
Experiments with program locality'

by JEFFREY R. SPIRN** and PETER J. DENNING***

Princeton University
Princeton, New Jersey

INTRODUCTION

For many years, there has been interest in "program
locality" as a phenomenon to be considered in storage
allocation. This notion arises from the empirical
observation that it is possible to run a program effi­
ciently with only some fraction of its total instruction
and data code in main storage at any given time. That
virtual memory systems can be made to run at all
demonstrates that program locality can be used to
advantage; and though it is certainly possible to write
a program which violates the principles of locality, it
seems one must go out of one's way to do so.

If a program is favoring a subset of its information
at some particular time, we should very much like to
know the identity of that subset. The set of favored
pagesf of information at a given time will be called the
locality at that time. Using this information, we may
answer such questions as "What behavior can be
expected of the program in the near future?" or "How
much storage should be allocated to the program at this
time?" For some classes of programs the best we can do
is estimate this locality, whereas for others we may be
able to measure it exactly. The utility of this measure­
ment is demonstrated by the fact that, for several
models of program behavior, the policy "keep the
current locality in memory" can be proved to be an
optimal memory management policy. These models
include the independent reference model,1 the locality
model,2,3 and the least-recently-used (LRU) stack

* Work reported herein was supported in part by NSF Grant
GJ-30126 and NASA Grant NGR-31-001-170.
** Present address: Division of Engineering, Brown University,
Providence, Rhode Island 02912.
*** Present address: Department Computer Sciences, Purdue
University, Lafayette, Indiana 47906
t We assume pages are all of the same size, containing at least
one word each. Most of our results extend in a straightforward
manner to systems in which the block size is variable, so that
the assumption of paging is mostly a matter of convenience.

model.4,5,6 For other locality processes, this policy
appears to be nearly optimal.3,11

The means of measuring the locality, and the ac­
curacy of the measurement, depend on one's definition
of "locality." The definitions that have appeared so far
in the literature can be classified into two categories:
the intrinsic locality models, and the extrinsic ones.

Intrinsic models for locality assume that memory
references emit from a program according to some
(abstract) structure internal to the program itself.
The locality in effect at a given time is a function of the
internal state of the program at that time. Since the
state of the program may not be known, it is usually
not possible uniquely to determine the locality by
examining the memory reference sequence of the pro­
gram. Some examples of this type of locality model are
page reference distribution functions,7,8 the independent
reference model,1 the locality model,2,3 and the LRU
stack model.4,5 Another example can be found in
Reference 6, where, for p>0, it is assumed that there
exists a sequence of sets of pages WP(1), Wp{2), . . . ,
Wp(t), . . . , such that Wp(t) is the smallest set of
pages containing the reference at time t with probability
at least p.

Extrinsic models do not rely on any assumptions of
internal program state. They define locality in terms of
observable properties of the memory reference sequence
of the program. Three examples of extrinsic locality
are: (1) Given a sequence of time intervals, the "locality
sequence" LiL2 . . . Li. . . is defined so that L; is the
set of pages referenced in the ith. interval; (2) Given an
integer k>l, define a sequence of time intervals so that
each locality Li in the locality sequence LiL2 . . . Li. . .
contains exactly k pages—i.e., exactly k distinct pages
are referenced in the ith. interval; and (3) A "working
set" W(t, T) is defined to be the set of distinct pages
referenced among the last T references, and is a measure
of the locality at time *.9,10,11

Intrinsic models are useful primarily for analysis and
simulation. They are limited by the accuracy to which

611

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1479992.1480078&domain=pdf&date_stamp=1972-12-05

612 Fall Joint Computer Conference, 1972

they simulate real programs. Due to the practical
difficulty of measuring or estimating the locality, they
may have little use in storage allocation. Extrinsic
models are evidently more practical, since they define a
measurement procedure; yet they are obviously limited
by the extent to which the measurement taken reflects
what the program is really doing. Such models are less
suited for use in modeling, but they can be used con­
veniently to allocate memory.

Although there are many models for defining the
concept of locality, little experimental verification of
their accuracy has been undertaken. The working set
model is perhaps the only exception.12 -13'14 Unless a
given model can be shown to approximate closely the
behavior of real programs, any analytic results obtained
using the model are only of theoretical or academic
interest. Accordingly, we have chosen in this paper to
emphasize experiments which test the ability of extrinsic
measurements to estimate current intrinsic localities and
predict future (intrinsic) localities, and the ability of
intrinsic models to simulate real world behavior.

Let us summarize the terminology that we shall be
using for the various meanings of locality. If, as dis­
cussed above, a program's memory reference string is
divided into (not necessarily equal) time intervals, the
(extrinsic) observed locality Li is defined to be the set of
pages referenced in the ith. interval. Since it may be
difficult to determine the internal state of a program
according to an intrinsic model, we usually in practice
use the observed locality in the immediate past (such
as the working set W(t, T)) as an estimate for the
current intrinsic locality; this use is termed an estimated
locality. If we assume something about the program's
internal structure, we may be able to predict, on the
basis of the current (estimated) locality, the most
likely references in a future interval; this is termed the
(intrinsic) predicted locality.

For some intrinsic models, the estimated locality can
quite accurately (or even perfectly) determine the
current intrinsic locality. Such models are clearly of
special interest, and we shall discuss two of them. A
third, the independent reference model, is in general
not as well measured by the working set, but is pre­
sented for comparison.

Throughout this paper, it will be assumed that
demand paging is being used and that a paging algorithm
is optimal if it minimizes the expected probability of a
page-fault in a given size memory.

MODELS FOR INTRINSIC LOCALITY

Consider an n-page program whose pages constitute
the set -N — {1, 2, . . . , n\. k reference string r\r%. . . rt. . .

is the sequence of members of N generated by the
program for given input data, where reference rt is the
number of the page containing the address referenced
at time t (time being measured in terms of the number
of memory references made by the program). Suppose
a reference string has been divided up into intervals,
and Li is the observed locality in the ith interval. With
respect to the given sequence of intervals, the reference
string is considered to satisfy the properties of locality
if:10

1. For almost all i, Li is a proper subset of N;
2. For almost all i, Li and Li+i tend to have many

pages in common; and
3. The observed localities Lt and Li+j tend to

become uncorrected as ,;' becomes large.

A program reference string is considered to have a high
degree of locality if Li is a small subset of N (statement
1), Li and Li+X differ by at most one page (statement
2), and the value of j for which Li and Li+j become
uncorrelated is small compared to the length of the
reference string.

A very general model for locality, displaying proper­
ties 1-3 intrinsically has been defined in Reference 3.
I t defines a sequence

(Lx,h)(L*,k) ...\Li,U) . . . (1)

in which Li is the ith. intrinsic locality and U the holding
time in L*; the Li are members of a specified set £ of
localities associated with the program, and are subsets
of N. During its stay in Li, the program generates some
sequence of references rnr® . . . riH, over the pages of
Li only. The mechanism for generating the references
from Li is unspecified and may be arbitrary. The
current locality Lt at time t is that Li for which
k + • • • + U-i < t < h + • • • + U. A probability structure
can be imposed by specifying a transition matrix
{jp(L, L')~\ among localities L and L' of <£, and a set of
holding time distributions hL(t) for each L of £

In the following sections we shall discuss some special
cases of this general model. These cases are of practical
interest to the extent that our experiments indicate
agreement between localities predicted by these cases
and the localities actually observed by using the working
set model.

The very simple locality model (VSLM)

This model assumes a fixed size locality—i.e., the
localities Lt in (1) are all of the same size I, where
l<Z<n . At any given time t, the probability of refer­
encing an interior page (a member of Lt) is 1 — X, and

Experiments with Program Locality 613

the probability of referencing an exterior 'page (one not
in Lt) and making a transition is X. All I interior pages
are referenced independently and with equal proba­
bility (1/0- All n—l exterior pages are referenced
independently and with equal probability {l/{n—l)).
When an interior page is referenced at time £+1, no
change in locality occurs—i.e., Lt+i=Lt. When an
exterior page is referenced, a change in locality occurs,
but to a demand-paging neighbor only—i.e., Lt+i—
Lt-\-rt+i—y where y is chosen at random from Lt. The
unconditional probability of referencing an interior
page is at least as large as that of referencing an exterior
page, i.e.,

which is equivalent to the condition X< (n—l)/n. This
model has two important parameters—the locality size
I and the transition probability X—and will sometimes
be called the two-parameter model. Note that the mean
holding time in a locality is 1/X. For this model, the
storage allocation rule "keep the current locality in
memory" has been proved optimal.3

It can easily be shown that for programs which fit this
model, it is impossible to determine absolutely the
current intrinsic locality from observations on the
generated reference string. We shall consider next the
accuracy with which we can estimate the locality by an
extrinsic model, namely, the working set.

As mentioned, the working set W(t, T) is the set of
distinct pages referenced among the references
rt-T+i • • • rt. If we desire to use the working set to
estimate the locality, we must specify T, the window
size. The choice of T must satisfy two criteria: (1) it
must be large enough so that all pages within the locality
are referenced with high probability, and (2) it must
be small enough so that the likelihood of more than one
locality transition within the window is low (for several
transitions would introduce error). Although it is not
obvious that a suitable T can be found, it is the case
that for reasonable parameters of the VSLM, not only
does a T exist, but its value is not especially critical.
For the VSLM, condition 2 will hold whenever T<l/\,
and our experiments verify that such values of T
typically exist.

We shall consider the working set to be a good
estimate of a VSLM locality when two criteria are
satisfied: (a) the average working set size is approxi­
mately equal to I, the locality size, and (b) the average
missing-page probability when the working set is kept
in memory is approximately X, the probability of
referencing outside the locality. Plots of working set
sizes and missing-page probabilities for various values
of n, I, and X show that,3 for small X (.01 or less), a

value of T on the order of 5 or 10 times the locality size
will do an excellent job of achieving criteria (a) and
(b) above, irrespective of n and I. Furthermore, for
small values of X, the values of the working set size and
missing-page probability level off and are nearly con­
stant in a large neighborhood of T, indicating that the
choice of T is not too critical for these values of X.

For large values of X (in excess of 0.05), the working
set apparently does not provide as good an estimate of
the locality. In this case, the working set size and
missing page probabilities do not tend to level off at
the values of I and X, respectively. Furthermore, the
value of window size needed to get the missing-page
probability equal to X gives a working set size as much
as 20 percent too large.

The simple LRU stack model (SLRUM)

This model is based on the memory contention stack
generated by the LRU (least-recently-used) page
replacement algorithm.5 This stack is simply a priority
ordering on all pages of a program according to the time
of their most recent usage. Thus, the first position
(top) of the stack is the current reference, the second
position is the next most recently used page, and so on.
When the page in stack position i is referenced, it is
moved to the top, and all the pages which were in
positions l...i— 1 are pushed down one position.
Specifically, if s(t) = (xi, . . . , xn) i s the stack at time i
and the page at position i is referenced, the stack at
time 2+1 is s(2+l)-.= (xif xi, . . . , rc»_i, xi+i, . . . , # „) .

To create the simple LRU Stack Model, we assign to
each position of the stack a fixed, independent proba­
bility. We will denote these probabilities a\, . . . , a„,
where n is the number of pages in the program (and
thus the number of stack positions) and a\-\- • • • + a n = 1.
The a; are termed stack distance probabilities with i
being the distance (from the top of the stack). At any
given time stack position i will be chosen with proba­
bility ai; if it is chosen, the page in that position becomes
the current reference and is brought to the top of the
stack, as above.

If we make suitable restrictions on the a*, we can
cause this model to exhibit locality. In Reference 3,
the requirement is made that the a* be mono-
tonically non-increasing as one goes down the stack
(ai> • • '• >an)*. If, under this restriction the stack is
divided at any point, the pages in the stack positions
above the division are all more probable than those
below the division. Specifically, if the stack at time
t is s(t) = (xi,..., xn), we can define a locality of size I

"This requirement can be weakended slightly to min{ai. . .am}>
maxfom+i,.... ,a„} for LRU paging in a memory of size nt [3].

614 Fall Joint Computer Conference, 1972

(for any I, l<l<n) to be the pages {xi, . . . , xi). By-
dividing the stack at successive distances, a hierarchy
of localities may be defined. This hierarchy represents a
full ordering of localities, in that any given locality
contains all of those smaller than it.

Note that the SLRUM is a slight generalization of
the VSLM. At any given time, the probability of a
locality transition is

since a transition occurs if and only if the distance
exceeds I. Moreover, when a new locality is entered, it
is the demand paging neighbor of the former locality.

I t can be shown that, if mt is the amount of memory
allocated at time t, the optimal storage allocation rule
for reference strings generated by this model is: "keep
the top mt elements of the stack s(t) in memory, for all
t " 3 I t follows in particular that, if mt is the size of the
working-set W(t, T), the working-set policy is optimal
for this model (note that W(t, T) then contains pre­
cisely the top mt elements of s(t)). If mt is fixed, it
follows that the LRU paging algorithm is optimal for
this model.

I t is worth re-emphasizing that the working set
W(t, T) and the observed LRU stack (i.e., the one
maintained by the LRU paging algorithm) both
measure exactly the locality according to the SLRUM.
For this intrinsic model, therefore, extrinsic measures
provide an exact measure of locality.

The independent reference model (IRM)

In this model, the page references nr2. . . rt. . . are
assumed to be independent trials under some fixed
probability distribution {ci, . . . , cn). In other words,
the probability of referencing page i at time t is given by
the stationary probability

Pr[r(= 0= C i (3)

Note that consecutive page references are taken ac­
cording to these probabilities without regard to the
previous references made by the model.

We may form a priority list for this model by ranking
the pages according to decreasing probability—i.e.,
there is a fixed priority list (1, 2, . . . , n) where
Ci>C2> • • • >c„. Given a value of I, define a locality of
this model to consist of pages L{1) — {1, 2 , . . . , I— 1}
and that page x which was most recently fetched into
memory (note that l<x<n), so that a locality is of the
form L{l)-\-x. The rule "keep the pages of L(m) in
memory at all times," for memory size m pages, is
known to be optimal for the IRM.1 As in the VSLM
and the SLRUM, transitions occur between demand-

paging neighbors only. Unlike these other two models,
however, the transition probability varies in time,
being ci-\— • +cn—cx whenever the locality is L{1) -\-x.
The important difference between the IRM and the two
previous models is, the localities of the IRM are
essentially static in content whereas those of the VSLM
and the SLRUM are changing in content. We shall see
that, because of this difference, the IRM produces poor
fits to actual programs.

CRITERIA FOR EXPERIMENTATION

It is obvious that if one were to try to correlate the
reference strings produced by a model with the observed
reference string of some given program, one would have
very low success: Direct correlation is much too strin­
gent a requirement to place on a model. A more reason­
able, though indirect, way is to correlate interreference
densities; that is, the time between consecutive refer­
ences to the same page. However, even this method is
likely to be inconclusive (at least over relatively short
reference strings), since experimentation shows that
the interreference densities of real programs tend to be
quite irregular in shape, many zeros being interspersed
between non-zero probabilities.

We were interested primarily in testing whether or
not the reference strings generated by a given model
induce the same paging behavior as those generated by
a real program. Thus, we did not care about fitting
strings of references within a locality, since these will be
transparent to the paging system, assuming the locality
is retained in memory. We were concerned, however,
with locality transition behavior. Moreover, since we
wanted to use the working set to estimate the locality,
we desired the model to have similar working set
behavior, at least on the average.

Taking these factors into account, we decided to try
to fit two types of curves. The first is the average
working set size w(T), which gives the average working
set size in an interval as a function of the window size
T. The other is the average missing-page probability
q(T) as a function of the window size T, when exactly
the working set is kept in memory at all times. I t has
been proved that the latter curve is (essentially) the
derivative of the former,10 and thus we are in fact
fitting the model to the working set size curve and its
derivative.

Now, consider the probability of a given page's not
being in the working set under window size T: this can
be shown equivalent to the probability of the inter­
reference interval for the given page being greater than
T.10 Thus, the missing page probability q(T) corre­
sponds to the complementary cumulative overall

Experiments with Program Locality 615

interreference probability distribution. In this way, a
close fit by a model to the observed missing page
probability curve guarantees a close fit to the observed
overall interreference distribution, even though the fit to
the observed density will, as commented earlier, tend to
be quite poor.

Of course, this method of model fitting has its dis­
advantages. Its primary limitation is that both the
curves w{T) and q(T) are averages measured over an
interval. If the interval is too large, any non-stationary
behavior will tend to be masked on the average. For this
reason, most measurements were taken over what we
consider to be a suitably small interval (short compared
to the lifetime of the program), in most cases 20K
references (about 10,000 instructions). This necessitated
taking several measurements in various parts of a given
program's reference string. For comparison, measure­
ments over a larger interval, 300K references long,
were also taken.

We decided for these experiments to ignore the dis­
tinction between instruction and data references.
Modern computers tend to make great use of such
operations as register-to-register instructions, indirect
references, and multiple data reference instructions
(such as LM and STM on the 360). The more a pro­
gram makes use of these operations, the less true the
tendency for instruction and data references to alter­
nate. We decided not to make detailed studies of how
instruction and data references are in fact mixed in
practical reference strings, as this question was second­
ary to our interest in locality behavior. Moreover,
most modern systems do not make any serious attempts
to distinguish "instruction working sets" from "data
working sets" in their storage allocation procedures.
Nonetheless, the effects of such a distinction may be
significant, and constitute a worthwhile project for
future research.

For each reference string segment tested, the ob­
served (OBS) working set curve, independent reference
probabilities {c*}, and LRU stack distance probabilities
{a*} were measured. A single-pass algorithm for meas­
uring the working set curve is given in Reference 10.
The independent reference and LRU stack probabilities
were determined by counting references to each page
and to each stack position, respectively. The value used
for n, the size of the total program's page set, was the
total number of distinct pages actually referenced in
the reference string segment being studied. Pages
which were never referenced in the interval of measure­
ment were not counted in the value of n. This was done
mostly for convenience, and should have little or no
effect on the results.

Also included for comparison was an attempt to fit
the working set curve to the following exponential
function

w(T)=n(l-<rBT) B>0

where B is a parameter. This will be termed the ex­
ponential model (EXP).

Using the measured values for the independent
reference and LRU stack probabilities, the working set
curves for these two models were computed. (Algorithms
for computing the working set curves of the various
models are given in Reference 3.) For the locality model,
the parameters I and X were chosen to give the lowest
mean-squared relative error for the set of window sizes
10, 20, 30, . . . , 1000, against the observed w(T) curve.
The same procedure was repeated for the exponential
model to determine a value of the parameter B.

DESCRIPTION OF RESULTS

Programs on two machines were tested for fits with
the various models. The PAL assembler on the Digital

CHART 1—Description of Programs Measured

Ref. Str. No. Machine
Page Size
(words) Description Refs. Skipped Refs. Measured

0
1
2
3
4
5
6
7

8

9

PDP-8
PDP-8
360
360
360
360
360
360

360

360

128
128
256
256
256
256
256
256

256

256

Assembler, Pass 1 0
Assembler, Pass 1 100K
FORTRAN (G) COMPILER IK
FORTRAN (G) COMPILER 200K
Small FORTRAN job. One main loop. IK
Small FORTRAN job. One main loop. 100K
Small FORTRAN job. One main loop. IK
Medium FORTRAN job. Several Subrou- IK

tines.
Medium FORTRAN job. Several Subrou- 100K

tines.
Medium FORTRAN job. Several Subrou- IK

tines.

20K
20K
20K
20K
20K
20K

300K
20K

20K

300K

616 Fall Joint Computer Conference, 1972

CHART 2—Values of Parameters

Total
pages refd.

11
12
35
38
20
20
20
22
20
31

I

4
4
5
7
3
4
4
4
3
4

VSLM
X

.0025

.0027

.014

.022

.030

.020

.021

.024

.029

.014

E X P
B

.0013

.0015

.00080

.0012

.0025

.0020

.0021

.0020

.0024

.00085

Equipment PDP-8 was run using a page size of 128
words, the standard page size for the machine. Several
IBM 360 programs were run, including two FORTRAN
jobs and the FORTRAN (G level) compiler itself. The
360 page size was chosen arbitrarily to be 256 words.
Chart 1 gives a description of each program. The
"reference string number" refers to a reference string
segment from each program. In particular, we expressed
the reference string in the form r i r 2 . . . rkn+i. . . n+x • . .,
where k is the number of "references skipped" and x the
number of "references measured." In other words,
Tk+i... Tk+x is the reference string segment over which
we attempted to fit the models.

Curve fit results

Chart 2 gives the values of various measured or best-
fit parameters. I t is important to note that the best-fit

Figure 1—Working set size (Ref. St. 2)

Figure 2—Working set size (Ref. St. 4)

VSLM locality size I was typically under 20 percent
of the program size n, that the locality transition
probability X was typically in the range 0.01 to 0.03,
and that the locality transition time 1/X was typically
in the range 30 to 100 references. Reference strings 0
and 1 were exceptions, having much lower transition
probability X than the others, this being due un­
doubtedly to the severely limited amount of memory on
the PDP-8 (4K words).

Chart 3 gives the results of the working set curve

Figure 3—Working set size (Ref. St. 6)

Experiments with Program Locality 617

CHART 3—Fits to mean working set size curve

' Ref. Str.
No.

0
1
2
3
4
5
6
7
8
9

VSLM
avg. error

7 . 5 %
6.2
6.0

11
5.3

10
9.9
8.0
6.5

10

worst error

56%
49
49
58
30
53
54
51
29
56

E X P
avg. error worst error

37%
38
32
32
20
26
25
24
22
31

99%
99
97
96
95
96
96
96
95
97

I R M
avg. error worst error

84%
97

161
109
95
77
86
98
85

162

9 7 %
106
208
146
246
200
210
225
207
291

SLRUM
avg. error

28 %
19
20

6.5
2 .6
2 .3
2 .6
2 .8
2 .9
8 .3

worst error

33 %
24
29

8.2
7 .7
7 .9
8.1
7.9
8.9
9 .4

fittings for the various models, and Chart 4 gives the
corresponding results for the missing page probability
curve. Two error measures are listed for each fit:
"average relative error" over the curve, and the "worst
case relative error." Except for the IRM, the worst
errors occurred for very small values of T (less than
10); for the IRM, the worst errors occurred for the
largest values of T (above 500). All errors are shown as
per cent of the observed value. The "average relative
error" is only an approximate value: it is found by
taking the square root of the previously mentioned mean
squared relative error (it can be shown that this repre­
sents an upper bound to the true average of the absolute
values of the errors). The worst case error is the largest
relative error considered over all integer window sizes
in the range 1 to 1000.

It seems apparent from the data that the SLRUM
performs the best over all in approximating the two
curves, with the VSLM a close second. The fits of these
two models are usually very good on the working set
curve. The errors in fitting the missing page probability
curve are larger, even unacceptably large in some cases.

However, it can at least be said that even for this curve,
these two models perform much better than either of
the others, again with the SLRUM slightly superior.
We can conclude from this that the models are better
for predicting a program's memory demands than for
predicting its page-fault probability; further refine­
ments to the models are required to achieve the latter
goal.

Because of its static treatment of locality, the
independent reference model is the worst model of the
four. I t consistently overestimates the working set size,
usually by a factor of 2 or 3.

Figures 1-3 show typical working set curves, and
Figures 4-6 show typical missing page probability
curves. All six figures show the observed (measured)
curve OBS, and the results of attempting to fit each
model. (EXP was omitted to aid in readability).
Figures 7-9 show typical stack distance probabilities;
all such curves show that the monotonically non-
increasing assumption of the a* tends to be valid for the
majority of values of i. (Note the logarithmic vertical
axis on these figures).

CHART 4—Fits to Missing Page Probability Curve

Ref. Str.
No.

0
1
2
3
4
5
6
7
8
9

VSLM
avg. error

30%
36
29
82
32
85
72
37
30
57

worst error

228%
190
132
131
94

157
153
158
92

190

E X P
avg. error

266%
301

93
157
40

119
100

62
48

117

worst error

407%
413
127
207

90
224
192
110
91

195

I R M
avg. error

77%
167
133
70

103
74
81
93
89

102

worst error

376%
419
426
210
479
417
435
450
420
609

SLRUM
avg. error

84 %
85
27

5 .1
16
19
18
9 .5

10
14

worst error

197%
181
118
26
48
43
38
37
37
40

618 Fall Joint Computer Conference, 1972

Figure 4—Missing page probability (Ref. St. 2) Figure 6—Missing page probability (Ref. St. 6)

Several other statistics of interest appear in Chart 5.
qi is the sum of the n—l lowest measured independent
reference probabilities; it gives an indication of the
performance which could be expected if the program
were in fact an IRM program allocated I pages of
memory. qw is the missing page probability for the
working set with window size Tw, where Tw is chosen to
make the average working set size equal to I. Thus,
qi and qw apply to the same average memory size. Notice

that qi is typically an order of magnitude greater than
qw, showing much more dramatically how pronounced
are the dynamic effects of locality: The assumption of
static locality would have led us to predict missing page
probabilities in the order of qi whereas in fact they were
in the order of qw. This re-emphasizes the poor per­
formance introduced by a model assuming a static
locality.

I t is also notable that in every case, Tw < 1/X, where

"?„-

Figure 5—Missing page probability (Ref. St. 4) Figure 7—Distance distribution (Ref. St. 2)

Experiments with Program Locality 619

1/X is the expected interval between locality transitions
in the VSLM. Thus, it is unlikely that more than one
such transition will occur in this size window, so that
the working set will be a good estimator of the VSLM
locality for all tested programs.

EXTENSIONS TO THE SLRUM

Attempts have been made to improve the SLRUM
by increasing the complexity of the process by which
stack distances are generated. Shedler and Tung,5 for
example, analyze a stack with a Markov process sub­
stituted for the a*. To our knowledge, no attempts have
been made to validate any extensions to the SLRUM,
other than that which we shall describe below.

Ref. Str. No.

0
1
2
3
4
5
6
7
8
9

CHART 5-

Qi

.14

.09

.33

.36

.69

.48

.49

.54

.63

.57

-Additional Statistics

Qw

.0088

.024

.035

.071

.071

.042

.041

.046

.070

.030

TV

75
45
34
40
15
36
36
31
15
43

7TS

0.
0.

.038

.11

.015

.015

.015

.0084

.0040

.0056

hs

—
10.6
12.7
5.5
5.7
5.7
4.2
4.0
4.0

A very simple attempt was made to improve the
performance of the LRU stack model. I t was imagined
that stack distances would be selected, as before, ac­
cording to the «»•, and the a* would be biased toward
short stack distances. Occasionally, however, a new set
of probabilities, the bif would take effect for a short
time; these would be biased toward long stack distances.
The distribution {«;} corresponds to the intuitive
concept of "drifting slowly among neighboring locali­
ties," whereas the distribution {bi} to the notion
"jumping suddenly to very different localities," or
"scrambling up the entire stack." The choice between
{ai\ and {bi} would be determined by a 2-state Markov
chain.

As has been suggested earlier, there is a distance
string didz. . . dt. . . associated with the program's
reference string rir2. . . rt. . . being measured. Given
the distance string, our problem was to determine which
distances should be considered data points for the {a*}
distribution and which for the {bi} distribution. Some­
what arbitrarily, we decided to count the distances
toward the {bi} distribution whenever the majority of
the last four successive distances exceeded four (four

Figure 8—Distance distribution (Ref. St. 4)

was chosen since it represented a typical VSLM locality
size); distances would continue to be counted toward
the {bi}-distribution until four successive distances were
all at most four, in which case distances would be
counted toward the {at}-distribution. The measured
value for the steady state probability irs of the {bi}
(or "stack scrambling") state is shown in Chart 5;
TTS is an indication of the fraction of time the program
spent making large jumps between localities. Except

Figure 9—Distance distribution (Ref. St. 6)

620 Fall Joint Computer Conference, 1972

for reference string 3, all the programs seemed to spend
under 4 percent of their time jumping localities—i.e.,
they seemed to spend in excess of 96 percent of their
time obeying the properties of locality.

Chart 5 also shows the mean holding time hs in the
{bi}-state. In all cases, hs was at least as large as the
VSLM locality size I, suggesting that, when scrambling
is over, the resulting locality is likely to be disjoint from
the original locality.

As might be anticipated, however, the working set
size and missing page probability curves generated by
this extended model were in all cases indistinguishable
from those produced by the SLRUM. This is because
the transitions between the {«;} and the {&*•}-states
occur independently of the process which generates
stack distances. Apparently, it is necessary to make the
stack-scrambling process correlated directly with the
stack distance generating process, perhaps by generating
distances directly from a Markov chain. Shedler and
Tung's approach represents one possible solution,5

though as yet unvalidated.

CONCLUSIONS

We have attempted here to validate experimentally
several intrinsic models for the concept of program
locality. We have done this with particular regard to
the use of the working set as an estimator of the
(intrinsic) locality. We have tried to take examples of
both system software (a compiler and an assembler)
and user programs, and have attempted to fit each of
the models to the observed behavior of each given
program.

Fitting was attempted to the measured working set
size and missing page probability curves. In this way,
reasonable approximations to the paging behavior of
the actual programs could be obtained, without having
to consider other details of the programs of less im­
portance in paging.

Two models appear to produce good approximations
to real world behavior: the two-parameter simple
locality model and (especially) the LRU stack model.
The independent reference model, because of its static
concept of locality, does very poorly.

The working set is a good estimator of the simple
two-parameter model's locality, provided the locality
does not change too rapidly; we observed no case in
which the locality was changing too rapidly for the
working-set to be a good estimator. The working set
exactly measures the locality in the case of the LRU
stack model and is thus nearly optimal for programs
whose behavior can be closely approximated by this
model.

The principal conclusions to be drawn from this
work are:

1. There exist non-trivial cases in which the
working-set memory management policy is
optimal, and evidence suggesting it will perform
quite well when reference strings are generated
by locality processes other than the ones studied
here.

2. The concept of a "locality size" is not sharply
defined, as in the case of the simple two-param­
eter model; it is instead a graduated concept, as
in the LRU-stack model.

3. The locality at any given time receives the vast
majority of references, is small compared to the
program size, and is constantly changing in
membership.

4. There is a tendency for transitions to occur
between neighboring localities for the vast
majority of the time, transitions among disjoint
localities being relatively infrequent.

Stack models appear to hold great promise of being
good models for program behavior, especially as we
gain a better understanding of the processes by which
stack distances are generated.

ACKNOWLEDGMENTS

We are grateful to J. J. Horning and K. Sevcik of the
University of Toronto for many useful ideas and
insights relating to intrinsic and extrinsic concepts of
ocality.

REFERENCES

1 A V AHO P J DENNING J D ULLMAN
Principles of optimal page replacement
J ACM 18 1 January 1971 pp 80-93

2 P J DENNING J E SAVAGE J R SPIRN
Some thoughts about locality in program behavior
Proc Brooklyn Polytechnic Institute Symposium April 1972

3 _
Models for locality in program behavior
Princeton University Department of Electrical Engineering
Computer Science Technical Report TR-107 April 1972

4 P H ODEN G S SHEDLER
A model of memory contention in a paging machine
IBM Research Report RC-3053 September 1970

5 G S SHEDLER C TUNG
Locality in page reference strings
IBM Research Report RJ-932 October 1971

6 E G COFPMAN JR T A RYAN JR
A study of storage partitioning using a mathematical model
of locality
Comm ACM 15 3 March 1972 pp 185-190

Experiments with Program Locality 621

7 J E SHEMER G SHIPPEY
Statistical analysis of paged and segmented computer systems
IEEE Trans Comp EC-15 6 December 1966 pp 855-863

8 J E SHEMER S C CUPTA
On the design of Bayesian storage allocation algorithms for
paging and segmentation
IEEE Trans Comp C-18 7 July 1969 pp 644-651

9 P J DENNING
The working set model for program behavior
Coram ACM 11 5 May 1968 pp 323-333

10 P J DENNING S C SCHWARTZ
Properties of the working set model
Comm ACM 15 3 March 1972 pp 191-198

11 P J DENNING
On modeling program behavior

Proc AFIPS Conf Vol 40 Spring Joint Computer Conference
1972

12 J RODRIGUEZ-ROSELL
Experimental data on how program behavior affects the choice
of scheduler parameters
Proc 3rd ACM Symposium on Operating Systems Principles
October 1971

13 W DOHERTY
Scheduling TSS/S60 for responsiveness
Proc AFIPS Conf Vol 37 Fall Joint Computer Conference
1970 pp 97-112

14 W W CHU N OLIVER H OPDERBECK
Measurement data on the working set replacement algorithm
and their applications
Proceeding of the Polytechnic Inst of Brooklyn Symposium
on Computer-Communications and Teletraffic April 1972

