
Data base design using IMS/360

by R. M. CURTICE

Corporate-Tech Planning Inc.
Waltham, Massachusetts

TOWARD A DATA BASE DESIGN
METHODOLOGY

Data base or file design is the process of specifying how
the data is to be located on and retrieved from the vari­
ous storage media, and what relationships exist among
the keys, data elements, records and files of the data
base. Occasionally it is useful to distinguish between
file design and file engineering. File design is concerned
with the logical relationships among file elements,
while file engineering deals with physical concerns such
as block size, arm movement optimization, and other
hardware dependent factors. Although file design nec­
essarily precedes file engineering, very often several
iterations between these two are necessary because
file engineering considerations suggest a rethinking of
many of the file design approaches.

People have been designing data bases with meas­
urable success for as long as there have been random
access devices. What eludes us however, is a clear for­
mulation of the precise steps by which the design was
constructed. No one has been able to describe a co­
herent methodology for achieving an optimal or even
a good design. Much of data base design thus remains
an art.

One prerequisite to the development of a data base
design methodology is a clear measure of performance
of the resulting design. At first glance we are inclined to
measure performance merely in terms of say, daily
running time, or total number of accesses, for a given
volume of transactions. But often we are quite willing
to trade several hours of overnight batch running time
to speed up an on-line transaction by a few seconds, or
to take an extra disk revolution for a write check to
insure data integrity. Moreover, how do we specify a
desirable balance between running time and storage
size? Or account for periodic reorganizations or future
flexibility? I t may well be that these factors will have
to lie outside the measures associated with initial design
methodologies, and a limited objective constructed.

Such an objective may be expressed as "given a maxi­
mum storage capacity, certain reorganization frequen­
cies, a minimum response time on on-line transactions,
etc., then what is the optimum data base design?"

In the end, what we are striving for is something like
a deterministic model of data base design, in which
the parameters of a particular design situation are in­
put, and a full data base design is output—but we
appear to lack the formalisms necessary to describe all
the elements involved, as the examination of measures
above indicates. Some work has been done on a formal
description of a data base structure, and to a degree the
COBOL Data Division or something similar would
suffice. But very little work has been done on a sym-
bology for transactions, and the resulting "transfor­
mations" to the data base they are intended to achieve.

Until such a model, or other data base design for­
malism, is developed we can only generalize upon past
experience in order to construct rules or guidelines
toward a design methodology. Several papers present
rules of thumb for this purpose.1-6 These and other dis­
cussions of data base design methodology usually make
no assumptions about the hardware or software used to
implement the design. As more users turn to generalized
data base management systems, however, the need
arises to identify design guidelines which are specific
to a particular system. This paper discusses several
data base design guidelines based on the use of IBM's
Information Management System/360 (IMS/360) data
management package.

IMS/360

The IMS/360 software package includes a compre­
hensive data management system called DL/ I (Data
Language I). This system is either being used or care­
fully considered by users in many large IBM installa­
tions for data base applications. One important feature
of IMS/360 is that it also includes a teleprocessing

1105

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1480083.1480146&domain=pdf&date_stamp=1972-12-05

1106 Fall Joint Computer Conference, 1972

COMPONENT
PART #1

Figure 1—Data base example #1

capability which is intended to facilitate the conversion
of initial batch data base applications to an on-line
mode. Like most data management systems, IMS en­
ables the user to separate the data base description
from the applications programs, thus permitting cer­
tain changes to be made to the files without affecting
all programs. The system also includes backup and re­
covery modules as well as file reorganization and sta­
tistics collecting utilities. I t is clear that for most in­
stallations developing large integrated data base appli­
cations a generalized data management capability
similar in scope to IMS will be required.

In addition, IMS provides a quite general structure
with which to describe the data base record (or in IMS
terminology, segment) relationships. This structure is
a hierarchy of fixed length segments emanating from a
root segment for each data base. Figures 1 and 2 both
show examples of such structures. Up to 255 segment

JOB
ORDER
(root)

ROUTING
OPERATIONS

1

JOB TYPE
MAN HOURS

1

I- *2

31

types, arranged in a maximum of 15 levels, may be
specified for an IMS data base. Each segment type may
occur any number of times or not at all under a given
root. As shown in Figure 1, the immediate subordinate
segments are referred to as child segments, the segment
they appear under is referred to as the parent, and
different occurrences of the same segment type are re­
ferred to as twins.

One dominant feature of the IMS data management
scheme is that the applications programmer always
views the data structure as hierarchical, regardless of
the access method employed, or physical location of
the data. Thus the four IMS access methods all begin
with "Hierarchical"; namely: the Hierarchical Sequen­
tial Access Method (HSAM), the Hierarchical Indexed
Sequential Access Method (HISAM), the Hierarchical
Indexed Direct Access Method (HIDAM), and the
Hierarchical Direct Access Method (HDAM). When

f
Q

^_^_, INDEX

PART NO #1 JOB ORDER #1 JOB ORDER #2 1 IL.
END PROD. #1 | « | f "o g

NEXT HIGHER PART #1 NEXT HIGHER PART #2 COMPONENT #1

COMPONENT #2 END PRODUCT #2

t
) 1 8

1 ^ «

J l *

Figure 2—Data base example #2

Figure 3—HISAM example

using either HSAM or HISAM, the hierarchy relation­
ships are maintained by physically recording the seg­
ments sequentially in a top-down, left to right conven­
tion. HISAM is conceptually similar to the indexed
sequential access method under O/S. It provides an
index to the root segment, and a separate overflow
area, as the example in Figure 3 indicates. This figure
shows how a sample record from the data base in Figure
1 would be physically stored using HISAM. As many
of the segments occurring under a root as can fit into a
fixed length block are stored there, while the rest are
chained together in other overflow blocks. The seg­
ments under a root must be accessed sequentially, and
insertion of a new segment causes others to be shifted
down. This necessitates periodic reorganization.

HIDAM and HDAM do not record the segments
under a root sequentially, but rather allow direct
pointers to the children, from the children to the parents

Data Base Design Using IMS/360 1107

NEXT
HIGHER
PART #2

Figure 4—HIDAM and HDAM example

and among the twins under a given root, as shown in
Figure 4. In effect, each segment type becomes a file.
As the names imply, HIDAM provides an index to the
root segments, and HDAM accesses the roots with a
user supplied randomizing module.

The ability to specify relationships across data bases
is provided by defining a logical data base which is
composed of segments from one or more physical data
bases. The sample data base assumes there is a require­
ment to process both parts and job orders as separate
entries, but often we need to access one file from the
other as well. While this can be done by repeating job
orders for each part, and part numbers for each job,
redundancy of data results and the programmer must
perform a double maintenance task. As an alternative,
IMS permits the specifying of a direct access pointer

from one segment to another, as shown in Figure 5.*
Here, the job order segment in the Part Data Base
does not contain the job order number but rather a
direct pointer to the root segment for that order number
in the Job Order Data Base. Other information, called
intersection data, may be recorded in the job order
segment in the Part Data Base. While a similar reverse
pointer can be made from the part segment under the
job, an equivalent capability would be to begin a chain
from the job order root, connecting all the segments
for this given job order number under the various parts
in the Part Data Base. To do this a "virtual" segment
(shown in dotted lines) is defined. Once these direct
pointers are in place, logical views of the combined
data base may be specified. A logical view is a hierarchy
of segments which, while not physically related in that
hierarchy, can be made to appear so by utilizing the
direct pointers. For example, when a programmer
accesses the job order segment under a part number,

PART NO.

(root)

JOB ORDER

(root)

(JOB ORDER)

Quantity
of Paft-Q

ROUTING
OPERATIONS

MACHINES

Figure 6—Logical view using logical parent

Use of logical pointers

* These are referred to as logical pointers to distinguish them
from the physical pointers used in the primary hierarchy as shown
in Figure 4.

1108 Fall Joint Computer Conference, 1972

JOB
ORDER

(root)

1 \h
PART NO #1
Quantity
Of Parts

These segments are actually chained
together with the logical twin chain
shown in Figure 5. When IMS accesses
them, it also gets the key of their
parent segment. In this way PART NO.
appears in the input area.

Figure 7—Logical view using logical child and logical twin

the record to appear in the buffer includes the job order
root segment in the Job Order Data Base. Another
possible logical view is shown in Figure 6.

Using other pointers, a different logical view would
appear to the programmer as shown in Figure 7. Here
the virtual segment appears to be under the job order
root. Since IMS retrieves the key of the parent segment
of a logical child segment, the part number appears in
this virtual segment as well.

This brief introduction to IMS contains obvious
oversimplifications, and the reader is cautioned to re­
fer to the IMS manuals for further detail. Other fea­
tures of IMS are introduced below as required.

THE DATA BASE DESIGNER

The use of a generalized data base management sys­
tem, and the desire for integrated data bases, both
necessitate centralization of the file design effort, rather
than distributing it among the various application
programmers, for example. Much has been written
about the importance of the data base designer and
his role as an interface among the applications teams.
Experience with IMS reinforces this view. Moreover,
experience indicates that the data base designer must
be knowledgeable in the applications at hand. The data
base design permeates the applications to such a de­

gree that if any hope of efficiency is to be realized, the
data base designer must be able to make positive con­
tributions to program and job stream flow based on
optimizing data base performances (relative to the
time and/or storage measures as discussed above).
Thus, it may be easiest from the application program­
mer's point of view to generate and deal with a par­
ticular logical structure, say as shown in Figure 7. But
it is the data base designer who knows that each part
record under the job number will require at least two
physical accesses; he can suggest the duplication of the
part number as a trade-off possibility.

Another reason that the data base designer must be
familiar with the applications is that application de­
pendent features are actually coded in the data base.
For example, IMS permits the optional specification
of only unique keys for multiple occurrences of a given
segment type. An attempt to add a duplicate key will
cause a certain message to be returned and this may be
significant in the program logic. Another instance of
such dependency concerns the addition and deletion of
segments using logical relationships. IMS permits sev­
eral options with regard to adding or deleting from a
logical view. In Figure 7 for example, suppose a pro­
gram reads a job number, and then deletes a part under
this job number. Certain IMS coding may now cause
the part number in the Part Data Base to be deleted
as well. Obviously, this coding should only be specified
after a thorough understanding of the application.

UTILIZATION OF RESOURCES

The price to be paid in the use of a generalized data
base management system is some overhead in resource
utilization, typically storage space, CPU time, or ac­
cesses. It is a mistake to assume this overhead is fixed,
and invariant to the data base design. Quite the oppo­
site is true: since each task consumes more resources,
the opportunity (and in many cases the necessity) for
efficiencies is very prevalent. A methodology of data
base design then, depends largely on estimating the
"overhead" or cost of certain options, in order that
profitable trade-offs can be made. Unfortunately, as
with many other systems, the costs associated with
various IMS features are not publicized, and in some
instances can even be counter-intuitive. In most cases
the data base designer must extrapolate from his knowl­
edge about the internal workings of the data manage­
ment system in order to estimate overhead.

Another input to design trade-off studies is data base
statistics. Accurate statistics about the data are vital
to an efficient data base design. Note that in some in­
stances, however, the use of a data management system

Data Base Design Using IMS/360 1109

1

PART NO.

(root)
Part Number
Standard

Reference #1
Standard

Refer ence #2

1
I #2
STANDARD
REFERENCE

#1

PART NO.

(root)

Part Number

1

Figure 8—Creating a new segment type

removes the necessity of obtaining accurate statistics
prior to data base design. These instances involve pre­
cisely the parameters which we are allowed to alter
without affecting the applications programs, since these
can be changed easily after actual experience with a
loaded file has been achieved. The use of IMS permits
the data base designer to allocate different physical
space to a file, change between HDAM and HIDAM,
add a new segment to certain places in the data base,
or change blocking factors, all without affecting an
application program. But he may not alter fields within
a segment, add a new segment to certain places, or
modify the logical pointers without incurring some re­
writing of the programs. To the degree that the data
base is more or less fixed, the trade-offs will only be as
good as the accuracy of the statistics upon which they
are based.

To illustrate the preceding points, consider this trade­
off problem concerning the specification of new segment
types. Basically the question is "under what circum­
stances is it best to create a new segment type?" One
case arises when subordinate data may repeat a number
of times; it is clear that a new, repeatable, segment is
preferable to a large space reserved for the maximum
data possible. But what if we know the data can only
repeat twice for example? More specifically, suppose we
wish to record references to standards for each part,
up to a maximum of two standards per part. The trade­
off is then between allowing for two such fields within
the part root segment, or creating a new segment type
subordinate to the part root segment containing a stan­
dard reference, as depicted in Figure 8. What factors
should be taken into account in making this trade-off?
The factors include the following items:

• The IMS storage overhead associated with each
new segment occurrence;

• The added complexity of the data base description;
• The unused space if a field is always present but

has no value;
. If HIDAM or HDAM are used, the space for the

pointer to a subordinate segment from the parent,
and the pointer connecting the child twins;

• The accesses necessary to obtain the data in a dif­
ferent segment;

• If HISAM is used, the time to process each new
segment type after the block is in core.

Thus the trade-off among storage, accesses, and CPU
time must address these factors. To simplify things
though, assume we merely wish to minimize storage
space, and each standard reference consumes 8 bytes.
Each IMS pointer requires 4 bytes, and there is a 4
byte overhead for each segment occurrence. If we allow
for 2 standards in the part root we clearly require 16
bytes per part no matter what. But the storage require­
ments for a new segment type depend on the actual dis­
tribution statistics of standards per part. If very few
parts have standards then we are better off with a new
segment type. Clearly also, if most parts actually do
have two standards then one segment is best since each
new segment requires at least 12 bytes, 4 for overhead,
and 8 for data (if HIDAM or HISAM are used 4 more
bytes for twin pointers plus 4 bytes for a pointer from
the part root to the new child are required as well). If
the actual occurrences lie somewhere in between then
more accurate statistics are probably needed for the
trade-off to be made. Otherwise, if either method is
likely to result in about the same storage requirement,
then some other factor, probably number of accesses,
would be optimized.

DATA BASE MAINTENANCE

Whereas on-line inquiry or status posting applications
are the more interesting ones, it is very often the batch
file update and reorganization runs which take up the
vast majority of system resources. The file designer
must be sensitive to the batch update requirements be­
cause these can become system bottlenecks just as eas­
ily as the on-line applications. In attempting to opti­
mize the overall system, a very delicate trade-off de­
cision is required.

Again, good statistics make for an informed decision.
An especially important use of these statistics is to esti­
mate file sizes and growth. File size estimates are needed
since the size of the file will directly affect the time re­
quired to backup and restore the file or to reorganize it.
This is in addition to the input of file size estimates to
hardware configuration planning.

1110 Fall Joint Computer Conference 1972

When using a data base management system such as
IMS/360, the data base designer must take into account
the storage requirement imposed by the system, in­
cluding pointers, control fields, and indices. Actual ex­
perience has shown that storage overhead for pointers
and IMS control fields can easily reach 50 percent of
the total storage requirement. In applications approach­
ing a billion bytes, this overhead becomes a very costly
factor. Not only must the cost for physical storage be
borne, but the maintenance load is proportionally in­
creased, resulting in a greater processing requirement.
Thus the trade-off between storage and accesses should
only be made considering the entire system—batch
data base maintenance as well as on-line transaction
processing.

A final note then about accesses. Hidden accesses in
IMS (i.e., the average ratio of logical accesses to physi­
cal accesses) has run as high as 4 or 5 to 1. Translating
into accesses per transaction, the result often shows
that between 20 and 50 physical accesses are required
per transaction. More complex transactions such as a
Bill of Materials update can require hundreds of ac­
cesses per item. One can see here that a data base de­
sign which minimizes hidden accesses can affect a re­
duction in running time of a B/M processor by sub­
stantial margins.

CONCLUSIONS

One can argue that a data base management system
should not be chosen until the optimal file structure has
been identified. In this way a system which supports
that structure can be selected—rather than forcing an
application into a structure dictated by the system and
thereby paying in performance. While this argument
has merit, practical considerations often leave no choices
open. To some degree this will be the case with many
IMS/360 users. I t is the only data base management
system supported by IBM for large applications. I t is
one of the few systems now supporting TP. It has many
(but not all) of the backup and recovery features needed

for large data base applications. Other systems like the
Honeywell Integrated Data Store offer file structuring
capabilities which may be more suitable to a particular
application, but are not implemented on IBM hard­
ware.

While this may sound fatalistic, it points up the need
to be especially careful in designing files under these
circumstances. Too many users have the view that
the use of IMS/360 or any other similar system pre­
cludes him from paying much attention to file design—
that the system will design the files. The examples above
show that this is not the case. The user should view the
data base management system as a tool in implement­
ing a design which has been arrived at by taking into
account both the applications requirements and the
features and limitations of the generalized system. Only
in this way can he expect both reasonable performance
and overhead.

REFERENCES

1 F H BENNER
On designing generalised file records for management
information systems
AFIPS Conference Proceedings Vol 31 1967 Fall Joint
Computer Conference

2 N CHAPIN
A comparison of file organization techniques
Proceedings of the ACM 24th National Conference
San Francisco California August 1969

3 A M COLLMEYER
File organization techniques
IEEE Computer Group News March/April 1970

4 A M COLLMEYER J E SHEMER
Analysis of retrieval performance for selected file
organization techniques
AFIPS Conference Proceedings Vol 37 1970 Fall Joint
Computer Conference

5 G G DODD
Elements of data management systems
Computing Surveys Vol 1 No 2 June 1969

6 J K LYON
An introduction to data base design
John Wiley & Sons Inc 1971

