
The DOD COBOL compiler validation 
system 

by GEORGE N. BAIRD 

Department of the Navy 
Washington, D. C. 

INTRODUCTION 

The ability to benchmark or validate software to ensure 
that design specifications are satisfied is an extremely 
difficult task. Test data, generally designed by the 
creators of said software, is generally biased toward a 
specific goal and tend not to cover many of the pos
sibilities of combinations and interactions. The phi
losophy of suggesting that "a programmer will never 
do . . ."or "this particular situation will never happen" 
is altogether absurd. First, "never" is an extremely 
long time and secondly, the Hagel theorem of pro
gramming states that "if it can be done, whether absurd 
or not, one or more programmers will more than likely 
try it." 

Therefore, if a particular piece of software has been 
thoroughly checked against all known extremes and a 
majority of all syntactical forms, then the Hagel 
theorem of programming will not affect the software 
in question. The DOD CCVS attempts to do just that 
by checking for the fringes of the specifications of 
X3.23-19681 and known limits. I t is assumed that a 
COBOL compiler will perform satisfactorily for the 
audit routines, then it is likely that the compiler sup
ports the entire language. However, if the computer 
has trouble with handling the routines in the CCVS 
it can be assumed that there will indeed be other 
errors of a more serious nature. 

The following is a brief account of the history of the 
DOD CCVS, the automation of the system and the 
adaptability of the system to given compilers. 

BACKGROUND 

The first revision to the initial specification for 
COBOL (designated as COBOL-19612) was approved 
by the Executive Committee of the Conference on 

Data Systems Languages* and published in May of 
1961. Recognizing that the language would be subject 
to additional development and change, an attempt 
was made to create uniformity and predictability in 
the various implementations of COBOL compilers. 
The language elements were placed in one of two 
categories: required and elective. 

Required COBOL-1961 consisted of language ele
ments (features and options) which must be imple
mented by any implementor claiming a COBOL-1961 
compiler. This established a common minimum subset 
of language elements for COBOL compilers and hope
fully a high degree of transferability of source programs 
between compilers if this subset was adhered to. 

Elective COBOL-1961 consisted of language elements 
whose implementation had been designated as op
tional. I t was suggested that if an implementor chose 
to include any of these features (either totally or 
partially) he would be expected to implement these 
in accordance with the specifications available in 
COBOL-1961. This was to provide a logical growth 
for the language and attempt to prevent a language 
element from having contradictory meaning between 
the language development specifications and im-
plementor's definition. 

As implementors began providing COBOL compilers 
based on the 1961 specifications, unexpected problems 
became somewhat obvious. The first problem was that 
the specifications themselves suggested mandatory as 
well as optional language elements for implementing 
COBOL compilers. In addition the development docu-

* The Conference on Data Systems Languages (CODASYL) is an 
informal and voluntary organization of interested individuals 
supported by their institutions who contribute their efforts and 
expenses toward the ends of designing and developing techniques 
and languages to assist in data systems analysis, design, and 
implementation. CODASYL is responsible for the development 
and maintenance of COBOL. 

819 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1480083.1480105&domain=pdf&date_stamp=1972-12-05


820 Fall Joint Computer Conference, 1972 

ment produced by CODASYL was likely to change 
periodically thus, providing multiple specifications to 
implement from. Compilers could consist of what the 
implementor chose to implement which would severely 
handicap any chance of transferability of programs 
among the different compilers, particularly since no two 
implementors necessarily think alike. Philosophies vary 
both in the selection of elements for a COBOL compiler 
and in the techniques of implementing the compiler 
itself. (As ridiculous as it may sound, some compilers 
actually scan, syntax check and issue diagnostics for 
COBOL words that might appear in comments both 
in the REMARKS paragraph of the Identification 
Division and in NOTE sentences in the Procedure 
Division.) The need for a common base from which to 
implement became obvious. If the language was to 
provide a high degree of compatability, then all im
plementations had to be based on the same specifica
tion. 

The second problem was the reliability of the com
piler itself. If the manual for the compiler indicated 
that it supported the DIVIDE statement, the user 
assumed this was true. If the compiler then accepted 
the syntax of the DIVIDE statement, the user as
sumed that the object code necessary to perform the 
operation was generated. When the program executed, 
he expected the results to reflect the action represented 
in his source code. I t appears that in some cases perhaps 
no code was generated for the DIVIDE statement 
and the object program executed perfectly except for 
the fact that no division took place. In another case, 
when the object program encountered the DIVIDE 
operation, it simply went into a loop or aborted. At 
this point, the programmer could become decidedly 
frustrated. The source code in his program indicated 
that: (1) he requested that a divide take place, (2) there 
was no error loop in his program, (3) the program 
should not abort. This is the problem we are ad
dressing: A programmer should concern himself with 
producing a source program that is correct logically 
and the necessary operating system control statements 
to invoke the COBOL compiler. In doing so, he should 
be able to depend on the compiler being capable of 
contributing its talent in producing a correct object 
program. 

If the user was assured that either: (1) each instruc
tion in the COBOL language had been implemented 
correctly, or, (2) that each statement which was im
plemented did not give extraneous results, then the 
above situation could not exist. 

Thus, the need for a validation tool becomes ap
parent. Although all vendors exercise some form of 
quality control on their software before it is released, 

it is clear that some problems may not be detected. 
(The initial release of the Navy COBOL audit routines 
revealed over 50 bugs in one particular compiler which 
had been released five years earlier.) 

By providing the common base from which to imple
ment and a mechanism for determining the accuracy 
and correctness of a compiler relative to the specifica
tion, the problem of smorgasbord compilers (that may 
or may not produce expected results) should become 
extinct. 

The standardization of COBOL began on 15 January 
1963. This was the first meeting of the American Stan
dards Association Committee, X3.4.4,* the Task Group 
for Processor Documentation and COBOL. The pro
gram of work for X3.4.4 included . . . "Write test 
problems to test specific features and combinations of 
features of COBOL. Checkout and run the test problems 
on various COBOL compilers." A working group 
(X3.4.4.2) was established for creating the "test 
problems" to be used for determining feature availa
bility. f 

The concept 5f a mechanism for measuring the 
compliance of a COBOL compiler to the proposed 
standard seemed reasonable in view of the fact that 
other national standards did indeed lend themselves 
to some form of verifications, i.e., 2X4's, typewriter 
keyboards, screw threads. 

IMPLEMENTING A VALIDATION SYSTEM 
FOR COBOL 

In order to implement a COBOL program on a given 
system, regardless of whether the program is a valida
tion routine or an application program, the following 
must be accomplished: 

1. The special characters used in COBOL (i.e., 
'{', ' ) ' , '*'>'+'> ' < ' etc-) must be converted for the 
system being utilized, f 

2. All references to implementor-names within each 
of the source programs must be resolved. 

3. Operating System Control Cards must be pro-

* The American Standards Association (ASA), a voluntary-
national standards body evolved to the United States of America 
Standards Institute (TJSASI) and finally the American National 
Standards Institute (ANSI). The committee X3.4.4 eventually 
became X3J4 under a reorganization of the X3 structure. X3J4 is 
currently in the process of producing a revision to X3.23-1968. 
t For most computers the representatives for the characters 
A-Z, 0-9, and the space (blank character) are the same. However, 
there is sometimes a difference in representation of the other 
characters and therefore conversion of these characters from one 
computer to another may be necessary. 



The DOD COBOL Compiler Validation System 821 

duced which will cause each of the source programs to 
be compiled and executed. Additionally, the user must 
have the ability to make changes to the source pro
grams, i.e., delete statements, replace statements, and 
add statements. 

4. As the programs are compiled, any statements 
that are not syntactically acceptable to the compiler 
must be modified or "deleted'' so that a clean compila
tion takes place and an executable object program is 
produced. 

5. The programs are then executed. All execution 
time aborts must be resolved by determining what 
caused the abort and after deleting or modifying that 
particular test or COBOL element, repeating steps 3 
and 4 until a normal end of job situation exists. 

Development of audit routines 

March 1963, X3.4.4.2 (the Compiler Feature Availa
bility Working Group) began its effort to create the 
COBOL programs which would be used to determine 
the degree of conformance of a compiler to the proposed 
standard. The intent of the committee was not to fur
nish a means for debugging compilers, but rather to 
determine "feature availability." Feature availability 
was understood to mean that the compiler accepted the 
syntax and produced object code to produce the de
sired result. All combinations of features were not to 
be tested; only a carefully selected sample of features 
(singly and in combination) were to be tested to insure 
that they were operational. The test programs them
selves were to produce a printed report that would 
reflect the test number and when possible whether the 
test "Passed" or "Failed." See Figure 1. 

When a failure was detected on the report, the user 
could trace the failure to the source code and attempt 

Source Statements 

TEST-0001. 

MOVE 001 TO TEST-NO. 
MOVE ZERO TO ALPHA. 
ADD 1 TO ALPHA. 
IF ALPHA = 1 PERFORM PASS ELSE PERFORM FAIL. 

TEST-0002. 
Results 

TEST NO P - F 
ADD 1 P 

ADD 21 F 

Figure 1—Example of X3.4.4.2 test and printed results 

to identify the problem. The supporting code (printing 
routine, pass routine, fail routine, etc.) was to be written 
using the most elementary statements in the low-level 
of COBOL. The reason for this was twofold: 

1. The programs would be able to perform on a 
minimum COBOL compiler (Nucleus level 1, 
Table Handling level 1, and Sequential Access 
level 1). 

2. The chances of the supporting code not being 
acceptable to the compiler being tested were 
lessened. 

The programs, when ready, would be provided in 
card deck form along with the necessary documenta
tion for running them. (The basic philosophies of 
design set forth by X3.4.4.2 were carried through all 
subsequent attempts to create compiler validation 
systems for COBOL.) 

Assignments were made to the members of the com
mittee and the work began. This type of effort at the 
committee level, however, was not as productive as 
the work of standardizing the language itself. 

In April 1967, the Air Force issued a contract for a 
system to be designed and implemented which could 
be used in measuring a compiler against the standard. 
The Air Force COBOL Compiler Validation System 
was to create test programs and adapt them to a given 
system automatically by means of fifty-two parameter 
cards. 

The Navy COBOL audit routines 

In August of 1967, The Special Assistant to the 
Secretary of the Navy created a task group to influence 
the use of COBOL throughout the Navy. Being aware 
of both the X3.4.4.2 and Air Force efforts, (as well 
as the time involved for completion), a short term 
project was established to determine the feasibility 
of validating COBOL compilers. After examining the 
information and test programs available at that time, 
the first set of routines was produced. In addition to the 
original X3.4.4.2 philosophy, the Navy added the 
capability of providing the result created by the com
puter as well as the expected result when a test failed. 
Also, instead of a test number, the actual procedure 
name in the source program was reflected in the output. 
See Figure 2. 

The preliminary version of the Navy COBOL audit 
routines was made up of 12 programs consisting of 
about 5000 lines of source code. The tailoring of the 
programs to a particular compiler was done by hand 



822 Fall Joint Computer Conference, 1972 

(by physically changing cards in the deck or by using 
the vendor's software for updating COBOL programs). 
As tests were deleted or modified, it was difficult to 
bring the programs back to their virgin state for sub
sequent runs against different compilers or for de
termining what changes had to be made in order that 
the programs would execute. 

This was a crude effort, but it established the neces
sary evidence that the project was feasible to continue 
and defined techniques for developing auditing systems. 
Because of the favorable comments received on this 
initial work done by the Navy, it appeared in the best 
interest of all to continue the effort. 

After steady development and testing for a year, 
Version 4 of the Navy COBOL Audit Routines was 
released in December 1969. The routines consisted of 
55 Programs, consisting of 18,000 card images capable 
of testing the full standard. The routines had also be
come one of the benchmarks for all systems procured 
by the Department of the Navy in order to ensure that 
the compiler delivered with the system supported the 
required level of American National Standard COBOL.* 

Also, Version 4 introduced the VP-Routine, a pro
gram that automated the audit routines. Based on 
fifty parameter cards, all implementor-names could 
be resolved and the test programs generated in a one-
pass operation. See Figure 3. 

In addition, by coding specific control cards in the 
Working-Storage Section of the VP-Routine as con
stants, the output of the VP-Routine became a file 
that very much resembled the input from a card reader, 
i.e., control cards, programs, etc. 

By specifying the required Department of Defense 
COBOL subset of the audit routines to be used in a 
validation, only the programs necessary for validating 

Source Statements 

ADD-TEST-1. 
MOVE 1 TO ALPHA. 
ADD 1 TO ALPHA. 
IF ALPHA=2 PERFORM PASS ELSE PERFORM FAIL. 

Results 

FEATURE PARAGRAPH P/F COMPUTED EXPECTED 

ADD ADD-TEST-1 FAIL 1 2 

ADD ADD-TEST-2 PASS 

Figure 2—Example of Navy test and printed results 

* In 1968, the Department of Defense, realizing that several 
thousand combinations of modules/levels were possible, estab
lished four subsets of American National Standard COBOL for 
procurement purposes. 

V-P Routine Input: 

X-0 SOURCE-COMPUTER-NAME 
X-l OBJECT-COMPUTER-NAME 
X-3 

X-8 PRINTER 
X-9 CARD-READER 
X-10 

X-50 

Audit Routine File: 

SOURCE-COMPUTER. 
XXXXXO 

SELECT PRINT-FILE ASSIGN TO 
XXXXX8 

The audit routine after processing would be: 

SOURCE-COMPUTER. 
SOURCE-COMPUTER-NAME. 

SELECT PRINT-FILE ASSIGN TO 
PRINTER. 

Figure 3—Example of input to the support routine, Population 
file where audit routines are stored and resolved audit routine 

after processing 

that subset of elements or modules would be selected, 
i.e., SUBSET-A, B, C, or D. The capability also existed 
to update the programs as the "card reader" file was 
being created. The use of the VP-Routine was not 
mandatory at this time, but merely to assist the person 
validating the compiler in setting up the programs for 
compilation. Once the VP-Routine was set up for a 
given system, there was little trouble running the audit 
routines. The user then had only to concern himself 
with the validation itself and with achieving successful 
results from execution of the audit routines. When an 
updated set of routines was distributed, there was no 
effort involved in replacing the old input tape to the 
VP-Routine with the new tape. 

The Air Force COBOL audit routines 

The Air Force COBOL Compiler Validation System 
(AFCCVS) was not a series of COBOL programs but 
rather a test program generator. The user could select 



77 A180NES-CS-18VOO 

Source statement in test library 
T 1N078A101NUC, 2NUC 
400151 77 WRK-DS-18V00 
400461 77 A180NES-DS-18VOO 
400471 
400881 
400891 
802925 
802930 
802935 
802940 
802945 
802950 
802955 
Test results 

.1N078 

4U 
PICTURE S9(18). 
PICTURE S9(18). 

VALUE 11111111111111111. 
PICTURE S9(18) COMPUTATIONAL 

VALUE 111111111111111111. 
TEST-1NUC-078. 

MOVE A180NES-DS-18VOO 
ADD A180NES-CS-18VOO 
MOVE WRK-DS-18VOO 
MOVE '222222222222222222' 
MOVE '1N078' 
PERFORM SUPPORT-RTN THRU SUP-TRN-C. 

.1N079. 
.222222222222222222.09900. 

TO WRK-DS-18VOO. 
TO WRK-DS-18VOO 
TO SUP-WK-A. 
TO SUP-WK-C. 
TO SUP-ID-WK-A 

Figure 4—Example of Air Force test and printed results 

the specific tests or modules he was interested in and 
the AFCCVS would create one or more programs from 
a file of specific tests which were then compiled as audit 
routines. Implementor-names were resolved as the 
programs were generated based on parameter cards 
stored on the test file or provided by the user. 

The process required several passes, including the 
sorting of all of the selected tests to force the Data 
Division entries into the Data Division and place 
the tests themselves in the Procedure Division where 
they logically belonged. An additional pass was re
quired to eliminate duplicate Data Division entries 
(more than one test might use the same data-item and 
therefore there would be more than one copy in the 
Data Division). See Figure 4. 

Still another program was used to make changes to 
the source programs as the compiler was validated. 
As in the Navy system, certain elements had to be 
eliminated because: (1) they were not syntactically 
acceptable to the compiler or, (2) they caused run time 
aborts. 

Department of Defense COBOL validation system 

In December 1970, The Deputy Comptroller of ADP 
in the Office of the Secretary of Defense asked the 
Navy to create what is now the DOD Compiler Valida
tion System for COBOL taking advantage of: (1) the 
better features of both the Navy COBOL Audit Rou
tines (Version 4) and the Air Force CCVS and (2) the 
four years of in-house experience in designing and im
plementing audit routines on various systems as well as 
the actual validation of compilers for procurement 
purposes. 

The DOD COBOL Compiler Validation System 823 

The Compiler Validation System (of which the sup
port program was written in COBOL) had to be readily 
adaptable to any computer system which supported a 
COBOL compiler and which was likely to be bid on any 
RFP issued by the Department of Defense or any of 
its agencies. It also had to be able to communicate with 
the operating system of the computer in order to pro
vide an automated approach to validating the COBOL 
compiler. The problem of interfacing with an operating 
system may or may riot be readily apparent depending 
on whether an individual is more familiar with IBM's 
Full Operation System (OS), which is probably the 
most complex operating system insofar as establishing 
communication between itself and the user is con
cerned, or with the Burroughs Master Control Program 
(MCP), where the control language can be learned in a 
fifteen or twenty minute discussion. 

Since validating a compiler may not be necessary 
very often, the amount of expertise necessary for com
municating with the CVS should be kept to a minimum. 
The output of the routines should be as clear as possible 
in order not to confuse the reviewer of the results or to 
suggest ambiguities. 

The decision was made to adopt the Navy support 
system and presentation format for several reasons. 
(1) I t would be easier to introduce the Air Force tests 
into the Navy routines as additional tests because the 
Navy routines were already in COBOL program format. 
It would have been difficult to recode each of the Navy 
tests into the format of specific tests on the Air Force 
Population File because of the greater volume of tests. 
(2) The Navy support program had become rather 
versatile in handling control cards, even for IBM's 
OS, whereas the Air Force system had only limited 
control card generation capability. 



824 Fall Joint Computer Conference, 1972 

The merging of the Air Force and Navy routines 

The actual merging of the routines started in 
February 1971 and continued until September 1971. 
During the merging operation, it was noted that there 
was very little overlap or redundancy in the functions 
tested by the Air Force and Navy systems. In actuality, 
the two sets of tests complemented each other. This 
could only be attributed to the different philosophies 
of the two organizations which originally created the 
routines. For example in the tests for the ADD state
ment: 

Air Force Navy 
signed fields unsighed fields 
most fields 18 digits long most fields 1-10 digits 

long 
more computational more display items 

items 

After examining the Add tests for the combined DOD 
routines, it was noticed that a few areas had been 
totally overlooked. 

1. An ADD statement that forced the "temp" 
used by the compiler to hold a number greater 
than 18 digits in length: 

i.e., ADD +999999999999999999 
+999999999999999999 
+ 999999999999999999 
-999999999999999999 
-999999999999999999 
- 9 9 TO ALPHA 

. . . where the intermediate result would be 
greater than 18 digits, but the final result would 
be able to fit in the receiving field. 

2. There were not more than eight operands in 
any one ADD test. 

3. A size error test using a COMPUTATIONAL 
field when the actual value could be greater 
than the described size of the field, i.e., ALPHA 
PICTURE 9(4) COMP. . . specifies a data item 
that could contain a maximum value of 9999 
without an overflow condition; however, because 
the field may be set up internally in binary, the 
decimal value may be less than the maximum 
binary value it could hold: 

Maximum COBOL value = 9999 
Maximum hardware value^l6383 

Therefore, from this point of view, the merging of 

Source statements 

ADD-TEST-1. 
MOVE 1 TO ALPHA. 

ADD 1 TO ALPHA. 
IF ALPHA = 2 

PERFORM PASS 

ELSE 
GO TO ADD-FAIL-1. 

GO TO ADD-WRITE-1. 

ADD-DELETE-1. 
PERFORM DELETE. 
GO TO ADD-WRITE-1. 

Initialization if 
necessary. 

The Test. 
Check the results of the 

test and handle the 
accounting of that 
test. 

Normal exit path to the 
write paragraph. 

Abnormal path to the 
write statement if the 
test is deleted via the 
NOTE statement. 

Correct and computed 
results are formatted 
for printing. 

ADD-FAIL-1. 
MOVE ALPHA TO COMPUTED 
MOVE '2' TO CORRECT. 
PERFORM FAIL. 

ADD-WRITE-1. Results are printed. 
MOVE 'ADD-TEST-1' TO PARAGRAPH-NAME. 
PERFORM PINT-RESULTS. 

ADD-TEST-2. 

Figure 5—Example of DOD test and supporting code 

the routines disclosed the holes in the validation sys
tems being used prior to the current DOD routines. 

The general format of each test is made up of several 
paragraphs: (1) the actual "test" paragraph; (2) a 
"delete" paragraph which takes advantage of the 
COBOL NOTE for deleting tests which the compiler 
being validated cannot handle; (3) the "fail" paragraph 
for putting out the computed and correct results when 
a test fails; and (4) a "write" paragraph which places 
the test name in the output line and causes it to be 
written. See Figure 5. 

The magnitude of the size of the DOD Audit Routines 
was approaching 100,000 lines of source coding, 
making up 130 programs. The number of environ
mental changes (resolution of implementor-names) was 
in the neighborhood of 1,000 and the number of operat
ing system control cards required to execute the 
program would be from 1,300 to 5,000 depending on the 
complexity of the operating system involved. 

This was where the support program could save a 
large amount of both work and mistakes. The Versatile 
Program Management System (VPMSl) was designed 
to handle all of these problems with a minimum of 
effort. 

Versatile 'program management system (VPMSl) 

A good portion of the merging included additional 
enhancements to the VPMSl (support program) 



The DOD COBOL Compiler Validation System 825 

which, by this time, through an evolutionary process 
had learned to manage two new languages; FORTRAN 
and JOVIAL. The program had been modified based 
on the additional requirements of various operating 
systems for handling particular COBOL problems; 
the need for making the system easy for the user to 
interface with, and the need to provide all interfaces 
between the user, the audit routines, and the operating 
system. 

The introduction of implementor names through "X-cards" 

The first problem was the resolution of implementor-
names within the source COBOL programs making up 
the audit routines. In the COBOL language, particularly 
in the Environment Division, there are constructs which 
must contain an implementor-defined word in order for 
the statement to be syntactically complete. Figure 6 
shows where the implementor-names must be provided. 

THE NOTE placed as the first word in the para
graph causes the entire paragraph to be treated as 
comments. Instead of the "GO TO ADD-WRITE-1" 
statement being executed, the logic of the program falls 
into the delete paragraph which causes the output re
sults to reflect the fact that the test was deleted. 

If the syntax error is in the Data Division, then the 
coding itself must be modified. VPMS1 shows, in its 
own printed output, the old card image as well as the 
new card image so that what has been altered is readily 
apparent, i.e., 

012900 02 A PIC ZZ9 Value ' 1 ' . NC1085.2 OLD 

012900 02 A PIC ZZ9 Value 1. NC108*RE NEW 

ENVIRONMENT DIVISION. 
SOURCE-COMPUTER. 

implementor-name-1. 
OBJECT-COMPUTER. 

implementor-name-2. 
SPECIAL-NAMES. 

implementor-name-3 is MNEMONIC-NAME 

FILE-CONTROL 
SELECT FILE-NAME ASSIGN TO implementor-name-4. 

data division. 

FD FILE-NAME 
VALUE OF implementor-name-5 IS implementor-defined. 

Figure 6—Implementor defined names that would appear 
in a COBOL program 

If, while executing the object program of an audit 
routine, an abnormal termination occurs, then a change 
is required. The cause might be, for example, a data 
exception or a program loop due to the incorrect im
plementation of a COBOL statement. In any case, the 
test in question would have to be deleted. The NOTE 
would be used as specified above. 

In addition, VPMS1 provides a universal method 
of updating source programs so that the individual who 
validates more than one compiler is not constantly re
quired to learn new implementor techniques for up
dating source programs. 

Example of update cards through VPMS1: 

012900 02 A PIC ZZ9 (If the sequence number is 
VALUE 1. equal the card is replaced; 

013210 MOVE 1 TO A. if there is no match the 
014310 NOTE card is inserted in the ap

propriate place in the 
program.) 

014900* (Deletes card 014900) 
029300*099000 (Deletes the series from 029300 

through 099000). 

To carry the problem a step further. Some of the 
names used by different implementors for the high 
speed printer in the SELECT statement have 
been PRINTER, SYSTEM-PRINTER, FORM-
PRINTER, SYSOUT, SYSOU1, PI FOR LIST
ING, ETC. I t is obvious to a programmer what the 
implementor has in mind, but the compiler that expects 
SYSTEM-PRINTER, will certainly reject any of 
the other names. Therefore, each occurrence of an 
implementor-name must be converted to the correct 
name. The approach taken is that each implementor-
name is defined to VPMS1. For example, the printer 
is known as XXXX36 and the audit routines using 
the printer would be set up in the following way: 

SELECT PRINT-FILE ASSIGN TO 
XXXXX36 

And the user would provide the name to be used by the 
computer being tested through an "X-CARD." 

X-36 SYSTEM-PRINTER 
VPMS1 would then replace all references of XXXXX36 
with SYSTEM-PRINTER. 

SELECT PRINT-FILE ASSIGN TO 
SYSTEM-PRINTER. 

Ability to update programs 

The next problem was to provide the user with a 
method for making changes to the audit routines in 



826 Fall Joint Computer Conference, 1972 

ADD-TEST-l. 
NOTE (Inserted by the user as an update to the program.) 
MOVE 1 TO ALPHA. 

TO TO ADD-WRITE-1. 
ADD-DELETE-1. 

PERFORM DELETE. 

Figure 7—Example of deleting a test in the DOD CCVS 

an orderly fashion and at the same time provide a maxi
mum amount of documentation for each change made. 
There are two reasons for the user to need to make 
modifications to the actual audit routines: 

a. If the compiler will not accept a form of syntax 
it must be eliminated in order to create a syn
tactically correct program. There are two ways 
to accomplish this. In the Procedure Division 
the NOTE statement is used to force the "in
valid" statements to become comments. The 
results of this action would cause the test to be 
deleted and this would be reflected in the out
put. See Figure 7. 

OPERATING SYSTEM CONTROL CARD 
GENERATION 

The third problem was the generation of operating 
system control cards in the appropriate position relative 
to the source programs in order for the programs to be 
compiled, loaded and executed. This was the biggest 
challenge for VPMS1; a COBOL program which had 
to be structurally compatible with all COBOL com
pilers and which also had to be able to interface with 
all operating systems with a negligible amount of 
modification for each system. 

The philosophy of the output of VPMS1 is a file 
acceptable to a particular operating system as input. 
For the most part this file closely resembles what would 
normally be introduced to the operating system through 
the system's input device or card reader, i.e., control 
cards, source program, data, etc. 

The generation of operating system control cards is 
based on the specific placement of the statement and 
the requirement or need for specific statements to ac
complish additional functions. These control cards are 
presented to VPMS1 in a form that will not be inter
cepted by the operating system and are annotated as 

to their appropriate characteristics. The body of the 
actual control card starts in position 8 of the input 
record. Position one is reserved for a code that specifies 
the type of control card. The following is allowed in 
specifying control cards: Initial control cards are 
generated once at the beginning of the file. Beginning 
control cards are generated before each source program 
with a provision for specifying control cards which 
are generated at specific times, i.e., JOB type cards, 
subroutine type cards, library control cards, etc. End
ing control cards are generated after each source pro
gram with the same provision as beginning control 
cards. Terminal control cards are generated prior to 
the file being closed. Additional control cards are 
generated for assigning hardware devices to the object 
program, bracketing data and for assigning work areas 
to be used by the COBOL Sort. 

There are approximately 25 files used by the entire 
set of validation routines for which control cards may 
need to be prepared. In addition to the control cards 
and information for the Environment Division, the 
total number of control statements printed for VPMS1 
could be in the neighborhood of 200 card images and 
the possible number of generated control cards on the 
output file could be as large as 5000. The saving in time 
and JCL errors that could be prevented should be 
obvious at this point. 

This Environmental information need not be pro
vided by the user because once a set of VPMS1 control 
cards has been satisfactorily debugged on the system 
in question, they can be placed in the library file that 
contains the same program so that a single request 
could extract the VPMS1 control cards for a given 
system. 

CONCLUSION 

It has been demonstrated that the validation of COBOL 
compilers is possible and that the end result is bene
ficial to both compiler writers and the users of these 
compilers. The ease with which the DOD CCVS can 
be automatically adapted to a given computer system 
has eliminated approximately 85 to 90 percent of the 
work involved in validating a COBOL compiler. 

Although most compilers are written from the same 
basic specifications (i.e., the American National Stan
dard COBOL, X3.23-1968, or the CODASYL COBOL 
Journal of Development) the results are not always 
the same. The DOD CCVS has exposed numerous 
compiler bugs as well as misinterpretations of the 
language. Due to this and similar efforts in the area of 



The DOD COBOL Compiler Validation System 827 

compiler validation, the compatibility of today's 
compilers has grown to a high degree. 

We are now awaiting the next version of the American 
National Standard COBOL. The new specifications 
will provide an increased level of compatibility between 
compilers because the specifications are more definitive 
and contain fewer "implementor defined" areas. In 
addition, numerous enhancements and several clari
fications have been included in the new specification— 

all contributing to better software, both at the compiler 
and the application level. 

REFERENCES 

1 American National Standard COBOL X3.23-1968 
American National Standards Institute Inc. New York 1968 

2 COBOL-61 Conference on Data System Languages 
U. S. Government Printing Office Washington D. C. 1961 






