
The Control Data® Star-100

by G. S. CHRISTENSEN and P. D. JONES

Control Data Corporation
St. Paul, Minnesota

INTRODUCTION

Successful experience with the Control Data® 60001

and 70002 computer series has led to implementing im
proved concepts3-4-5 of distributed computing in the
STAR-100 computer system. In the STAR system dif
ferent computing functions have been physically
separated from one another. Each computing function
is performed by an independent system unit which
possesses its own processing logic and memory. Thus
each is performed in its own right in an optimal manner.

STAR-100 computer6 is a high speed processor capa
ble of producing 100 million results (from a multiply
operation, for instance) per second in its 4 or 8 million
byte core memory. STAR itself cannot perform data
input/output, this is performed by input/output units
called stations which have channel interfaces to STAR.
A station consists primarily of a mini-computer specially
designed for data handling. The STAR design is thus
simplified by not having to contain device interfaces;
this modularity is important in the design of large
computer systems.7 Also the processor overhead of
driving peripheral devices is relegated to the stations
thus freeing STAR for additional user computation.
Experience in several hundred Control Data® 6000
computer sites has shown it impossible to operate very
high speed computers efficiently without distributing
peripheral functions. As well as distributing the pe
ripheral device drivers in STAR it has been found pos
sible to perform system functions, such as file manage
ment, in the stations. So far 9 different STAR sta
tion types have been identified and built, these include:
maintenance and monitoring, paging, storage, media
(tape and disk), unit record, communication, display/
edit, graphic and service. These contain the same basic

file storage station

hardware and software but vary at the device controller
and system software interface level. The service station
is a key station in that it manages the system resources
and provides fan-out to the second level stations.

Operating system functions are thus distributed in a
manner which closely follows the distribution of the
hardware. The connecting links between the distributed
operating system functions are controlled by a set of
system messages and message handling is a key factor
in efficient operation of the system.

The choice of where each operating function should
be located is often self-evident, although a few func
tions are assumed to be movable from one element to
another. Any final decision regarding function locations
may depend on experience with particular work loads.
In general each operating function is located closest to
the resource being used and may be local or remote to
the STAR processor. This provides modularity of both
hardware and software and such advantages as:

• independence from other units, particularly in the
areas of non-propagation of errors throughout the
system and more immediate action on fault condi
tions.

• capability to be independently maintained.
• easier replacement of future new hardware or

software parts.
• easier addition of new types of stations.

Figure 1 illustrates the layout of a large STAR system
showing the connections between the various stations.

A STAR central processor with its immediate storage
is simply another station within the system—a data
processing station—and in no way does it have any
extra authority. It does, however, have two stations

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1479992.1480072&domain=pdf&date_stamp=1972-12-05

562 Fall Joint Computer Conference, 1972

COMMUNICATIONS
NETWORK

Figure 1—STAR system showing station connections

The SCU consists of a mini-computer, display/
keyboard, small drum and channel interfaces which exist
with power supplies, cooling fan and operator panel in
one cabinet. The mini-computer has an instruction set
which caters to bit and byte manipulation. I t contains
8K (K = 1024) 8-bit bytes, expandable to 16K of 1.1
microsecond core memory. There is a 200 nanosecond
version of the same meory but the 1 MIP (million
instructions per second) rate of the computer is ade
quate for most present applications. The drum has an
average access time of 17 milliseconds and a capacity of
approximatly 80,000 bytes. I t is used as a store for
program overlays and also as a refresh memory for the
display console.

The mini-computer (or buffer controller) provides a
single, parallel-block transfer channel with hardware
control for high speed data transfer. Its maximum rate
is one 16-bit word plus two parity bits per memory
cycle, 1.1 microseconds. The buffer controller also pro
vides up to 512 normal channel bits for lower speed
data transfer and device and station control. These bits
are organized into 16 input channels and 16 output
channels with 16 bits in each channel. Their use is de
termined by the individual peripheral devices on the
station. The normal channel bits of the buffer controller
provide the primary mechanism for control of the other
station elements and the attached devices. A direct

fairly intimately connected, the paging station and the
maintenance/monitoring station. The paging station,
under control of the hardware virtual page mechanism
and the operating system, provides temporary storage
for programs exceeding the available core space. The
maintenance station, besides its functions of off-line
and on-line fault diagnosis/repair and preventive check
ing, has the capacity to collect detailed information
about STAR'S performance.

The data management function is performed by pro
grams executed within the central processor. These
functions include merge, sort, select, scan, append, ex
tract and insert. The data manager in turn exploits the
storage station via message commands. This paper de
scribes the storage station which manages the storage
and retrieval of working and archival files.

STATION HARDWARE

The hardware used to implement the distributed
computing concept in STAR is designated as various
classes of input/output stations. Each Star channel
terminates at a station with a common interface. The
station (Figure 2) consists of an SCU (Station Control
Unit) and an SBU (Station Buffer Unit).

STATION BUFFER UNIT

TO CENTRAL
PROCESSORS

STORAGE
DEVICE

?v D A T A CHANNEL
_ | »— L INTERFACE TO

»>— T OTHER STATIONS

NORMAL CHANNEL
INTERFACE

STATION CONTROL UNIT

DRUM / DISPLAY

q_
BUFFER
CONTROLLER

Figure 2—STAR station

Control Data ® Star-100 File Storage Station 563

interface of normal channel bits is provided between
the SCU and the SBU (Figure 2).

The SBU consists of up to 64K bytes of memory
organized in eight interleaved banks of 8K bytes each.
Each bank has a memory cycle of 1.1 microseconds
with a maximum bandwidth of 14 million bytes per
second. Storage control logic provides for 12 indepen
dent channel accesses. The SBU is always associated with
a controlling SCU. The general function of the SBU is
to provide intermediate buffering of data, fan in/out
from one STAR channel to many other station channels
and working storage for the station. The interfaces to
attached devices are contained in the SBU.

The following features of the SBU and its interfaces
are important to its application and performance as a
storage control mechanism.

• The high bandwidth allows simultaneous transfer
of a number of storage devices into the SBU. The
CDC 844 disk pack, for instance, has a transfer
rate of approximately 1 million bytes per second
compared with the SBU bandwidth of 14 million
bytes per second.

• Device control operations such as connecting, ad
dressing, and status are accomplished directly
from the SCU over the buffer controller normal
channel to the SBU device interfaces. This provides
direct, detailed control of the devices.

• Actual data transfer between a storage device and
SBU takes place automatically under control of
the SBU device interface hardware. This frees the
SCU during SBU data transfers.

• The SCU can directly access STAR storage via
normal channel bits and the SBU interface. This
mode is advantageous for message transfer and
queue control.

• The SBU device interfaces are capable of stacking
(queueing) functions and data transfer specifica
tions. This allows maximum performance of the
devices while relieving the SCU of having to inter
vene during brief, critical events such as crossing
of intersector gaps.

• The SBU device interfaces have the capability of
chaining SBU memory areas creating a contiguous
data stream to a storage device from several SBU
memory areas. This is used to automatically as
semble and disassemble sync pattern and header
information with the data block.

• All data is stored in fixed length blocks of 4096
bytes.

Storage station software

Tasks are communicated to the storage station via
system messages. Each message selects a specific task

and is handled by an SCU routine referred to as a task
overlay. The task overlay contains the control code
necessary to accomplish the task by calling various
station subroutines and device drivers.

Associated with each device attached to a station is a
device software driver in the SCU. This is a specialized
routine which actually drives the devices through the
SBU hardware interfaces. The other station routines
communicate with the drivers through a driver param
eter table and a driver-maintained status table. One
status table exists for each device.

In addition to the device drivers other station sub
routines are associated with station resource manage
ment and utility functions. Examples of these are:

• Rent buffer space in SCU
• Rent block in SBU
• Transfer SBU/SCU data
. Transfer CPU data
• Hash file name

Each station contains a standard program referred to
as the nucleus or monitor. It contains a set of simple
diagnostic routines known as quick-look diagnostics, a
system autoload program, driver programs for the
microdrum and for the keyboard associated with the
character display, programs to manage the microdrum
overlay mechanism, and the main control and organiza
tional program.

The SCU microdrum holds a copy of all station soft
ware. The SCU operates under one of four different
systems. These systems are allocated as follows:

1. Microdrum loader system
2. Run system (normal case)
3. Diagnostic system
4. Off-line system

The system is selected at start-up of SCU programs.
The selection of a system causes linking of all routines
associated with the system via scanner and overlay
tables. When running, a given system contains the
operating portion of the nucleus (the system selection
and set-up routines are discarded to be called again
from the microdrum for a new autoload) and specified
routines fixed in core. The remaining routines are called
when required from the microdrum. Calling a routine is
accomplished through an overlay table which contains
the core address of the called routine or the address of a
routine which reads it into a core area available for
temporary overlay and buffers. All routines associated
with a system are thus directly accessible yet only the

564 Fall Joint Computer Conference, 1972

most active routines reside dynamically in the SCU
core memory.

The scanner is the idle loop of the nucleus. The pri
mary purpose of the scanner is to map normal channel
data signals to overlay programs based on priority and
logical selection, thereby providing a low overhead
mechanism for handling asynchronous external events.
The external events (such as channel flags, microdrum
busy, or input read signals) are presented to the scanner
program via one or more normal channels. Associated
with each channel are two logical selection words, the
ENABLE mask, and the STATE mask. The channel
data is exclusive or'ed with the state mask in order to
select the appropriate signal polarities, and then
matched against the enable mask. Any bits that are
now set represent selected channel events in the desired
state. These bits are scanned from left to right and
the first bit found set is used to enter the overlay pro
gram associated with that bit. If all bits are zero, the
scanner moves on to the next channel and repeats the
procedure. One or more memory words are used to initi
ate internal events via the scanner. In this case, the
memory words rather than the channels represent the
raw input to the scanner. In a typical station, the
scanner cycles through two normal channels and two
memory words.

A detailed error handling and maintenance system is
provided in the stations. Abnormal conditions in the
operation of a device cause the device driver to exit to
an associated error handling routine. This routine
handles retries and error logging. It operates in conjunc
tion with a device monitor routine which is used to set
the parameters for a device, such as number of retries,
turning device off to system, and breakpointing in the
driver. A maintenance information system provides an
English translation of the driver parameter tables and
the device status tables on the SCU display and pro
vides operator access to control the device operation
via the device monitor.

Included in the maintenance system is the capability
to run diagnostics and utilities associated with a device.
These tests are controlled using the device driver,
parameter table, and status tables and may be run in
conjunction with the system operation on other station
devices.

FILE SYSTEM

The file system described here exists totally within
the storage station and is independent of any particular
processor station, network configuration or storage de
vice type. Creation, maintenance, recovery, access,
security, storage layout, accountancy data, and per
formance statistics are all managed within the station.

The station file system is implemented as a set of
task overlays. Each overlay is associated with a specific
system message and provides the coordination neces
sary to accomplish the system task using the station
device drivers and subroutines. Each message has a
separate overlay to process it. If the message occurs
frequently, the overlay remains in SCU core; otherwise,
it is called in from the microdrum when it is needed.

Active file index

All the file messages are listed in the Storage Station
Messages section. A file is simply a collection of stored
bits, which has a descriptor and can be operated on by a
set of file functions. No file function is processed until
the file is first opened, and the last file function must
always be a close function. In the open message, identi
fication of a file is by file name (File Name Section).
For other messages, identification of a particular file
is by its active file index, the index of the file entry in
the active file table (Figure 3). The file index is assigned
by the storage station and returned to STAR in re
sponse to the open message. The advantage of this ar
rangement is that the majority of file messages use a
16-bit identifier rather than a variable length string of
characters which could be quite long. By maintaining
active-file information in core storage, access validation
and transformation between logical (file page) and
physical block locations is normally accomplished with
negligible overhead and without introduction of super
fluous input-output operations.

The size of each active file table entry is 8 characters
(Figure 3). Initially, one SBU block of 4096 characters
is devoted to the active file table, allowing 512 open
files at any one time. This can be easily expanded if
required. If the file is noncontiguous, read/write of file
pages which are not in the first contiguous section re
quire an access to the storage map in the file descriptor.
One could trade the number of open files allowed for
fewer open files with each entry containing the map of
more than one file section.

o/i F M U s N 1
1

1 15 8 8 16 16 BITS

0 /1 = free/used flag
F = description pointer
M = access mode
U = unit number
S = starting address of file on device
N = number of blocks contiguous to S

Figure 3—Active file table entry format

Control Data® Star-100 File Storage Station 565

File descriptor {catalog entry)

Each file has a descriptor which describes the file as
seen by the system. The descriptor (Figure 4) consists
of 8 sections: Header, characteristics, name, storage
map, access map, activity map, and two free sections
reserved for later use.

The set of descriptors for those files occupying a par
ticular storage unit is itself part of a file and may be
processed like any other file; it is called the descriptor
file or catalog. This catalog may or may not be on the
same storage media as the files it describes. Normally,
removable media contain their own catalog files, but
these may be copied elsewhere on mounting.

The size of an individual descriptor is variable in
modules of 256 bytes up to a maximum of 4096 bytes.
Initially, just one module (256 bytes) is used for each
descriptor.

As an example the Control Data® 844 disk pack at
present has the following layout.

Blocks 0, 1
Blocks 2, 3

Blocks 4 through 67

Blocks 68 through
23,027

Pack Label
Free Storage Map

Descriptor Modules
(1024)

Data Files

Pack
'Catalog
File

To facilitate processing in the SCU, the descriptor
proper is kept reasonably small, but the sections can
have pointers to overflow areas and these may be of
any length. The space allocated for the catalog is also
variable. Initially 64 blocks of 4096 characters are used
providing 1024 files per storage unit.

The allocation of a descriptor module to a newly
created file is done either by the use of a free space
map for the modules or by a hashing algorithm. To
locate a file descriptor, the file name is hashed to locate
a bucket in a hash table which contains entries of file
names and pointers to their descriptors. This hash table
is re-created (say at autoload) so that the system is not
tied to any one hashing algorithm. The hash table may
itself become quite long and is kept on the storage unit
with the files or some associated storage device. An
alternate implementation simply hashes directly to the
descriptor module. If the file name does not match the
name in that module, a search is made of the surround
ing modules in that block. I t is to be emphasized that
normally the descriptor is only referenced on the open
and close functions. All read/write file pages reference
the active file table which is in SBU core.

32 B I T S

RN

T

FREE

32 BITS

1 RB

F L / R L

PTR

|

descriptor length
in bytes

64 BITS

T = type
RN = number of records
RB = reserved file length

in blocks
FL = file length in bits
RL = fixed record length

bits
PTR = pointer to structure

definition within fil

= number of file
sections on
this unit

= starting
block address

= number of
blocks con
tiguous to
this address

R= pointer to
extended
storage map

3 2

C

E

LU

N

B I T S

I
FREE

FREE

D S T

D 8 T

oa T

= length local name
in bytes

Lp = length owner ID
in bytes

c r e a t i o n date
and t ime
e x p i r a t i o n date
and t ime
l a s t update date
and t ime
number o f opens

N =

=; =
,PTR=

n u m b e r o f e n t r i e s
o w n e r a c c e s s
p u b l i c a c c e s s
l e n g t h i n b y t e s o f U ,
u s e r 1 a c c e s s
u s e r 1 i d e n t i f i e r

p o i n t e r t o e x t e n d e d
a c c e s s map

Figure 4—File descriptor format

Storage map section

The storage map (Figure 4) allows for a storage sys
tem to be divided into 256 units, each with a capacity of
65,536 blocks (228 bytes: approximately 268 million).
A variation on this scheme is being implemented which
has 32-bit field lengths for block addresses and number
of blocks contiguous to an address. This will cater for
larger storage systems with capacity up to 232 (approxi
mately 4 billion) blocks or 2U (16 trillion) bytes.

Characteristics section

The characteristic section of the descriptor is shown
in Figure 4; the different file types are undefined (0),
ASCII coded delimited (1), AS CII coded fixed (2),
binary STAR (3), binary fixed (4), foreign delimited
(5), foreign fixed (6), virtual memory (7), drop (8),
labeled (9), multiple volume (10), incomplete (11),
temporary/permanent (12), input (13), and output
(14).

Types 1 through 6 categorize file types according to
their internal coding. The exact definition is not im
portant but it should be noted that types 3 through 6

566 Fall Joint Computer Conference, 1972

have an associated record map which describes the
record structure of the file. A virtual memory file has a
virtual address associated with each file page. The drop
file is similar to the virtual memory file, it is a frozen
image of an executing job which has been suspended for
some reason together with the virtual address list and
current program status information. The labeled file is
one that has a label (somewhat similar to the file de
scriptor) within the file. These last three types use a
pointer address to locate the relevant structural infor
mation within the file. The multiple volume/unit file is
one that is spread over a number of storage units; yet,
it is logically one file. An incomplete file is one upon
which, although incomplete, processing begins; such is
the case when processing begins after only a portion of
tape is spooled onto a disk. No doubt other file types
will be added, but these provide sufficient categorization
for the present.

Storage layout section

The storage layout of a file varies with the particular
storage device but the goal in each case is the same,
that is, to organize file storage in a manner which does
not deter high-performance of expected access requests.
A large block of data, stored as 128 consecutive physical
blocks on a Control Data® 817 disk requires a little
over a tenth of a second for transferring its half million
bytes; stored differently, its transfer could take up to
10 seconds. The allocation and layout of a file are
governed by a RENT/STORE routine which can be
replaced or modified in order to implement more elabo
rate policies. This routine normally tries to allocate the
desired number of blocks in a contiguous fashion; if
this is not possible it will allocate the total space on as
few large sections as possible.

The map of the disk file is a vector. Each element of
the vector is a storage location and a number indicating
how many blocks are contiguous to the location. As
many contiguous sections as possible are represented
in the descriptor proper and the rest are kept in an over
flow area.

Access security section

Every time an OPEN operation is requested through
a storage station, the access rights of the user are

File name section

Perhaps the most important thing about a file is its
name. It is that which identifies it uniquely and which
must be used to open the file before it can be processed.
The name consists of two parts, a local name followed
by an owner identifier. Each part consists of a variable
length string of characters (the ASCII alphanumeric
set plus — $ #) . The parts are separated by the ASCII
space character. Certain characters are reserved for
special use within file names: * , / , . , & , |, and ?. The
period character . for instance, is used to indicate some
hierarchical structure within the name.

The file system is not normally concerned with the
internal structure of either the local name or owner
identifier, who gave this name or identifier, or where it
came from. Essentially the name is used to locate the
descriptor.

checked against the access map in the file descriptor.
The open function has an owner identifier and a user
identifier catenated to the local file name and termi
nates with the ASCII record separator code. If the user
and the owner are the same person, the user identifier
may be omitted. If the access is not permitted, an in
valid access response is returned to the message sender.
For the other file messages, validity of the operation is
checked against the mode stored with the file entry in
the active file table. Initial file access mode is one of
four:

• Cannot delete
• Cannot alter access modes
• Cannot write
• Cannot read

The access modes for the different users are set or
modified by access mode messages to the station. The
default option on creation of a file is that the owner has
open access and the public has no access. The file system
again is not concerned with the internal structure of the
user identifier; it is simply a variable length string of
characters, and in fact, could be an agreed upon group
name rather than an individual user identifier.

Example of File Name MATRIX J249

4D4154524958204A323439 {ASCII hexadecimal}
>s ^ v notation}

local name separator owner identifier

Control Data® Star-100 File Storage Station 567

Example of File Identifier

MATRIX J249

Space

local
name

owner
identifier

If the user is the owner, then this can reduce to

MATRIX ($P) J249

L543 RS

Record
Separator

user
identifier

Multiple stations

A typical STAR installation might include two STAR
processors supported by a number of storage stations
each having different storage devices attached. Such a
system exists and is in experimental operation. I t is
possible for a user to specify on opening a file its loca
tion; if this is not done STAR sends messages to
all storage stations listed in its directory. The station
where the file exists opens the file and makes the ap
propriate response which STAR keeps till the file is
closed. The other stations return a "not found" re
sponse.

At present on "create and open" the user must specify
the storage station where the file is to be created but
need not specify the device on that station unless he
wished to do so. If a file of the same name already exists
on the station it will be deleted if it is a "temporary"
file and the new one will be created; otherwise, if it is a
"permanent" file an "already exists" response will be
returned to STAR. Files may be shared between dif
ferent users and two STAR processors providing they
are open for read only access. The station has no diffi
culty returning responses and data to the correct STAR
processor since it is identified by its zip-code in the
message header.

File system extensions

The basic file system can be extended to provide
specific features. The basic file system and these ex
tensions are expected to provide a very complete, stand
alone storage system.

• Automatic mounting—(packs cartridges, tapes,
etc.)—Standard ASCII labels, automatic alloca
tion of drives, and the mounting and dismounting
with label validation.

• Multivolume files—Allowing a file to spread itself
over a number of units.

• Archival file directory—One archival file directory
for all files, on-line and off-line.

• Structured file name and owner/user identifiers—
Structured names and identifiers linking files of a
given class into a more complex access mechanism.

• Shared access security—Extended access mode
conditions.

• File editions—Allow the user to specify file edition
numbers or default to the latest edition.

• Accounting and performance statistics—Recording
of station accounting and usage statistics.

• Experiment with distributing certain data man
agement functions, which are now performed in
STAR, to the stations.

STORAGE STATION MESSAGES

The following list gives messages which can be pro
cessed by storage stations. The underlined parameters
are returned with the response.

Function Parameters

Create and open file

Open File

Close File
Close and delete file

(temporary and perma
nent)

Close and delete tempo
rary file

Keep file
Set file characteristics
Set file length
Is file open
Read file pages
Write file pages
Read file descriptor

File Messages
F, M, M0, M p character

istics, name and user
ID

F, M, characteristics,
name and user ID

F, characteristics
F

F

F
F, characteristics
RB
F, characteristics, name
F , N , S, B
F, N, S, B
F, B

568 Fall Joint Computer Conference, 1972

Function Parameters

Write access list entry
Modify owner and public

access
Mount (tape, pack,

cartridge) label L

Read N blocks from stor
age unit

Write N blocks from stor
age unit

Read N blocks from stor
age unit with header

Write N blocks from stor
age unit with header

Storage unit status

F, M, user access key
F, M, user access key

Test Messages
B, N, S

B, N, S

B, N, S, Header

B ,N , S, Header

N\ N\ Ns, i\T4

Legend for Parameters

F
M

: active file index (given by storage station)
= access mode

(used on open)
bit 0 set means cannot

delete
bit 1 set means cannot al

ter access modes
bit 2 set means cannot
write
bit 3 set means cannot

read

M0 ,MP=access modes of owner and public, respec
tively (used on creation)

N = number of blocks/file pages to be transferred
S = starting file page number (starts with zero)
B = core block number, if bit 0 set B = SBU address
User ID = user access identifier, variable length string

of characters which ends with the record
separator character.

• Ni = total number of blocks
N2 = number of disabled blocks
N3=number of active blocks
N4=number of free blocks

L = label on pack, cartridge, tape
RB = Length of file in blocks

Message header format

RESPONSE
CODE

PRIVATE
USE OF
SENDER

MESSAGE
LENGTH

TO
ZIPCODE

PRIVATE
USE OF
SENDER

FROM
ZIPCODE

PRIVATE
USE OF
SENDER

MESSAGE
FUNCTION
CODE

16 16 16 16 BITS

Preceding each set of message parameters is a header
which has the following format.

Details of the message formats are not significant
here, except to mention that it is valuable to limit the
number of different formats used and to ensure field
lengths are large enough to cater for future storage
devices. The format is important, however, in respect
that once it is established and used by a number of
routines even small modifications to it can have wide
spread effects and are often time consuming and difficult
to checkout.

CONCLUSIONS

The storage and file functions of a general-purpose
computing system have been identified and separated
to operate outside and in parallel with the central pro
cessor in a stand-alone, local or remote, storage station.
This station forms part of an overall plan to distribute
specific functions associated with general-purpose com
puting into separate computing elements or stations.
The same basic hardware and software is used in all
these stations to lower manufacturing costs by high
volume production. The features and performance of
this station have worked out well on delivered and in
house systems using drums, large disks and disk packs
for archival and working store on both large and small
computers. The main reason for success has been the
clear identification of the basic file and message func
tions required and a careful implementation of these
functions, utilizing both hardware and software tech
niques on a standard STAR peripheral station. Al
though designed to meet the needs of the STAR-100
processing unit the storage station is well suited to be
used with any processor which matches its channel and
message protocol; it is also relatively independent of
storage device type and system configuration.

ACKNOWLEDGMENTS

This work was performed in the Advanced Design
Laboratory of Control Data Corporation in St. Paul,
Minnesota. The head of this laboratory and chief de
signer of the CDC STAR-100 and STAR-IB Computer

Control Data® Star-100 File Storage Station 569

Systems is J. E. Thornton. The success of the project is
mainly due to his leadership and support, together with
the hard work over a number of years of the following
people in the Advanced Design Laboratory's peripheral
group—N. G. Horning, W. C. Hohn, D. J. Humphrey,
L. H. Schiebe, E. V. Urness, D. A. Van Hatten, C. L.
Berkey, D. C. McCullough and R. A. Sandness.

REFERENCES

1 J E THORNTON
Design of a computer—The Control Data 6600
Scott Foresman 1970

2 T H ELROD
The CDC 7600 and Scope 76
Datamation April 1970 Vol 16 No 4 pp 80-85

3 J E THORNTON
System design and implementation
Proceedings of Third Australian Computer Conference 1966
pp 90-102

4 P D JONES C J PURCELL
Economics and resource parallelism in large scale computing
systems
Proceedings of Fourth Australian Computer Conference
1969 pp 241-244

5 P D JONES N R LINCOLN J E THORNTON
Whither computer architecture
Proceedings of IFIP Congress 1971 pp TA4/162-TA4/167

6 W R GRAHAM
The parallel and pipeline computers
Datamation April 1970 Vol 16 No 4 pp 68-71

7 D J WHEELER
Assessing the complexity of computer systems
Proceedings of IFIP Congress 1971 pp I/164-I/168

