
An information structure for data base
and device independent report generation

by C. DANA and L. PRESSER

University of California*
Santa Barbara, California

INTRODUCTION

The generation of computer output information that
is easily read by humans is a tedious and elaborate task
when present-day programming languages are em
ployed. This is certainly true when assembly language
is used. Features like PL/I 's DATA and LIST output
options are improvements over FORTRAN'S require
ments of mandatory FORMAT statements. However,
such desirable formats as tabular listings still require
much programming and coordination. Another trouble
some area involves the generation of information {i.e.,
reports) on devices that have different characteristics
(e.g., printer, CRT). Typically, the size of the "page",
and thus the amount of information that can be placed
on a "page" will be different for the various devices.
Current programming practice forces specification of
the output format in a device dependent manner. Thus,
to generate a report on more than one type of device
would require recoding the section of a program that
specifies the output format. Therefore, a method for
describing just the logical format of a report, without con
sideration of the characteristics of the possible output
device, would be desirable.

Once a device independent description of a report
is obtained, it is a natural extension to attempt to sepa
rate the specification of the report from any given file
or data base. Consequently, a generalized information
structure for data base and device independent report
generation is obtained. To generate reports it is nec
essary to implement a system that, with the device
specification as a parameter, interacts with the informa-
mation structure and the data base in order to generate
actual output.

This paper describes a data base and device inde-

* Department of Electrical Engineering. This work was supported
in part by the National Science Foundation, Grant GJ-31949.

pendent information structure for the representation
of reports, the environment in which the structure re
sides, and the support programs that allow the genera
tion of output.

It should be noted that a report need not be limited
to business applications as is now generally thought.
All areas of computer applications can benefit from un
complicated output coding and from an orderly pre
sentation of information. Indeed, there is a set of "out
put needs" that is common to most application areas.
For example, observe the structural similarity between
a report on employee's earnings (Figure 1) and a report
on the performance of subroutines (Figure 2). I t is our
firm opinion that every (computer) system should in
corporate at design time facilities for debugging and
measurement purposes. Hence, the need to output in
formation is inherent and ubiquitous, and thus, should
be an integral consideration in the design of any pro
gramming language.

It is worthwhile at this point to discuss the general
characteristics of a report. By a report we imply any
visual computer output that is easily understood by
humans. A report is not a static entity. That is, one can
not, in general, lay down on a pieee of paper the exact
line and column positions of all items that will be part
of a page and then complete the final report by just
filling in the assigned areas with values. There can be
sections of a report that may be repeated a number of
times, the actual number being known at the time
values are read from a data base. In Figure 1 each line
in the body of the report corresponds to one employee,
and the number of employees can vary from month to
month. Similarly, in Figure 2, the number and fre
quency of subroutines used can vary from execution to
execution. Therefore, since the final form of a report is
not known until the data base is read, the logical de
scription of a report must specify how input records are
to be obtained, processed, and actual output generated.
In general, one could conceive of a report whose final

1111

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1480083.1480147&domain=pdf&date_stamp=1972-12-05

1112 Fall Joint Computer Conference, 1972

Dept.

Page 1

EMPLOYEE EARNINGS

(A Sample Report)

Employee

John Smith

Ann Jones

Peter Wilson

Pay Rate

6. 90

6. 50

5. 00

41

4 5

60

TOTAL PAID OUT = $1768.20

Figure 1—Employee earnings report

$ 282.90

292..50

300. 00

Mary Adams

James Peterson

Henry Jennings

5

6

5

50

60

90

55

44

51

$

$

875

302

290

300.

40

50

40

90

? 893.80

period of time. Thus, a facility for testing relationships
between variables and performing actions based on the
results is needed for the logical description of reports.

The data base may not include all the values that
are to appear in a report. For instance, we may wish
to output total pay as part of a report when only pay
rate and hours worked is present in the data base. Or
we may desire to output average subroutine execution
time when only total execution time and number of
calls is present in the data base. Therefore, a facility to
carry out calculations is needed for the logical descrip
tion of reports.

In summary, the mechanisms needed for the logical
specification of reports are the basic elements of a pro
gramming language. In fact, the information structure
described here can be viewed as a special purpose report
generating machine. I t is also possible to view it as an
intermediate representation for the translation of the
output sections of programs. Indeed, it is this latter line
of thought that motivated this work.

INFORMATION STRUCTURE ENVIRONMENT

form would depend on a wide variety of relationships
among variables. For instance, in our business example,
we may wish to flag the names of those employees who
have worked more than a fixed number of hours and
whose pay rate is above a certain level. Similarly, in
the measurements example, we may wish to flag the
names of those subroutines that executed more than a
fixed number of times and required more than a certain

Program

Program 1

Program 2

Subrout

A

B

C

D

E

C

SUBROUTINE

(A

ine

Sample

Number
Exeout

3

5

1

5

3

1

USAGE DATA

Report)

ions
Total CPU
Time(ms)

129.51

100.92

71. 32

1100. 31

91. 29

39.98

Ave. time
per execution

43.17

25.18

71.32

220. 06

30. 43

39.98

TOTAL EXECUTION TIME = 1.S32 seconds

Figure 2—Measurements report

Our environment for report generation is outlined in
Figure 3. The user specifies, in some report generator

User Specification of Physical
Unit Parameters and Logical to
Physical Mapping

User Specification
of Report in SomeC
Language

TRANSLATOR INFORMATION
STRUCTURE

/
REPORT

MAPPER

i

OUTPUT
DEVICE

OUTPUT
DEVICE

User Specification of
Correspondence Between
Report and Data Base
Variables

DATA BASE
INTERFACE

Figure 3—Information structure environment

language, the form of the desired report. For our pur
poses a report generator language is any language that
possesses the facilities needed to describe the desired
reporting. It may be a language designed specially for
report generation (e.g., RPG), a more general language
that includes special facilities for report generation
(e.g., COBOL), or it may be a general purpose language
(e.g., PL/I , assembly language). In the latter two cases
the report generation code may only be part of a larger
program.

Information Structure for Data Base and Device Independent Report Generation 1113

ORT

C
cl
c2
c3

D
dl
d2
d3

A
al
a2
a3

REP

B
bl
b2
b3

A
al
a2
a3
a4

REPORT

B
bl
b2
b3
b4

C
cl
c2
c3
c4

D
d1
d2
d3
d4

logical report unit
physical report units

a. Logical report unit larger than physical report unit.

A

al
a2
a3
a4

REPORT

B

bl
b2
b3
b4

A

a5
a6
a7

B

b5
b6
b7

REPORT

A

al
a2
a3
a4
a5
a6
a7

B

bl
b2
b3
b4
b5
b6
b7

logical report unit

b. Logical report unit narrower than physical report unit.

Figure 4—Sample mappings

The user's program is translated such that the logi
cal description of the report is mapped into the informa
tion structure. (This information structure is discussed
in detail in a later section of this paper.) The key
information about the report, as originally described
by the source language and now embodied in the
information structure, is called the logical report. This
is a specification of the report (e.g., where the head
ings are to be and what they are to state) in terms
of some virtual (nominal size) surface called the logical
report unit. The logical report unit consists of a fixed
number of rows and columns. When the report finally
appears on an output device media (e.g., paper, CRT
face) it is called the physical report and the size of
the actual display surface of the device is termed the
physical report unit.

The mapping of a logical report unit into one or more
physical report units is called the logical to physical
mapping or simply th&report mapping. Such a mapping
includes obtaining data from the data base and the
proper placing of results in the logical report, before
generating a physical report unit. Report mapping is
carried out by a program referred to as report mapper in
Figure 3. Based on the information structure, the map
per fills out the logical report unit and then employs
default or user specified parameters in order to carry out

a logical to physical mapping. Examples of possible
mappings are shown in Figure 4.

In general, soft-copy devices require mappings dif
ferent from those employed with hard-copy units. In
the case of a hard-copy device the logical report units
can be split at arbitrary places to satisfy the physical
report unit. The hard-copy segments can be later placed
side by side and viewed as a whole. On the other hand,
in the case of a soft-copy device the output can only be
viewed one physical unit at a time; thus, care must be
exercised to make each display coherent and readable.
For example, the mapping shown in Figure 4a would
not be very meaningful if the physical units must be
viewed separately. In such a situation it is necessary to
repeat identifying information and to make sure that
all items are properly placed. Specific mapping algo
rithms are beyond the scope of this paper.

The report mapper buffers the physical report units
before sending these units to the output device. The
buffer size is important. If it is smaller than the logical
report unit, placement of information would be restrict
ed. For instance, a total could not be placed at the
top of a physical report if the physical report unit that
corresponded to the top of the physical report had al
ready been sent to the device by the time the total was
obtained.

In order to complete the discussion of the environ
ment outlined in Figure 3 we need to describe the inter
face with the data base. The user must specify the cor
respondence between the variables present in the infor
mation structure and those residing in the data base.
The function of the data base interface module (refer to
Figure 3) is to supply the report mapper program with
any data needed to generate a report.

INFORMATION STRUCTURE

The information structure consists of a number of
tables (lists) each of which describes a section of the re
port format or generation process. Entries in each of
the tables contain pointers to entries in other tables,
thus, a linked structure is formed as depicted in Figure
5.

The Report Head describes the gross structure of the
report. It contains the dimensions of the logical and
physical report units. The latter may be supplied by the
user or may be set, by default, to the value of the logi
cal report unit. The report head also specifies any ac
tions to be carried out at the beginning/end of the re
port and at the beginning/end of each logical page. The
report body action entry is responsible for all of the other
details of the report and, in essence, it represents the
bulk of the reporting activity. The action entries in the
Report Head point to a list of actions in the Action Table.

1114 Fall Joint Computer Conference, 1972

DATA DESCRIPTION TABLE (DDT) TEST TABLE

LOCATION
OF DATA IN
MEMORY

DATA
FORMAT FLAG TEST

IN TABLE
COMPUTATION
TABLE

To DDT{

ToDI

LINE TABLE

POSITION NODE

NODE TABLE

-To DDT

r -• *

{ «
^ ^

+
• * —

WM

REPORT HEAD

ACTION TABLE

Logical Report Unit Description

Physical Report Unit Description

Report Heading Action (s)

Logical Page Heading Action (s)

Report Body Actions

Logical Page Footing Action (s

Report Footing Action (s)

To
^•Action Table

INPUT

COMPUTE

TEST

OUTPUT

. 1

' 1

In Table
_To Computation

Table

Test Table
To
Line Table

> To Action Table

Figure 5—Information structure

The Action Table lists the sequence of actions that
comprise the report generating process. There are four
types of actions: input actions to obtain data from the
data base; compute actions (including logical opera
tions) ; test actions to determine flow of control; and out
put actions to create actual output. The detailed spec
ification of these actions is contained in the In Table,
Computation Table, Test Table, and Line-Node Tables
respectively. Flow of control in the Action Table is se
quential unless a transfer occurs as a result of a test.

The Data Description Table (DDT) contains informa
tion about the location and format of the data elements
manipulated in the report. All references to data in any
other table is specified by a pointer to a DDT entry.
The DDT entry in turn contains a pointer to the loca
tion in memory where the actual datum is stored. There
are two other fields in each DDT entry. The flag field is
used to represent one of three possible conditions: (1)
there are more data values to be input from the data
base; (2) there is not more data available from the data

base (i.e., "end of file"); (3) this datum represents an
internal variable.* The test field specifies any test that
is to be performed when the datum receives a new
value. In essence, this facility implements an "on-con-
dition". Such a capability may be exploited in the re
port generator language to free the user from having
to specify a detailed ordering of calculations.

The In Table consists of a set of nodes, where each
node is associated with an input action in the Action
Table. A node consists of an ordered list of pointers to
the DDT; the first entry of a node points to the last en
try. The DDT pointers pinpoint which data values are
to be input from the data base.

The Computation Table is a linear list. This table con
tains a postfix (Reverse Polish) representation of the
computations to be performed on data. Each entry rep-

* Internal variables are those created to store intermediate values
during report generation. It is assumed that a segment of memory
is dedicated to auxiliary storage.

Information Structure for Data Base and Device Independent Report Generation 1115

resents: an operand (i.e., pointer to the DDT), an opera
tor, or an end of computation marker. The sequences of
computations corresponding to compute actions in the
Action Table are delimited by markers.

The Test Table contains the specification of the tests
to be carried out and the action to be taken if the end
result is true. The operand field points to the postfix
representation of the test. The action field points to the
action to be executed if the result is true. Note that
tests are activated at two possible times: after manipu
lating (e.g., input operation) a DDT entry if the test
field of the DDT entry is not null; or when control flows
into a test in the Action Table.

The Line Table and the Node Table together specify
the format of rows of the logical report described by the
information structure. These tables support output ac
tions. The Line Table defines line (row) position in
formation for the lines of the logical report units. A line
may have either a relative or absolute position specified
in the position field. The relative position relates to the
previous line and is employed with those sections of the
report that may be repeated an indefinite number of
times. For example, referring to Figure 1, relative posi
tioning would be used to output a summary of em
ployees' earnings when the number of employees to be
reported is not known until the data base is read. An
absolute line position corresponds to a fixed distance
from the top of the logical report unit. I t is used for
those sections of the report whose positions will not vary
from (logical report) unit to unit: for instance, page
numbering. The segments of a line of output are defined
by a list of nodes stored in the Node Table. The first
node is specified by the node field in the Line Table.
Each entry in the Node Table specifies the tab (column)
position of the corresponding line segment, in the tab
stop field; the external format in which data is to be
output, in the output format field; and a pointer to a
DDT entry for the data item to be output, in the data
field. The tab stop field may also indicate a relative or
absolute position.

Next, we discuss the support programs that allow
the actual generation of output.

IMPLEMENTATION

The implementation of the system we have described
is divided into two main parts. First, it is necessary to
have a Translator that transforms a user's specification
of a report into our information structure form. Such a
transformation is not much different from that carried
out by conventional translators; thus, it will not be dis
cussed here. For an overview of the subject see Refer
ence 1. The second part of the system is the Report

TABLE I—Subprograms in Report Mapper

Subprogram
name

ACTION

COMPUTE

DATA

L I N E

N O D E

TEST

Associated Table

ACTION

COMPUTATION

DATA DESCRIPTION

L I N E

NODE

TEST

I N P U T IN

Function

Causes other subpro
grams to be called
as directed by the
Action Table.

Performs the operation
specified in the
computation table.

Accesses information
through D D T and
passes it to other
subprograms.

Causes a line of the
report to be properly
positioned and
triggers beginning/
end of page actions.

Converts internal data
format to external
format and positions
data in report buffer.

Causes execution of
logical test and sub
sequent transfer of
control.

Obtains new value for
input variable (s).

Mapper. The basic design of this unit consists of a series
of essentially independent subprograms. In terms of
Figure 5, each subprogram relates to a particular table,
and each performs the functions associated with the
table in question. The subprograms employed in an
experimental implementation are tabulated in Table I.

As an illustration, let us examine how the Node sub
program operates in order to place a segment of a logi
cal report line in a physical report. This subprogram
is called by the Line subprogram and it is passed the
address of the node describing the first segment of
the line to be output. Node obtains a pointer to the
DDT from the first entry in the Node Table. Next,
with the aid of the Data subprogram, the desired datum
is obtained as well as a description of its format. Then,
the data and output format specifications are compared,
and if they differ, a conversion to the otuput format
specified by the Node Table entry is effected. Finally,
the converted datum is positioned in a physical report
buffer, as specified by the tab stop field of the Node
Table entry and the report mapping algorithm. The
remaining segments of the logical report line under con
sideration are processed in a similar fashion. The physi
cal report is composed unit by unit in a buffer. When

1116 Fall Joint Computer Conference, 1972

the buffer is full it is output by a device dependent rou
tine and reset to blanks.

It is worthwhile to observe that the implementation
described here mechanizes a pseudo-machine whose
instruction repertoire consists, in essence, of the four
actions: input, compute, test, and output.

SUMMARY

In this paper we have presented an information struc
ture for report generation that separates the data base
and device dependent parts from the logical descrip

tion of a report. Such a representation of reports (i.e.,
output) allows a clean and elegant interface to data
bases and devices. It also brings out with some strength
the need for better output facilities in current program
ming languages. Furthermore, it may serve as a guide
in the design of report generator language facilities.

REFERENCE

1 L PRESSER
The translation of 'programming languages
In Computer Science A Cardenas L Presser and M Marin
(Eds) John Wiley and Sons Inc New York 1972

