
Systems for systems implementors—Some experiences from
Bliss*

by WILLIAM A. WULF

Carnegie-Mellon University
Pittsburgh, Pennsylvania

INTRODUCTION

The programming language Bliss was developed at
Carnegie-Mellon University expressly for the purpose
of writing software systems* and has been in use for
over three years. A considerable number of systems have
been written using it: compilers, interpreters, i/o
systems, simulators, operating systems, etc. The
language was designed and implemented in the con
ventional sense of an isolated language system, and
relies on the file system, editors, debuggers, etc., pro
vided by the manufacturer and/or other users. In this
paper we shall not describe Bliss, that has been done
elsewhere;1,2 nor shall we attempt to justify the lan
guage design, that has also been done.3-4 Rather, we
shall attempt to analyze and evaluate the particular
decision** to implement Bliss as an isolated language
rather than as a piece of a more comprehensive system.
Some comments are made on the implications of this
analysis/evaluation on the shape that such a system
might have.

A CHARACTERIZATION OF THE PROBLEM
AREA

We shall restrict our discussion to the field of
"systems programming." While there is no universally
accepted definition of this term, it is useful to have some
characterization of it against which to frame the dis-

* This work was supported by the Advanced Research Projects
Agency of the Office of the Secretary of Defense (F44620-70-C-
0107) and is monitored by the Air Force Office for Scientific
Research.
* Primarily for the PDP-10 although Bliss has now been imple
mented for several other machines.
** At the time, of course, the decision was made by default; the
more ambitious alternative was not considered.

cussion. In particular we can discern four properties of
systems programs relevant to this discussion. They:

1. must be efficient on a particular machine;
2. are large, probably requiring several imple

mentors;
3. are "real" in the sense that they are widely

distributed and used frequently (perhaps con
tinuously);

4. are rarely "finished," but rather are elements
in a design/implementation feedback cycle.

These properties may be factored into two sets—
technical issues (item 1), and program management
issues, i.e., those that arise exclusively because the
systems are large, real, and volatile (items 2, 3, and 4).

The technical issues relate primarily to efficiency of
two types: local and global. In most cases software
systems can at most tolerate moderate inefficiencies in
their object code; in a few critical situations anything
other than the most efficient possible machine code is
unacceptable. Although the issue of efficiency is largely
language/compiler related, it must be recognized that
a more general statement applies: given the logical
machine which a software implementation system (SIS)
defines, and any discrepancy between that model and
the hardware itself, that discrepancy may become
critical in one of two ways: either the cumulative
inefficiency due to the distributed effects of the dis
crepancy is significant, or the use of the construct
which invokes the discrepancy produces intolerable
inefficiencies in some local context. Although we cannot
hope to design an SIS which eliminates the effect
entirely, we must take some care with the conventions
we adopt, both in the SIS itself and in the management
tools given th&user.

The managerial issues which arise in the construction
of large, complex systems can be separated into two

943

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1480083.1480121&domain=pdf&date_stamp=1972-12-05

944 Fall Joint Computer Conference, 1972

classes:

1. those which we presently believe to be solvable
within the framework of a static, compilable
language; and

2. those whose solution, at present, seems to require
the construction of a "total" programming
environment which, in addition to the language,
includes editing, monitoring, etc.

Within these classes, the tools for program manage
ment come in three forms: those which help specify a
global structure to a task (top down modularization),
those which specify common elements of a fine structure
(predictive bottom up modularization), and finally
those related to the relatively mechanical aspects of
file manipulation, editing, debugging, etc.

A VIEW OF THE PROBLEM

Most of the recent effort devoted to the design of
languages and systems has been expended to improve
the convenience with which a program may be written.
While convenience is an important criterion, it should
not be the only, or even the central, issue in the design
of a system for implementing other systems. The notion
that convenience in writing programs should be the
central issue results from the naive view that software
is simply designed and written. That view is fallacious
in terms of the four properties listed above.

In particular, programming systems are never
finished but are in a constant state of evolution. New
features are added and old errors repaired. The more
heavily a system is used, the more rapid the rate of
evolution and repair. This situation seems inevitable so
long as new application areas, all with slightly different
requirements, continue to emerge. Thus, the central
problem of devising a system for systems programming
would appear to be that of providing mechanisms for
enabling the programmer to cope with this evolution
while satisfying technical constraints imposed by
systems implementation in general.

The mechanisms by which programmers may cope
with the evolution of a system are those which we have
termed 'managerial' above. It is these mechanisms
which are most prominently lacking in our current
system implementation tools; the consequence of this
lack is the introduction of peripheral modifications
which subvert and distort the original structure of a
system and lead to inefficient, "dirty" systems.

WHAT IS A "GOOD" MANAGEMENT TOOL?

If the central problem of systems programming is
that of coping with the evolutionary nature of systems,

then a good tool is one which creates an environment
in which this is relatively easier to do. Moreover, given
an existing system and the desire to modify it in some
way, the difficulty of making that modification is
directly related to the extent of its interaction with
what already exists. Modifications whose effects are
localized are easy to make. Modifications whose effects
are global—whether due to a large number of textual
or conceptual interactions—are difficult to make.

In general the "goodness" of a tool appears, then, to
be directly related to the degree to which its use permits
and encourages decoupling, isolating, decisions and
hence localizing their effect. Thus, to pick two trite
examples, subroutines and macros are good tools
precisely because they permit isolation of a computa
tional representation (a particular encoding) from the
intended effect of that computation.

MANAGEMENT FUNCTIONS PROVIDED BY
LANGUAGE

One view of the recent history of the development of
programming systems holds that it has been a search
for panaceas. According to this view the development
of large 'shell' languages (e.g., PL/I) , extensible lan
guages, time-sharing, etc., have each in turn been
sponsored, in part, because they promised to be the
solution to providing more convenient, accessible, and
cost/effective computing. Whether this view has com
plete validity or not, we do not want to fall into the
trap of looking to the mystic word 'system' to remedy
the ills of past software development projects. There
fore we will first discuss some of the management
facilities which can and should be provided at the
language level.

The decision to use any higher-level language repre
sents a good program management decision to the
extent that the structuring f acihties of the language are
used in the implementation. It represents a sound
technical decision to the extent that they are usable.
For example, Bliss chose to include Algol block-
structure, scope and extent of variables, functions,
boolean and arithmetic infix operators (with precedence
rules), and many of the elements of the Algol control
structure (with goto specifically excluded). These were
chosen as representatives of good management tools
from the realm of general purpose languages. The
PDP-10 hardware model accepts these constructs with
very little overhead which makes them sound technical
tools as well. The remainder of Bliss is composed of
operators, control structures, data structures, etc.,
which although not entirely unique, are somewhat
different from those in other languages because: (1) of
the structure of the PDP-10, (2) of the efficiency

Systems for Systems Implementors 945

problems imposed by implementation languages in
general (that is, a concerted effort was made to mini
mize the discrepancy between the logical Bliss machine
and the physical PDP-10), and (3) no suitable models
for certain management tools could be found in existing
languages.

As stated in the introduction this paper is not in
tended to be a definitive description of Bliss. However,
two aspects of Bliss related to management issues are
discussed below to illustrate how these may manifest
themselves in a language design:

(1) Control Structures: Other than subroutines and
co-routines, the control structures of Bliss are a
consequence of the decision to eliminate the goto
(see References 4, 5, 6 for a discussion of the
reasons behind this decision). In Reference 4 the
author analyzes the forms of control flow which
are not easily realized in a simple goto-less
language and uses this analysis to motivate the
facilities in Bliss. Here we shall merely list some
of the results of that analysis as they manifest
themselves in Bliss.
(a) A collection of 'conventional' control struc

tures: Many of the inconveniences of a
simple goto-less language are eliminated by
simply providing a fairly large collection of
more-or-less 'conventional' control struc
tures. In particular, for example, Bliss
includes: conditionals (both if-then-else and
case forms), several looping constructs
(including while-do, do-while, and stepping
forms), potentially recursive procedures,
and co-routines. While anything in addition
to the goto and a conditional branch may be
considered "syntactic sugar" in most lan
guages, these additional forms are essential
to convenient programming in Bliss
(although they axe not all theoretically
needed for completeness, see Reference 6).

(b) Expression Language: Every construct in
Bliss, including those which manifest ex
plicit control, are expressions and have
defined values. There are no 'statements' in
the sense of Algol or PL/I . I t may be shown6

that one mechanism for expressing al
gorithms in goto-less form is through the
introduction of at least one additional
variable. The value of this variable serves to
encode the state of the computation and
direct subsequent flow. This is a common
programming practice used even in lan
guages in which the goto is present (e.g., the
FORTRAN 'computed goto'). The expres

sion character of Bliss is relevant in that the
value of an expression is a convenient
implicit carrier of this state information,

(c) Escape Mechanism: Analysis of real pro
grams strongly suggests that one of the most
common 'good' uses of a goto is to pre
maturely terminate execution of a control
environment—for example, to exit from the
middle of a loop before the usual termination
condition is satisfied. To accommodate this
form of control, Bliss allows any expression
(control environment) to be labeled; an
expression of the form "leave (label) with
(expression)" may be executed within the
scope of this labeled environment. When a
leave expression is executed two things
happen: (1) control immediately passes to
the end of the control environment (expres
sion) named in the leave, and (2) the value
of the named environment is set to that of
the (expression) following the with.

(2) Functional Decomposition: An effective program
management technique is to insist on functional
decomposition and isolation of tasks. Technical
issues suggest several alternatives for constructs
all of which can be considered "function like":
full-blown Algol functions (with display mecha
nism), Bliss "routine" (without display mecha
nism), co-routines, macros and the (Bliss) data
structure mechanism.

(a) Functions and routines are defined and
called in Bliss in a manner similar to that in
Algol, except that there are no specifications
and all parameters are implicitly call-by-
value. Functions and routines are exam
ples of choosing well-known and admired
managerial tools and adapting them to
satisfy the technical requirements of a
system implementation language.

(b) Co-routines are often used (unwittingly)
by programmers in any language; their
essential nature is that they preserve some
sort of "status" information upon exit and
continue execution upon recall based on that
status. If the status becomes arbitrarily
complex, the only way to retain it is to
remember essentially everything which per
tains to the Bliss model in the machine for a
running program, i.e., the stack, declarable
registers, and program counter. Such in
formation is best dealt with by the compiler
(i.e., a minor implementation change might
have drastic effects if everyone using co
routines of this complexity were saving

946 Fall Joint Computer Conference, 1972

status information differently); thus the
construct was included in the language,

(c) The Bliss structure mechanism allows the
user to define an accessing algorithm—that
is, the algorithm to be used to obtain the
address ctf an item in the structure. In fact,
there are no "built-in" data structures; the
user must define the representation of every
data structure by supplying an accessing
algorithm for it. Once an accessing algorithm
has been defined, it may be associated with a
variable name and will be automatically
invoked when that name is referenced.
Thus, the user may choose the most appro
priate (efficient) representation and may
change the representation as the use of the
data structure evolves.

With 20/20 hindsight it is obvious that it is the
managerial issues, and not the technical ones which are
the most costly, provide the most compelling reasons
for adopting an implementation system, and hence are
the primary ones to which such a system must respond.
Moreover, a language can only make technical responses
to these issues, and cannot respond to the entire
spectrum of managerial issues. Conversely there are a
set of issues to which the most appropriate response is
at the language level.

The technical responses made in Bliss, such as the
structure mechanism and removing the goto, are, for
example, both good and made at the appropriate level.
We consider the Bliss structure mechanism, for ex
ample, to be a "good" management tool because it
decouples those decisions concerning the representation
of a data structure from those decisions concerning the
manipulation of the information contained in the
structure. (In this context we consider the data struc
turing mechanisms of most languages to be "bad"
management tools in that the representation decisions
are made at a totally inappropriate time—namely,
when the language is implemented.)

MANAGEMENT FUNCTIONS PROVIDED BY
A 'TOTAL' SYSTEM

We wish to distinguish between two notions which the
term 'system' might connote; for want of better
terminology we shall refer to them as internal and
external. By internal we mean those facilities which
must be provided by a system coextant with that
written by the programmer. Conversely, by external we
mean those facilities which are never coextant with the
user's program. Dynamic storage management and

virtual memory systems are examples of the internal
variety; editors, loaders, and linkage editors are
generally of the external variety. Of course, there are
numerous examples—the TSS dynamic loader, for
instance—which cross this boundary.

External facilities

In some ways these appear to be the most mundane of
those facilities which might be provided by a 'total'
system. Editors, file systems, loaders, etc., are familiar
to us all and that familiarity is indeed likely to breed
a certain level of contempt—or at least a strong tempta
tion to "make do" with the facilities that happen to
be available.

However, measured against the definition of a 'good'
management tool given above, most of the editors, etc.,
with which we are familiar are inadequate. Moreover,
they are unlikely to become adequate unless invested
with more specific knowledge of the structure of the
items with which they deal. In particular, the notion of
decoupling decisions carries the collateral notion of
distributed definition and use (related definitions are
grouped rather than related uses). Present editors, for
example, simply do not cope with such structures—
particularly if definition and use are in separate files.
Fortunately, there is an excellent extant example of a
system with many of these properties designed by
Englebart, et al.7

Internal facilities

The class of facilities we have called 'internal'—
those which require coextant support—are certainly
more glamorous than the external ones. Our experience
using Bliss strongly suggests that some of these mecha
nisms would be very valuable, in particular: incremental
compilation, debugging at the source level (as with
conversational languages), execution of incomplete
programs, virtual memory, etc.

All these mechanisms represent 'good' management
tools, when described at this level, in that they permit
certain classes of decisions to be decoupled. The ability
to execute incomplete programs, for example, is an
attractive facility for permitting parallel construction
of systems by several implementors.

Unfortunately there are no extant examples of
systems which provide wholly 'good' tools from either
the technical or managerial standpoint; the existing
systems fail for two reasons:

1. They are inefficient in specific cases. To date
these systems have generally been interpretive;

Systems for Systems Implementors 947

while a technical solution to this exists,8 it is
not clear that the residual distributed effect of
this flexibility can be totally eliminated.

2. They imply binding certain decisions at a very
early stage, namely, when the supportive
system is written. This is by far the more serious
problem. Internal facilities are efficacious to the
extent to which they can presume a particular
structure in the system they support. (While
this is also true of external facilities, in the latter
case the assumptions are purely formal.) These
presumptions are inviolate and their presence
clashes with our definition of a good management
tool.

The position taken by Bliss with respect to internal
system facilities is the extreme one, and the original
rationale for it is probably fallacious: the code produced
by the Bliss compiler requires no run time support.
The rationale for this position was that some systems
would be written in Bliss could not presume such
support—notably the lowest levels of an operating
system. While this is indeed true, the fallacy is that the
majority of programs written in Bliss have not been
operating systems, nor will they be.

I t is possible, of course, to write one's own support in
Bliss, and a fair variety of these packages have been
written—one of which is worth special mention.

The "timing package"9 is a set of Bliss routines which
may be loaded with any Bliss program. Using its
knowledge of the run-time structure of Bliss programs
the package can intercept control at "interesting"
points, notably routine entry/exit, and record various
information. In particular, the usual information
gathered is the frequency and duration of routine
executions and the memory reference pattern.

The timing package is a "good" management tool in
the sense of the definition above in that it permits
postponing (a programmer's) concern over specific local
efficiency until there is evidence that local efficiency
has global significance. Moreover, the timing package
is a good technical tool in that its presence is not
presumed and there is no distributed (or local) in
efficiency implied by its potential use. Most of the
systems written in Bliss have been "tuned" using this
facility and the results are much as one would expect:
a very small portion (less than 5 percent) of a program
usually accounts for most of its execution time, the
programmer is usually surprised by which portion of the
program is taking the most time, and improvements
by a factor of two in execution speed by relatively simple
modifications are common.

The example of the timing package points out both
an important distinction and a language requirement

not discussed previously. The distinction is between
those supportative facilities whose presence and form is
requisite and presumed, and those facilities which, if
available, may be exploited. The language requirement
is that the link to these (optional) facilities should be
'natural.' Thus, for example, we consider dynamic
storage management to be an inappropriate presumed
facility, at least in the context of a SIS, because:

1. it undoubtedly implies a distributed overhead
which is intolerable in specific cases,

2. it implies binding a decision, namely a particular
storage discipline, which will be inappropriate in
specific cases.

Yet, the ability to define and use a dynamic storage
management system, and to do so 'naturally' in the
language, is totally appropriate.

SUMMARY

The results of our experiences in using Bliss for over
three years for a number of large software projects
reinforces our view that the major problems of software
development are what we have termed 'managerial'
in nature, and not technical. The use of any higher-level
language can alleviate certain of these problems, a
careful language design can alleviate more and there
are certain features which must be provided at the
language level, but there are limitations to what can
be done in any statically compilable language.

Many, if not all, of the issues which cannot be ad
dressed by a compilable language may be addressed by
a comprehensive system of which a language is only one
part. Some of the facilities of such a system would deal
primarily with various external representations of a
program. Although these facilities need to be carefully
integrated, they would presumably be related to
familiar facilities. Moreover, such facilities are rela
tively 'safe' in that they deal primarily with the formal
(syntactic) aspects of a program. We regret not having
paid more attention to these facilities at an earlier
stage of the Bliss effort.

Another class of facilities which might be provided
by such a system relate primarily to internal representa
tions of the program and must coexist with this repre
sentation. This class is at once more glamorous,
potentially more useful, and more dangerous. The
utility of such facilities is directly related to their
specific knowledge of the internal structure of a pro
gram. To the extent to which the presence of such
facilities forces a specific set of representations, whether
of data or computation, they can magnify the problems
they were meant to solve.

948 Fall Joint Computer Conference, 1972

REFERENCES
1 W WULF et al

Bliss reference manual
Computer Science Department Report Carnegie-Mellon
University Pittsburgh Pennsylvania 1970

2 W WULF D RUSSELL A HABERMANN
Bliss; A language for systems programming
Communications of the ACM 14 12 December 1971

3 W WULF et al
Reflections on a systems programming language
SIGPLAN Symposium on System Implementation
Languages Purdue University October 1971

4 W WULF
Programming without the Goto
Proceedings of the IFIP Congress 1971

5 E DIJKSTRA
GOTO statement considered harmful
Communications of the ACM (letter to the editor) 11 3
March 1968

6 W WULF
A case against the Goto
Proceedings of the ACM National Conference 1972

7 D ENGLEBART W ENGLISH
A research center for augmenting human intellect
FJCC 1968

8 J MITCHELL
The design and construction of flexible and efficient interactive
programming systems
PhD Thesis Carnegie-Mellon University 1970

9 J NEWCOMER
Private communication

