length N removes the need for a stored table of
coefficients. The Hadamard transform also has a fast
Hadamard transform algorithm. Performance on the
associative processor for a 1024 point real transform is
shown in Table I. Note that in both these transforms
data reorganization becomes very significant.

Digital filtering

Digital convolutional filters of the form:

n

y(t)=Ttx(t-r)g(t)
T = l

where g(t) is a filter of length n

x(t) is the filter input

y(f) is the filter output

may be implemented on the associative processor in a
number of ways, the choice depending principally on
the dimensions of the problems, e.g., filter length, data
record length, and number of filters. The most efficient
method, in the sense that I /O operations are minimized,
is to store the filter vector g permanently in the mem­
ory and to regard the data points as scalar inputs
operating on all elements of the filter vector. This
method is applicable when N ~ number of words in the
memory, where N represents either a single long filter
or a number of shorter filters of equal length. Note that,
in the Single Program Multiple Data form of parallel
processing, a scalar operation on a vector differs from
element operations between a pair of vectors in that it
is now possible to perform look-ahead operations when
processing the scalar quantity, thereby approximately
halving the execution time.

The algorithm assumes that the memory is parti­
tioned into two fields of equal size, one for the filter
vector g and the other for partial results. Processing
proceeds in a pipeline manner—a new data point is re­
ceived and used as a scalar multiplier on the filter vec­
tor, the products being added into the adjacent partial
result field. The partial results are shifted one word
position and the process repeated with the next data
point. After the first n data points have been processed,
one output result will be available for each filter held
in the memory; thereafter, output results are available
after each new data point has been processed.

Design for Auxiliary Associative Parallel Processor 471

An alternative method to be used when the filter is
short is to load the memory to capacity with data points
and to apply the filter coefficients as external scalars.
When the whole filter has been applied, all the results
may be read out. The processing time for this method
is the same as that for the stored filter, but the I /O
time is significantly greater.

Two examples have been considered, both using the
stored data method. The first is a typical seismic signal
processing problem and has a 1000-point data record, a
25-point filter, and operates at 16 bit precision. The
second is a picture processing problem similar to that
posed by Mariner pictures with a picture of 600X684
elements, a two-dimensional filter of 15X15 points, and
operates at 8 bit precision.

The results are shown in Table I. In spite of the I/O
overheads, the performance improvements are large;
in particular, the space picture processing performance
reflects the ability of the associative processor to tailor
its field lengths to the problem.

Convolutional decoding

In this example, the associative processor is used to
perform error-correcting decoding operations. The
Viterbi decoding algorithm16 is given as an example;
however, in order to understand the decoding algorithm
it is necessary to first describe the coding process.

The encoder has the canonical form of a shift register
of length S. Each time an information digit is encoded,
the contents of the shift register are shifted right, the
rightmost bit being discarded, and the information digit
is stored in the leftmost bit of the register. The encoded
message bits are the modulo 2 sums of some bits in the
shift register; the ratio of information bits to encoded
message bits is known as the code rate.

The present contents of the shift register may be re­
garded as the state of the encoder, and a state transition
diagram may be constructed for every input of an in­
formation bit. The Viterbi decoding algorithm is based
on storing, for each possible state of the encoder, a
history of the most probable, in some sense, sequence
of information digits to reach that state. Each state and
its history has a distance measure associated with it.
When a new set of encoded message bits are received,
the histories are updated by computing the error dis­
tance between the received bits and the true bits cor­
responding to each state transition, and adding this to
the distance measure for the corresponding history. The
histories are arbitrarily restricted to a length 3(#—1)
and, after each updating, the bit 3($—1) bits away in
the history with the lowest distance measure is output
as a decoded bit.

A number of examples have been studied with various
values of S and code rate. Comparisons have not been
made with a conventional machine because special
purpose processors are being built for these decoding
problems. For $ = 6, rate = 3^, the associative processor
takes 100 juseconds per bit, i.e., 10K bits/sec. For S=9,
rate = 3̂ > the processor takes 370 /isecs. per bit, i.e.,
2.7K bits/sec. This variation in performance with shift
register length S is almost entirely caused by an in­
crease in data reorganization overheads caused by a
larger number of encoder states.

CONCLUSIONS

The auxiliary associative processor described in this
paper has been shown to have a high performance on a
wide range of problems which are inherently parallel in
structure. The major drawbacks have been found to be
in the processor's ability to handle only fixed point or
block floating point arithmetic, and the difficulty of
performing division. The principal system problems
have been in the operating overheads of I /O and data
reorganization. The I /O overhead could be reduced by
integrating the associative processor into the main
processor, which would also permit more complex inter­
action between the processors or by providing multiple
I/O paths. The data reorganization overhead is caused
mainly by long shift operations in the selector latches;
these could be reduced by hardware and/or software
partitioning of the memory, enabling inactive blocks of
words to be by-passed. In Reference 17 the data re­
organization problem is studied in detail.

The consequences of using a single array to hold both
data and control information are hard to isolate. In
operation time the overhead for control operations is
always less than 50 percent (arithmetic operations) and
is generally much less. In memory space, the price is at
least one bit of each word (the immediate field) and up
to 25 percent increase in size (Fourier transform). In
contrast, the flexible partition between data and con­
trol, and the ability to tailor fields to the problem have
proved very powerful.

The decision to use the three-state cells of McKeever8

was based on the aim for generality of application. In
parallel binary arithmetic operations only two of the
three states have been used; however, the third state
has been used for data representation in picture pro­
cessing and tree searching, and for implementation of
control functions in all examples. In practice the three-
state cell may be implemented by 2 two-state cells;
the possibility then exists of having two-state cells in­
dividually for 2 state operations, and in conjunction
for larger numbers of states. In this paper we have not
pursued such an approach.

472 Fall Joint Computer Conference, 1972

Economic realization of the processor requires the
availability of high performance, low-cost integrated
circuit technologies. However, the system design has
aimed at the use of only a small number of different com­
ponents, most of which are memory rather than random
logic. The components used could be a standard tech­
nology suitable for both conventional and parallel sys­
tems.

The performance figures quoted in this paper have
been obtained with the aid of a software simulator at
the microprogram level. Little work has been done on
the development of a higher level language or assembler
for the processor.

ACKNOWLEDGMENT

We are indebted to Dr. R. Lyons for drawing the Lewin
sorting algorithm to our attention and pointing out its
suitability for execution on an associative functional
processor.

REFERENCES

1 D L SLOTNIK W C BORCK
R C MCREYNOLDS
The Solomon Computer
Proc FJCC pp 97-107 1962

2 B A CRANE J A GITHENS
Bulk processing in a distributed logic memory
IEEE Trans on Elect Computers Vol EC 14 pp 186-196
April 1965

3 J H HOLLAND
A universal computer capable of executing an arbitrary
number of sub-programs simultaneously
Proc FJCC pp 108-113 1959

4 G ESTRIN R FULLER
. Algorithms for content-addressable memories

Proc IEEE pp 118-130 Pacific Computer Conf 1963
5 R G EWING P M DAVIES

An associative processor
Proc FJCC pp 147-158 1964

6 R H FULLER R M BIRD
An associative parallel processor with applications to picture
processing
Proc FJCC pp 105-115 1965

7 J A GITHENS
An associative, highly parallel computer for radar data
processing
Parallel Processor Systems Technologies and Applications
editor L C Hobbs pp 71-86 Spartan Books 1970

8 B T MCKEEVER
The associative memory structure
Proc FJCC pp 371-388 1965

9 M FLINDERS P L GARDNER J G MINSHULL
R J LLEWELYN
Functional memory as a general purpose systems technology
1970 IEEE Computer Group Conference June 1970

10 P L GARDNER
Functional memory and its microprogramming implications
IEEE Trans on Computers Vol C20 No 7 pp 764-755
July 1971

11 D A SAVITT H H LOVE
Association storing processor study
Hughes Aircraft Technical Report No TR-66-174
(AD 488538) June 1966

12 M H LEWIN
Retrieval of ordered lists from a content addressed memory
RCA Review June 1962 pp 215-229

13 G-AE SUBCOMMITTEE ON MEASUREMENT
CONCEPTS
What is the fast Fourier transform
IEEE Trans Audio and Electroacoustics Vol AV-15 pp
44-55 June 1967

14 W K PRATT J KANE H C ANDREWS
Hadamard transform image coding
Proc IEEE Vol 57 No 1 Jan 1969 pp 58-68

15 M A WESLEY
Associative parallel processing for the fast Fourier transform
IEEE Trans on Audio and Electroacoustics Vol Au-17 No 2
pp 162-165 June 1969

16 A J VITERBI
Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm
IEEE Trans on Inf Theory April 1967 Vol IT-13 No 2
pp 260-269

17 S K CHANG
Parallel computation of local operations
Proc Third ACM Symposium on Theory of Computing
May 1971 pp 101-115

