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INTRODUCTION 

For many years, there has been interest in "program 
locality" as a phenomenon to be considered in storage 
allocation. This notion arises from the empirical 
observation that it is possible to run a program effi­
ciently with only some fraction of its total instruction 
and data code in main storage at any given time. That 
virtual memory systems can be made to run at all 
demonstrates that program locality can be used to 
advantage; and though it is certainly possible to write 
a program which violates the principles of locality, it 
seems one must go out of one's way to do so. 

If a program is favoring a subset of its information 
at some particular time, we should very much like to 
know the identity of that subset. The set of favored 
pagesf of information at a given time will be called the 
locality at that time. Using this information, we may 
answer such questions as "What behavior can be 
expected of the program in the near future?" or "How 
much storage should be allocated to the program at this 
time?" For some classes of programs the best we can do 
is estimate this locality, whereas for others we may be 
able to measure it exactly. The utility of this measure­
ment is demonstrated by the fact that, for several 
models of program behavior, the policy "keep the 
current locality in memory" can be proved to be an 
optimal memory management policy. These models 
include the independent reference model,1 the locality 
model,2,3 and the least-recently-used (LRU) stack 
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t We assume pages are all of the same size, containing at least 
one word each. Most of our results extend in a straightforward 
manner to systems in which the block size is variable, so that 
the assumption of paging is mostly a matter of convenience. 

model.4,5,6 For other locality processes, this policy 
appears to be nearly optimal.3,11 

The means of measuring the locality, and the ac­
curacy of the measurement, depend on one's definition 
of "locality." The definitions that have appeared so far 
in the literature can be classified into two categories: 
the intrinsic locality models, and the extrinsic ones. 

Intrinsic models for locality assume that memory 
references emit from a program according to some 
(abstract) structure internal to the program itself. 
The locality in effect at a given time is a function of the 
internal state of the program at that time. Since the 
state of the program may not be known, it is usually 
not possible uniquely to determine the locality by 
examining the memory reference sequence of the pro­
gram. Some examples of this type of locality model are 
page reference distribution functions,7,8 the independent 
reference model,1 the locality model,2,3 and the LRU 
stack model.4,5 Another example can be found in 
Reference 6, where, for p>0, it is assumed that there 
exists a sequence of sets of pages WP(1), Wp{2), . . . , 
Wp(t), . . . , such that Wp(t) is the smallest set of 
pages containing the reference at time t with probability 
at least p. 

Extrinsic models do not rely on any assumptions of 
internal program state. They define locality in terms of 
observable properties of the memory reference sequence 
of the program. Three examples of extrinsic locality 
are: (1) Given a sequence of time intervals, the "locality 
sequence" LiL2 . . . Li. . . is defined so that L; is the 
set of pages referenced in the ith. interval; (2) Given an 
integer k>l, define a sequence of time intervals so that 
each locality Li in the locality sequence LiL2 . . . Li. . . 
contains exactly k pages—i.e., exactly k distinct pages 
are referenced in the ith. interval; and (3) A "working 
set" W(t, T) is defined to be the set of distinct pages 
referenced among the last T references, and is a measure 
of the locality at time *.9,10,11 

Intrinsic models are useful primarily for analysis and 
simulation. They are limited by the accuracy to which 
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they simulate real programs. Due to the practical 
difficulty of measuring or estimating the locality, they 
may have little use in storage allocation. Extrinsic 
models are evidently more practical, since they define a 
measurement procedure; yet they are obviously limited 
by the extent to which the measurement taken reflects 
what the program is really doing. Such models are less 
suited for use in modeling, but they can be used con­
veniently to allocate memory. 

Although there are many models for defining the 
concept of locality, little experimental verification of 
their accuracy has been undertaken. The working set 
model is perhaps the only exception.12 -13'14 Unless a 
given model can be shown to approximate closely the 
behavior of real programs, any analytic results obtained 
using the model are only of theoretical or academic 
interest. Accordingly, we have chosen in this paper to 
emphasize experiments which test the ability of extrinsic 
measurements to estimate current intrinsic localities and 
predict future (intrinsic) localities, and the ability of 
intrinsic models to simulate real world behavior. 

Let us summarize the terminology that we shall be 
using for the various meanings of locality. If, as dis­
cussed above, a program's memory reference string is 
divided into (not necessarily equal) time intervals, the 
(extrinsic) observed locality Li is defined to be the set of 
pages referenced in the ith. interval. Since it may be 
difficult to determine the internal state of a program 
according to an intrinsic model, we usually in practice 
use the observed locality in the immediate past (such 
as the working set W(t, T)) as an estimate for the 
current intrinsic locality; this use is termed an estimated 
locality. If we assume something about the program's 
internal structure, we may be able to predict, on the 
basis of the current (estimated) locality, the most 
likely references in a future interval; this is termed the 
(intrinsic) predicted locality. 

For some intrinsic models, the estimated locality can 
quite accurately (or even perfectly) determine the 
current intrinsic locality. Such models are clearly of 
special interest, and we shall discuss two of them. A 
third, the independent reference model, is in general 
not as well measured by the working set, but is pre­
sented for comparison. 

Throughout this paper, it will be assumed that 
demand paging is being used and that a paging algorithm 
is optimal if it minimizes the expected probability of a 
page-fault in a given size memory. 

MODELS FOR INTRINSIC LOCALITY 

Consider an n-page program whose pages constitute 
the set -N — {1, 2, . . . , n\. k reference string r\r%. . . rt. . . 

is the sequence of members of N generated by the 
program for given input data, where reference rt is the 
number of the page containing the address referenced 
at time t (time being measured in terms of the number 
of memory references made by the program). Suppose 
a reference string has been divided up into intervals, 
and Li is the observed locality in the ith interval. With 
respect to the given sequence of intervals, the reference 
string is considered to satisfy the properties of locality 
if:10 

1. For almost all i, Li is a proper subset of N; 
2. For almost all i, Li and Li+i tend to have many 

pages in common; and 
3. The observed localities Lt and Li+j tend to 

become uncorrected as ,;' becomes large. 

A program reference string is considered to have a high 
degree of locality if Li is a small subset of N (statement 
1), Li and Li+X differ by at most one page (statement 
2), and the value of j for which Li and Li+j become 
uncorrelated is small compared to the length of the 
reference string. 

A very general model for locality, displaying proper­
ties 1-3 intrinsically has been defined in Reference 3. 
I t defines a sequence 

(Lx,h)(L*,k) ...\Li,U) . . . (1) 

in which Li is the ith. intrinsic locality and U the holding 
time in L*; the Li are members of a specified set £ of 
localities associated with the program, and are subsets 
of N. During its stay in Li, the program generates some 
sequence of references rnr® . . . riH, over the pages of 
Li only. The mechanism for generating the references 
from Li is unspecified and may be arbitrary. The 
current locality Lt at time t is that Li for which 
k + • • • + U-i < t < h + • • • + U. A probability structure 
can be imposed by specifying a transition matrix 
{jp(L, L')~\ among localities L and L' of <£, and a set of 
holding time distributions hL(t) for each L of £ 

In the following sections we shall discuss some special 
cases of this general model. These cases are of practical 
interest to the extent that our experiments indicate 
agreement between localities predicted by these cases 
and the localities actually observed by using the working 
set model. 

The very simple locality model (VSLM) 

This model assumes a fixed size locality—i.e., the 
localities Lt in (1) are all of the same size I, where 
l<Z<n . At any given time t, the probability of refer­
encing an interior page (a member of Lt) is 1 — X, and 
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the probability of referencing an exterior 'page (one not 
in Lt) and making a transition is X. All I interior pages 
are referenced independently and with equal proba­
bility (1/0- All n—l exterior pages are referenced 
independently and with equal probability {l/{n—l)). 
When an interior page is referenced at time £+1, no 
change in locality occurs—i.e., Lt+i=Lt. When an 
exterior page is referenced, a change in locality occurs, 
but to a demand-paging neighbor only—i.e., Lt+i— 
Lt-\-rt+i—y where y is chosen at random from Lt. The 
unconditional probability of referencing an interior 
page is at least as large as that of referencing an exterior 
page, i.e., 

which is equivalent to the condition X< (n—l)/n. This 
model has two important parameters—the locality size 
I and the transition probability X—and will sometimes 
be called the two-parameter model. Note that the mean 
holding time in a locality is 1/X. For this model, the 
storage allocation rule "keep the current locality in 
memory" has been proved optimal.3 

It can easily be shown that for programs which fit this 
model, it is impossible to determine absolutely the 
current intrinsic locality from observations on the 
generated reference string. We shall consider next the 
accuracy with which we can estimate the locality by an 
extrinsic model, namely, the working set. 

As mentioned, the working set W(t, T) is the set of 
distinct pages referenced among the references 
rt-T+i • • • rt. If we desire to use the working set to 
estimate the locality, we must specify T, the window 
size. The choice of T must satisfy two criteria: (1) it 
must be large enough so that all pages within the locality 
are referenced with high probability, and (2) it must 
be small enough so that the likelihood of more than one 
locality transition within the window is low (for several 
transitions would introduce error). Although it is not 
obvious that a suitable T can be found, it is the case 
that for reasonable parameters of the VSLM, not only 
does a T exist, but its value is not especially critical. 
For the VSLM, condition 2 will hold whenever T<l/\, 
and our experiments verify that such values of T 
typically exist. 

We shall consider the working set to be a good 
estimate of a VSLM locality when two criteria are 
satisfied: (a) the average working set size is approxi­
mately equal to I, the locality size, and (b) the average 
missing-page probability when the working set is kept 
in memory is approximately X, the probability of 
referencing outside the locality. Plots of working set 
sizes and missing-page probabilities for various values 
of n, I, and X show that,3 for small X (.01 or less), a 

value of T on the order of 5 or 10 times the locality size 
will do an excellent job of achieving criteria (a) and 
(b) above, irrespective of n and I. Furthermore, for 
small values of X, the values of the working set size and 
missing-page probability level off and are nearly con­
stant in a large neighborhood of T, indicating that the 
choice of T is not too critical for these values of X. 

For large values of X (in excess of 0.05), the working 
set apparently does not provide as good an estimate of 
the locality. In this case, the working set size and 
missing page probabilities do not tend to level off at 
the values of I and X, respectively. Furthermore, the 
value of window size needed to get the missing-page 
probability equal to X gives a working set size as much 
as 20 percent too large. 

The simple LRU stack model (SLRUM) 

This model is based on the memory contention stack 
generated by the LRU (least-recently-used) page 
replacement algorithm.5 This stack is simply a priority 
ordering on all pages of a program according to the time 
of their most recent usage. Thus, the first position 
(top) of the stack is the current reference, the second 
position is the next most recently used page, and so on. 
When the page in stack position i is referenced, it is 
moved to the top, and all the pages which were in 
positions l...i— 1 are pushed down one position. 
Specifically, if s(t) = (xi, . . . , xn) i s the stack at time i 
and the page at position i is referenced, the stack at 
time 2+1 is s(2+l)-.= (xif xi, . . . , rc»_i, xi+i, . . . , # „ ) . 

To create the simple LRU Stack Model, we assign to 
each position of the stack a fixed, independent proba­
bility. We will denote these probabilities a\, . . . , a„, 
where n is the number of pages in the program (and 
thus the number of stack positions) and a\-\- • • • + a n = 1. 
The a; are termed stack distance probabilities with i 
being the distance (from the top of the stack). At any 
given time stack position i will be chosen with proba­
bility ai; if it is chosen, the page in that position becomes 
the current reference and is brought to the top of the 
stack, as above. 

If we make suitable restrictions on the a*, we can 
cause this model to exhibit locality. In Reference 3, 
the requirement is made that the a* be mono-
tonically non-increasing as one goes down the stack 
(ai> • • '• >an)*. If, under this restriction the stack is 
divided at any point, the pages in the stack positions 
above the division are all more probable than those 
below the division. Specifically, if the stack at time 
t is s(t) = (xi,..., xn), we can define a locality of size I 

"This requirement can be weakended slightly to min{ai. . .am}> 
maxfom+i,.... ,a„} for LRU paging in a memory of size nt [3]. 
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(for any I, l<l<n) to be the pages {xi, . . . , xi). By-
dividing the stack at successive distances, a hierarchy 
of localities may be defined. This hierarchy represents a 
full ordering of localities, in that any given locality 
contains all of those smaller than it. 

Note that the SLRUM is a slight generalization of 
the VSLM. At any given time, the probability of a 
locality transition is 

since a transition occurs if and only if the distance 
exceeds I. Moreover, when a new locality is entered, it 
is the demand paging neighbor of the former locality. 

I t can be shown that, if mt is the amount of memory 
allocated at time t, the optimal storage allocation rule 
for reference strings generated by this model is: "keep 
the top mt elements of the stack s(t) in memory, for all 
t " 3 I t follows in particular that, if mt is the size of the 
working-set W(t, T), the working-set policy is optimal 
for this model (note that W(t, T) then contains pre­
cisely the top mt elements of s(t)). If mt is fixed, it 
follows that the LRU paging algorithm is optimal for 
this model. 

I t is worth re-emphasizing that the working set 
W(t, T) and the observed LRU stack (i.e., the one 
maintained by the LRU paging algorithm) both 
measure exactly the locality according to the SLRUM. 
For this intrinsic model, therefore, extrinsic measures 
provide an exact measure of locality. 

The independent reference model (IRM) 

In this model, the page references nr2. . . rt. . . are 
assumed to be independent trials under some fixed 
probability distribution {ci, . . . , cn). In other words, 
the probability of referencing page i at time t is given by 
the stationary probability 

Pr[r( = 0= C i (3) 

Note that consecutive page references are taken ac­
cording to these probabilities without regard to the 
previous references made by the model. 

We may form a priority list for this model by ranking 
the pages according to decreasing probability—i.e., 
there is a fixed priority list (1, 2, . . . , n) where 
Ci>C2> • • • >c„. Given a value of I, define a locality of 
this model to consist of pages L{1) — {1, 2 , . . . , I— 1} 
and that page x which was most recently fetched into 
memory (note that l<x<n), so that a locality is of the 
form L{l)-\-x. The rule "keep the pages of L(m) in 
memory at all times," for memory size m pages, is 
known to be optimal for the IRM.1 As in the VSLM 
and the SLRUM, transitions occur between demand-

paging neighbors only. Unlike these other two models, 
however, the transition probability varies in time, 
being ci-\— • +cn—cx whenever the locality is L{1) -\-x. 
The important difference between the IRM and the two 
previous models is, the localities of the IRM are 
essentially static in content whereas those of the VSLM 
and the SLRUM are changing in content. We shall see 
that, because of this difference, the IRM produces poor 
fits to actual programs. 

CRITERIA FOR EXPERIMENTATION 

It is obvious that if one were to try to correlate the 
reference strings produced by a model with the observed 
reference string of some given program, one would have 
very low success: Direct correlation is much too strin­
gent a requirement to place on a model. A more reason­
able, though indirect, way is to correlate interreference 
densities; that is, the time between consecutive refer­
ences to the same page. However, even this method is 
likely to be inconclusive (at least over relatively short 
reference strings), since experimentation shows that 
the interreference densities of real programs tend to be 
quite irregular in shape, many zeros being interspersed 
between non-zero probabilities. 

We were interested primarily in testing whether or 
not the reference strings generated by a given model 
induce the same paging behavior as those generated by 
a real program. Thus, we did not care about fitting 
strings of references within a locality, since these will be 
transparent to the paging system, assuming the locality 
is retained in memory. We were concerned, however, 
with locality transition behavior. Moreover, since we 
wanted to use the working set to estimate the locality, 
we desired the model to have similar working set 
behavior, at least on the average. 

Taking these factors into account, we decided to try 
to fit two types of curves. The first is the average 
working set size w(T), which gives the average working 
set size in an interval as a function of the window size 
T. The other is the average missing-page probability 
q(T) as a function of the window size T, when exactly 
the working set is kept in memory at all times. I t has 
been proved that the latter curve is (essentially) the 
derivative of the former,10 and thus we are in fact 
fitting the model to the working set size curve and its 
derivative. 

Now, consider the probability of a given page's not 
being in the working set under window size T: this can 
be shown equivalent to the probability of the inter­
reference interval for the given page being greater than 
T.10 Thus, the missing page probability q(T) corre­
sponds to the complementary cumulative overall 
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interreference probability distribution. In this way, a 
close fit by a model to the observed missing page 
probability curve guarantees a close fit to the observed 
overall interreference distribution, even though the fit to 
the observed density will, as commented earlier, tend to 
be quite poor. 

Of course, this method of model fitting has its dis­
advantages. Its primary limitation is that both the 
curves w{T) and q(T) are averages measured over an 
interval. If the interval is too large, any non-stationary 
behavior will tend to be masked on the average. For this 
reason, most measurements were taken over what we 
consider to be a suitably small interval (short compared 
to the lifetime of the program), in most cases 20K 
references (about 10,000 instructions). This necessitated 
taking several measurements in various parts of a given 
program's reference string. For comparison, measure­
ments over a larger interval, 300K references long, 
were also taken. 

We decided for these experiments to ignore the dis­
tinction between instruction and data references. 
Modern computers tend to make great use of such 
operations as register-to-register instructions, indirect 
references, and multiple data reference instructions 
(such as LM and STM on the 360). The more a pro­
gram makes use of these operations, the less true the 
tendency for instruction and data references to alter­
nate. We decided not to make detailed studies of how 
instruction and data references are in fact mixed in 
practical reference strings, as this question was second­
ary to our interest in locality behavior. Moreover, 
most modern systems do not make any serious attempts 
to distinguish "instruction working sets" from "data 
working sets" in their storage allocation procedures. 
Nonetheless, the effects of such a distinction may be 
significant, and constitute a worthwhile project for 
future research. 

For each reference string segment tested, the ob­
served (OBS) working set curve, independent reference 
probabilities {c*}, and LRU stack distance probabilities 
{a*} were measured. A single-pass algorithm for meas­
uring the working set curve is given in Reference 10. 
The independent reference and LRU stack probabilities 
were determined by counting references to each page 
and to each stack position, respectively. The value used 
for n, the size of the total program's page set, was the 
total number of distinct pages actually referenced in 
the reference string segment being studied. Pages 
which were never referenced in the interval of measure­
ment were not counted in the value of n. This was done 
mostly for convenience, and should have little or no 
effect on the results. 

Also included for comparison was an attempt to fit 
the working set curve to the following exponential 
function 

w(T)=n(l-<rBT) B>0 

where B is a parameter. This will be termed the ex­
ponential model (EXP). 

Using the measured values for the independent 
reference and LRU stack probabilities, the working set 
curves for these two models were computed. (Algorithms 
for computing the working set curves of the various 
models are given in Reference 3.) For the locality model, 
the parameters I and X were chosen to give the lowest 
mean-squared relative error for the set of window sizes 
10, 20, 30, . . . , 1000, against the observed w(T) curve. 
The same procedure was repeated for the exponential 
model to determine a value of the parameter B. 

DESCRIPTION OF RESULTS 

Programs on two machines were tested for fits with 
the various models. The PAL assembler on the Digital 

CHART 1—Description of Programs Measured 

Ref. Str. No. Machine 
Page Size 
(words) Description Refs. Skipped Refs. Measured 

0 
1 
2 
3 
4 
5 
6 
7 

8 

9 

PDP-8 
PDP-8 
360 
360 
360 
360 
360 
360 

360 

360 

128 
128 
256 
256 
256 
256 
256 
256 

256 

256 

Assembler, Pass 1 0 
Assembler, Pass 1 100K 
FORTRAN (G) COMPILER IK 
FORTRAN (G) COMPILER 200K 
Small FORTRAN job. One main loop. IK 
Small FORTRAN job. One main loop. 100K 
Small FORTRAN job. One main loop. IK 
Medium FORTRAN job. Several Subrou- IK 

tines. 
Medium FORTRAN job. Several Subrou- 100K 

tines. 
Medium FORTRAN job. Several Subrou- IK 

tines. 

20K 
20K 
20K 
20K 
20K 
20K 

300K 
20K 

20K 

300K 
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CHART 2—Values of Parameters 

Total 
pages refd. 

11 
12 
35 
38 
20 
20 
20 
22 
20 
31 

I 

4 
4 
5 
7 
3 
4 
4 
4 
3 
4 

VSLM 
X 

.0025 

.0027 

.014 

.022 

.030 

.020 

.021 

.024 

.029 

.014 

E X P 
B 

.0013 

.0015 

.00080 

.0012 

.0025 

.0020 

.0021 

.0020 

.0024 

.00085 

Equipment PDP-8 was run using a page size of 128 
words, the standard page size for the machine. Several 
IBM 360 programs were run, including two FORTRAN 
jobs and the FORTRAN (G level) compiler itself. The 
360 page size was chosen arbitrarily to be 256 words. 
Chart 1 gives a description of each program. The 
"reference string number" refers to a reference string 
segment from each program. In particular, we expressed 
the reference string in the form r i r 2 . . . rkn+i. . . n+x • . ., 
where k is the number of "references skipped" and x the 
number of "references measured." In other words, 
Tk+i... Tk+x is the reference string segment over which 
we attempted to fit the models. 

Curve fit results 

Chart 2 gives the values of various measured or best-
fit parameters. I t is important to note that the best-fit 

Figure 1—Working set size (Ref. St. 2) 

Figure 2—Working set size (Ref. St. 4) 

VSLM locality size I was typically under 20 percent 
of the program size n, that the locality transition 
probability X was typically in the range 0.01 to 0.03, 
and that the locality transition time 1/X was typically 
in the range 30 to 100 references. Reference strings 0 
and 1 were exceptions, having much lower transition 
probability X than the others, this being due un­
doubtedly to the severely limited amount of memory on 
the PDP-8 (4K words). 

Chart 3 gives the results of the working set curve 

Figure 3—Working set size (Ref. St. 6) 
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CHART 3—Fits to mean working set size curve 

' Ref. Str. 
No. 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

VSLM 
avg. error 

7 . 5 % 
6.2 
6.0 

11 
5.3 

10 
9.9 
8.0 
6.5 

10 

worst error 

56% 
49 
49 
58 
30 
53 
54 
51 
29 
56 

E X P 
avg. error worst error 

37% 
38 
32 
32 
20 
26 
25 
24 
22 
31 

99% 
99 
97 
96 
95 
96 
96 
96 
95 
97 

I R M 
avg. error worst error 

84% 
97 

161 
109 
95 
77 
86 
98 
85 

162 

9 7 % 
106 
208 
146 
246 
200 
210 
225 
207 
291 

SLRUM 
avg. error 

28 % 
19 
20 

6.5 
2 .6 
2 .3 
2 .6 
2 .8 
2 .9 
8 .3 

worst error 

33 % 
24 
29 

8.2 
7 .7 
7 .9 
8.1 
7.9 
8.9 
9 .4 

fittings for the various models, and Chart 4 gives the 
corresponding results for the missing page probability 
curve. Two error measures are listed for each fit: 
"average relative error" over the curve, and the "worst 
case relative error." Except for the IRM, the worst 
errors occurred for very small values of T (less than 
10); for the IRM, the worst errors occurred for the 
largest values of T (above 500). All errors are shown as 
per cent of the observed value. The "average relative 
error" is only an approximate value: it is found by 
taking the square root of the previously mentioned mean 
squared relative error (it can be shown that this repre­
sents an upper bound to the true average of the absolute 
values of the errors). The worst case error is the largest 
relative error considered over all integer window sizes 
in the range 1 to 1000. 

It seems apparent from the data that the SLRUM 
performs the best over all in approximating the two 
curves, with the VSLM a close second. The fits of these 
two models are usually very good on the working set 
curve. The errors in fitting the missing page probability 
curve are larger, even unacceptably large in some cases. 

However, it can at least be said that even for this curve, 
these two models perform much better than either of 
the others, again with the SLRUM slightly superior. 
We can conclude from this that the models are better 
for predicting a program's memory demands than for 
predicting its page-fault probability; further refine­
ments to the models are required to achieve the latter 
goal. 

Because of its static treatment of locality, the 
independent reference model is the worst model of the 
four. I t consistently overestimates the working set size, 
usually by a factor of 2 or 3. 

Figures 1-3 show typical working set curves, and 
Figures 4-6 show typical missing page probability 
curves. All six figures show the observed (measured) 
curve OBS, and the results of attempting to fit each 
model. (EXP was omitted to aid in readability). 
Figures 7-9 show typical stack distance probabilities; 
all such curves show that the monotonically non-
increasing assumption of the a* tends to be valid for the 
majority of values of i. (Note the logarithmic vertical 
axis on these figures). 

CHART 4—Fits to Missing Page Probability Curve 

Ref. Str. 
No. 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

VSLM 
avg. error 

30% 
36 
29 
82 
32 
85 
72 
37 
30 
57 

worst error 

228% 
190 
132 
131 
94 

157 
153 
158 
92 

190 

E X P 
avg. error 

266% 
301 

93 
157 
40 

119 
100 

62 
48 

117 

worst error 

407% 
413 
127 
207 

90 
224 
192 
110 
91 

195 

I R M 
avg. error 

77% 
167 
133 
70 

103 
74 
81 
93 
89 

102 

worst error 

376% 
419 
426 
210 
479 
417 
435 
450 
420 
609 

SLRUM 
avg. error 

84 % 
85 
27 

5 .1 
16 
19 
18 
9 .5 

10 
14 

worst error 

197% 
181 
118 
26 
48 
43 
38 
37 
37 
40 
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Figure 4—Missing page probability (Ref. St. 2) Figure 6—Missing page probability (Ref. St. 6) 

Several other statistics of interest appear in Chart 5. 
qi is the sum of the n—l lowest measured independent 
reference probabilities; it gives an indication of the 
performance which could be expected if the program 
were in fact an IRM program allocated I pages of 
memory. qw is the missing page probability for the 
working set with window size Tw, where Tw is chosen to 
make the average working set size equal to I. Thus, 
qi and qw apply to the same average memory size. Notice 

that qi is typically an order of magnitude greater than 
qw, showing much more dramatically how pronounced 
are the dynamic effects of locality: The assumption of 
static locality would have led us to predict missing page 
probabilities in the order of qi whereas in fact they were 
in the order of qw. This re-emphasizes the poor per­
formance introduced by a model assuming a static 
locality. 

I t is also notable that in every case, Tw < 1/X, where 

"?„-

Figure 5—Missing page probability (Ref. St. 4) Figure 7—Distance distribution (Ref. St. 2) 
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1/X is the expected interval between locality transitions 
in the VSLM. Thus, it is unlikely that more than one 
such transition will occur in this size window, so that 
the working set will be a good estimator of the VSLM 
locality for all tested programs. 

EXTENSIONS TO THE SLRUM 

Attempts have been made to improve the SLRUM 
by increasing the complexity of the process by which 
stack distances are generated. Shedler and Tung,5 for 
example, analyze a stack with a Markov process sub­
stituted for the a*. To our knowledge, no attempts have 
been made to validate any extensions to the SLRUM, 
other than that which we shall describe below. 

Ref. Str. No. 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

CHART 5-

Qi 

.14 

.09 

.33 

.36 

.69 

.48 

.49 

.54 

.63 

.57 

-Additional Statistics 

Qw 

.0088 

.024 

.035 

.071 

.071 

.042 

.041 

.046 

.070 

.030 

TV 

75 
45 
34 
40 
15 
36 
36 
31 
15 
43 

7TS 

0. 
0. 

.038 

.11 

.015 

.015 

.015 

.0084 

.0040 

.0056 

hs 

— 
10.6 
12.7 
5.5 
5.7 
5.7 
4.2 
4.0 
4.0 

A very simple attempt was made to improve the 
performance of the LRU stack model. I t was imagined 
that stack distances would be selected, as before, ac­
cording to the «»•, and the a* would be biased toward 
short stack distances. Occasionally, however, a new set 
of probabilities, the bif would take effect for a short 
time; these would be biased toward long stack distances. 
The distribution {«;} corresponds to the intuitive 
concept of "drifting slowly among neighboring locali­
ties," whereas the distribution {bi} to the notion 
"jumping suddenly to very different localities," or 
"scrambling up the entire stack." The choice between 
{ai\ and {bi} would be determined by a 2-state Markov 
chain. 

As has been suggested earlier, there is a distance 
string didz. . . dt. . . associated with the program's 
reference string rir2. . . rt. . . being measured. Given 
the distance string, our problem was to determine which 
distances should be considered data points for the {a*} 
distribution and which for the {bi} distribution. Some­
what arbitrarily, we decided to count the distances 
toward the {bi} distribution whenever the majority of 
the last four successive distances exceeded four (four 

Figure 8—Distance distribution (Ref. St. 4) 

was chosen since it represented a typical VSLM locality 
size); distances would continue to be counted toward 
the {bi}-distribution until four successive distances were 
all at most four, in which case distances would be 
counted toward the {at}-distribution. The measured 
value for the steady state probability irs of the {bi} 
(or "stack scrambling") state is shown in Chart 5; 
TTS is an indication of the fraction of time the program 
spent making large jumps between localities. Except 

Figure 9—Distance distribution (Ref. St. 6) 
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for reference string 3, all the programs seemed to spend 
under 4 percent of their time jumping localities—i.e., 
they seemed to spend in excess of 96 percent of their 
time obeying the properties of locality. 

Chart 5 also shows the mean holding time hs in the 
{bi}-state. In all cases, hs was at least as large as the 
VSLM locality size I, suggesting that, when scrambling 
is over, the resulting locality is likely to be disjoint from 
the original locality. 

As might be anticipated, however, the working set 
size and missing page probability curves generated by 
this extended model were in all cases indistinguishable 
from those produced by the SLRUM. This is because 
the transitions between the {«;} and the {&*•}-states 
occur independently of the process which generates 
stack distances. Apparently, it is necessary to make the 
stack-scrambling process correlated directly with the 
stack distance generating process, perhaps by generating 
distances directly from a Markov chain. Shedler and 
Tung's approach represents one possible solution,5 

though as yet unvalidated. 

CONCLUSIONS 

We have attempted here to validate experimentally 
several intrinsic models for the concept of program 
locality. We have done this with particular regard to 
the use of the working set as an estimator of the 
(intrinsic) locality. We have tried to take examples of 
both system software (a compiler and an assembler) 
and user programs, and have attempted to fit each of 
the models to the observed behavior of each given 
program. 

Fitting was attempted to the measured working set 
size and missing page probability curves. In this way, 
reasonable approximations to the paging behavior of 
the actual programs could be obtained, without having 
to consider other details of the programs of less im­
portance in paging. 

Two models appear to produce good approximations 
to real world behavior: the two-parameter simple 
locality model and (especially) the LRU stack model. 
The independent reference model, because of its static 
concept of locality, does very poorly. 

The working set is a good estimator of the simple 
two-parameter model's locality, provided the locality 
does not change too rapidly; we observed no case in 
which the locality was changing too rapidly for the 
working-set to be a good estimator. The working set 
exactly measures the locality in the case of the LRU 
stack model and is thus nearly optimal for programs 
whose behavior can be closely approximated by this 
model. 

The principal conclusions to be drawn from this 
work are: 

1. There exist non-trivial cases in which the 
working-set memory management policy is 
optimal, and evidence suggesting it will perform 
quite well when reference strings are generated 
by locality processes other than the ones studied 
here. 

2. The concept of a "locality size" is not sharply 
defined, as in the case of the simple two-param­
eter model; it is instead a graduated concept, as 
in the LRU-stack model. 

3. The locality at any given time receives the vast 
majority of references, is small compared to the 
program size, and is constantly changing in 
membership. 

4. There is a tendency for transitions to occur 
between neighboring localities for the vast 
majority of the time, transitions among disjoint 
localities being relatively infrequent. 

Stack models appear to hold great promise of being 
good models for program behavior, especially as we 
gain a better understanding of the processes by which 
stack distances are generated. 
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