
A survey of languages for stating requirements
for computer-based information systems*

by DANIEL TEICHROEW

The University of Michigan
Ann Arbor, Michigan

BUILDING COMPUTER BASED INFORMATION
SYSTEMS

Society depends more and more on the recording,
analysis, storage, processing, and transmission of data
and information. Practically every activity requires an
information system. The larger and more organized the
activity, the larger and more organized is the informa­
tion system which serves it. This paper is concerned
with Information Processing Systems (IPS) which are
built to aid the management and operation of an
organization. In particular, the paper is concerned with
the methods by which the information needs of the
organization can be communicated effectively to those
who are asked to implement systems to satisfy the
requirements for planning, control, and operations.

The size and complexity of society makes it imprac­
tical for a manager or other user personally to satisfy
his own information needs, and therefore several func­
tions have evolved with the growth in the use of the
computer:

Analysis: Frequently, this term is used with an
adjective such as systems, management, or

business. The objective of the analysis is to
determine, and record, the information needs of
the organization and the individuals in it.

Design: The purpose of design is to select the best
method of meeting information needs. Since
there are usually a number of alternatives avail-

* This work was supported in part by the ISDOS Research
Project, Department of Industrial and Operations Engineering,
University of Michigan, and by the IT. S. Army under Research
Grant DAHC 19-71-G-0005. An earlier version of this paper was
published as "Problem Statement Languages in MIS," in
E. Grochla (ed.), Management-Informations-Systeme, Band 14,
Schriftenreihe Betriebswirtschaftliche Beitrage zur Organisation
und Automation, pp. 252-282, Betriebswirtschaftlicher Verlag,
Wiesbaden, 1971.

able in hardware, software, and processing
organization, and since making changes once
construction has begun is difficult, it is crucial to
design the system as completely as possible
before beginning the construction.

Construction: This function consists of building
and assembing the modules selected in the design.
I t includes programming, file construction, hard­
ware acquisition and development of the neces­
sary non-computerized procedures.

In practice, the number of individuals involved in
these functions becomes large and some organization is
required. One common method is that of a project team
which accomplishes all three functions. Another common
method is to assign the three functions to separate
departments and pass a particular problem from one
department to the next, e.g., from analysis to design to
construction. (Detailed discussions of the systems
building process in use today are available in many
papers and books.1,2,3)

Regardless of whether the project team or functional
organization is used, it is of course desirable to docu­
ment as completely and precisely as possible at each
step. The chain of steps of analysis, design, and con­
struction, is only as strong as its weakest link and in
practice the chain falls apart first in the lack of adequate
documentation from one step to the next.

PRESENT METHODS OF DOCUMENTING
REQUIREMENTS

Overview of present methods

The purpose of an IPS, or any group of them, is to
serve the organization, and therefore any discussion of
the use of the computer must start from the objectives
of the organization and the means that its owners and

1203

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1480083.1480160&domain=pdf&date_stamp=1972-12-05

1204 Fall Joint Computer Conference, 1972

managers have chosen to achieve the objectives. As is
well-known, it is quite difficult to bridge the gap between
the managers and their chosen methods of operating the
organization and the precise statements necessary to
get computers to do the data processing. There are
several major reasons for this difficulty.

First, the organizations are very large and complex
and it is not easy for individuals, or groups of indi­
viduals, to comprehend all of the interrelationships to
the detailed level required for computer processing.
Second, the organization has a number of activities
going on in parallel and it is difficult to describe every­
thing in a "serial" fashion as is necessary for today's
computers. Furthermore, there is no good language for
communicating requirements that is understandable by
both management and the computer.

This paper concentrates on the techniques by which
needs are documented and transferred from the first to
the second step, i.e., from analysis to design. The paper
is not specifically concerned with the process in the
first step, namely, the determination of what the
information requirements should be.

Methods for reducing problems associated with
documentation of requirements

There have been various attempts to reduce the
documentation problem by "shortening" the distance
between the person in the organization who needs the
information (the user) and the computer. Some methods
are listed here in order of the amount of detailed docu­
mentation the user must supply, directly or indirectly,
from very little to a great deal.

Turning the problem over to another
organization

One intuitively appealing approach is for the or­
ganization to contract with another for all of its in­
formation needs. This has become known as "installation
management" or "facilities management." There is not
yet enough experience to indicate how successful this
will be but in any case, it merely transfers the problem
of documentation to another organization. There is
certainly more opportunity for this firm to develop
expertise in documentation and in fact the absolute
necessity of legal, contractual agreements should lead to
formal documentation of requirements.

Generalized software packages

In this approach all that is required of the user is to
select the package that is appropriate to his needs and

to supply the values of the appropriate parameters.
Generalized packages4 are basically of two kinds—
application dependent packages and application in­
dependent packages. Application dependent packages
are generalized programs for performing specific applica­
tions such as billing, payroll, accounting, banking and
engineering. Application independent packages include
report generation and file maintenance, operating
system enhancement, simulators and performance
monitors, and programming aids. Generalized packages
have had only limited success and account for only a
small part of the total software development. A recent
report5 estimates the 1972 revenue to be $90 million for
applications packages and $110 million for application
independent packages. Major interest currently centers
on what is probably the most sophisticated example of
this approach, the data base management systems,6

some of which are controlled by parameter values
entered on forms or questionnaires—the most widely
used example in this category is MARK IV.6 (Other
data base management systems are controlled by task
definition and data definition languages.) An example
of where user requirements can be stated on forms and
directly translated to object code is the Applications
Customizer used for the IBM System/3.7,8

User-oriented languages

This approach differs from that of generalized soft­
ware packages in that the user supplies statements
rather than parameter values. A user-oriented language
is one in which the statements are intuitive and under­
standable to the user. In the case where the users are
managers, the most frequently proposed languages are
subsets of English. A number of such languages are in
existence but their use appears to be limited to special
situations. An example of a user-oriented language
intended for management information systems is
MUSE.9

"Conceptual" frameworks

In these systems the basic framework is provided by
the language and is available in a package. This must
be supplemented by additional programs unique to the
particular situation. An example of this approach is the
SIMSCRIPT system for simulation and MAST10 for
business data processing. The user must select the
appropriate system and then state his own unique
needs usually at the level that permits a program to be
written. In practice this approach requires that the
user describe his requirements to an analyst or pro­
grammer rather than using the language himself.

Survey of Languages for Computer-Based Information Systems 1205

"Block" system

"Basic Functions" or "Primitives" are denned and
usually implemented as macros or sub-routines. The
user must then assemble these blocks to satisfy his
needs. An example is the BEST system ;11,12-13 several
general descriptions exist.141516 While in theory this
approach permits a user to state his needs without a
programmer, in practice these systems are used by a
programmer. Even for this use, however, these systems
to date have received only limited acceptance.

General purpose programming languages
(GPPL)

The general purpose programming languages,
COBOL, FORTRAN, and PL/1 currently are the most
widely used method for building information systems.
This category also includes assembly languages which
are used whenever optimum use of hardware capabilities
is paramount. These languages, of course, require that
the user obtain the services of a programmer to imple­
ment his information needs.

Relative importance of different approaches

While the above listing has not been supported by
quantitative data on relative usage, there are few who
would contest the conclusion that by far the largest
amount of effort in system building today is based on
the use of general purpose programming languages and
that undoubtedly this will continue to be true for the
foreseeable future. Packages that accomplish "data
processing tasks," particularly those now commonly
referred to as data base management systems, will
come into wider use, and while their use will reduce the
amount of programming that would otherwise have to
be done, a very large fraction of the total system build­
ing will continue to depend on the use of general purpose
programming languages. I t is therefore worthwhile to
examine the system building process based on the use of
general purpose programming languages and particu­
larly the inherent problems of communicating between
the persons who need the outputs from the system to be
constructed and the first automaton in the sequence,
namely the compiler. In order to describe these problems
it is necessary to make a basic distinction between
requirements that an IPS is to satisfy and the processing
procedures that will be used to obtain the desired
results.

Distinction between information requirements and
processing procedures

At the heart of the problem of system building lies
the distinction between stating information needs and
developing processing procedures that are to be used
to satisfy them using the technology of computer-based
information processing systems available today. This
is a particular instance of the very general concept of
goals-means chains. One starts with a goal, lists the
various means that could be used to achieve the goal
and selects one which then becomes the goal; then the
possible means to achieve this goal are listed, one is
selected, and so on.

As an example, suppose one is at point A and has a
goal of getting to point B. The possible means may be
walking, taking a bus, taking a taxi, etc. Assume the
taxi method is selected. The goal of getting to point B
is communicated to the taxi driver and he selects the
means, e.g., the route, etc. Sometimes the passenger
will tell the driver the route rather than the destination
and sometimes the driver will question the goal (the
passenger should go to C instead of B). In general, these
actions will be undesirable; in the first case, because the
driver presumably knows more about which route is
best and in the second because the passenger knows
better where he wants to go. This analogy is relevant to
the system building situation because ideally the user,
or his analyst, should determine the goals of the com­
puter-based system and the system designer and
programmer should then select the best method of
implementation. All too often, unfortunately, the analyst
worries about the best computer means (e.g., the best
file structure and record layout) and the programmer
worries about the goal (e.g., is this report really
needed?). Consequently, both the analyst and the
programmer do poor jobs and the resulting system is
not effective.

Satisfying the information needs of organization can
be represented by a goals-means chain, usually of
several stages. The distinction between requirements
and procedures at the level immediately before the
physical systems design and programming can be
illustrated by a simple payroll processing example. (In
this simple example, the statement of requirements is
represented by one and only one stage. In more realistic
examples, several stages of goals-means analysis may be
required). The task of the person specifying the needs,
i.e., the problem definer, is to describe the requirements
for the "target" system which will produce one output:
employee paychecks. Certain input information will be
available to the target system and the required output
type and format is known. These are shown in Figure 1.

In this example it is assumed that the purpose of the

1206 Fall Joint Computer Conference, 1972

OUTPUTS, INPUTS, AMD TRANSFORMATIONS

•
TRANSACTION

RECORDER

-> PAYCHECK

EVENT: -EMPLOYEE ENTERS

BADGE WHEN STARTING

OR TERMINATING WORK

DATA: -EMPLOYEE NUMBER

-TIME

ONE PAYCHECK REQUIRED

EACH WEEK AT 1:00 P.M.

TUESDAY FOR ALL

EMPLOYEES WITH NON­

ZERO DATA ELEMENTS

NET PAY = GROSS PAY - DEDUCTIONS

GROSS PAY = TOTAL HOURS WORKED x RATE

SYSTEM REQUIREMENTS

-The number of employees is given by the value of the data item "NE"

-The objective of PAYSYSTEM is to produce the required outputs on

time at minimum cost

Figure 1—Statement of requirements for the IPS
called PAYSYSTEM

target IPS called PAYSYSTEM is to produce one
output called PAYCHECK. The time the outputs are
to be available is given: each week at 1:00 p.m. on
Tuesday for the previous week's work. The number of
outputs is specified by saying that one PAYCHECK
is required for each employee for whom at least one of
the data items included in PAYCHECK other than
NAME is different from zero.

The form of the output is stated to be a document
containing three data elements: NAME, GROSS PAY,
NET PAY. Formulas for computing GROSS PAY and
NET PAY are given. PAYSYSTEM must accept one
input called EVENT which occurs whenever an em­
ployee enters his badge into a transaction recorder.
When this occurs the EMPLOYEE NUMBER and
TIME are recorded.

Some additional information is given: the number of
employees is given by the value of data item NE, and
the objective of the IPS is to produce the outputs at
minimum cost.

The type of information mentioned above, and shown
in Figure 1, is representative of what is necessary to
describe the requirements and is sufficient for the
purpose of this example, although in a real situation
much additional information would have to be specified.

For example, Where does the value of NAME come
from and how is it associated with the value of EM­
PLOYEE NUMBER?, How is the value of TOTAL
HOURS WORKED determined from TIME?, Where
does the value of DEDUCTIONS come from? Addi­
tional inputs have to be defined, e.g., to add a new
employee to the set of valid EMPLOYEE NUMBERs
and to supply changes to the value of RATE and
DEDUCTIONS.

All of this merely corroborates what everyone already
knows, namely that stating all the requirements for an
organization can be a tedious process. Unfortunately
tedium is all too frequently avoided by omitting details
that are thought to be obvious and leaving them to the
programmer to fill in later.

Under any method of system building the type of
information illustrated by Figure 1 has to be collected.
Usually this is done manually and is recorded using a
natural language (English) augmented by tabular or
graphic methods such as decision tables and flow charts.
Sometimes an attempt is made to follow the company
manual that prescribes standards for documentation.

The deficiencies of manual documentation systems
based on the use of natural languages have been ana­
lyzed in detail elsewhere17 and it is sufficient to merely
summarize the major shortcomings. While English is a
good language for communicating qualitative informa­
tion, it is too ambiguous for quantitative relationships.
The addition of tables, flow charts, decision tables helps
a little but major difficulties still remain. The methods
are too imprecise, e.g., different data names may be
used causing confusion and incorrect results. Manual
documentation cannot cope with changes. In large
systems the documentation becomes too costly and it
absorbs too large a share of total resources. Finally,
manual documentation methods based on natural
languages cannot be automated efficiently.

In the design process the system designer might
follow the procedure outlined in Figure 2. First he will
determine the hardware that will be used. Sometimes
there is only one alternative, in some other situation
this step may require considerable effort. Next he will
choose the hard software through which the IPS will be
constructed and also through which it will be operated.
As one aspect of this process the system designer should
consider which of the methods outlined in the previous
subsection should be used. In most cases today the
method of construction will be through general purpose
programming languages perhaps supplemented by data
base management systems.

Then the system designer decides what files are
needed and what information they should contain. In
this case, assume that he has decided that there will be
a file called EMPFILE and that it will be stored on a

Survey of Languages for Computer-Based Information Systems 1207

HARDWARE SELECTION

HARD SOFTWARE SELECTION

FILES AND FILE ORGANIZATION

EMPFILE: ONE RECORD FOR EACH EMPLOYEE ON RANDOM

ACESS DEVICE

QUEUE: A LIST OF EVENTS WAITING TO BE PROCESSED

PROCESSING PROCEDURE PROGRAM

1. BUILD UP QUEUE FOR A WEEK

SORT

UPDATE EMPFILE AND PRODUCE PAYCHECK

2. BUILD UP QUEUE FOR DAY

SORT

MERGE AT END OF WEEK

UPDATE EMPFILE AND PRODUCE PAYCHECK

3. UPDATE EMPFILE FOR EACH EVENT

PRODUCE PAYCHECKS AT END OF WEEK

Figure 2—Physical system design

random access unit with one record for each employee
and that another file called QUEUE will contain all the
events waiting to be processed.

Next, he makes a list of alternative processing pro­
cedures (perhaps mentally) and chooses the one which
seems to be the best. In this case he might consider
letting QUEUE build up for a week (since the output is
needed only once a week), sort by EMPLOYEE
NUMBER at the end of the week and then update
EMPFILE and produce the outputs at the end of the
week. In alternative two QUEUE would be built up
each day, sorted each day and merged at the end of the
week. As alternative three, he might consider updating
EMPFILE for each EVENT as it occurred and then
producing the output in a weekly run.

The alternative the system designer would choose
should be based on the objective stated in requirements.
This is frequently a difficult step and may involve much
effort if done completely. In this case he may choose
alternative three since it is the simplest in concept.
However, if he is concerned with processing time he
might choose alternative one because it will require less
computer time than alternative three. Once the alterna­
tive has been chosen the designer then divides the
system into parts. Specifications for the various parts
of the system are prepared and given to a programmer
to write the programs.

The system building process as described above, and

as conducted today, depends on manual documentation
through the analysis and design phases. Formal docu­
mentation begins when the programmer expresses
specifications furnished by the system designer in a
general purpose programming language. While the basic
purpose of this paper is to compare languages for
documentation during the analysis phase it is necessary
to clearly document why general purpose programming
languages are not satisfactory for this purpose, if for no
other reason than to dispel the myth, still far too widely
believed, that they are.

System building using General Purpose Programming
Languages (GPPL's)

While there are methods for causing computers to
produce needed output which do not depend directly on
GPPL's, it was concluded above that much of the
system building in the future will be based on the use
of GPPL's or their immediate extensions.

In practice GPPL's are involved in system building
only in the construction phase, as shown in Figure 3.
The programmer produces source statements which are
turned into object code by a compiler. The use of general
purpose programming languages causes problems in
systems building because by default they frequently are
the documentation for the earlier phases. Throughout
this discussion COBOL will be used as the example of
GPPL since it is now the most widely used in building
organizational systems. (The basic arguments, however,
are just as valid for the others: FORTRAN, PL/1 ,
and ALGOL, etc.

When COBOL was first developed, it was claimed to
have the advantages of being self-documenting and
hardware independent. While in most cases it is un­
doubtedly better to use COBOL than an assembly
language, the limitations of COBOL for organizational
users of computers are becoming more and more evident:
COBOL is a second generation language; it forces the
intermixing of business specifications and data pro­
cessing functions; it results in freezing procedures in
the programs; it is not a satisfactory method for com­
munication of information needs; and its use limits the
number and size of systems that can be built. The
effect of each is discussed further below.

ANALYSIS
IHFORMATIOH

HBEDS

STATEMENTS
COMPILER

Figure 3—Use of GPPL in systems building

1208 Fall Joint Computer Conference, 1972

"Second" generation hardware

COBOL was designed to be compiled on second
generation hardware. It was developed using experience
of another general purpose language, FORTRAN,
which was initially designed for first generation hard­
ware; the changes were primarily intended to make
COBOL suitable for business data processing, as
opposed to numerical calculations. Since COBOL was
developed for second generation hardware, it has no
facility for dealing with hardware capabilities that are
generally available in third generation, but not in second
generation, hardware. A program written in COBOL
cannot make effective use of random access devices, for
example, without some extensions either in the language
or in the addition of another language, such as the
command language to communicate with operating
systems.

COBOL programs are more or less hardware in­
dependent of hardware capabilities from one generation
to another. The result, however, is performance that is
not hardware independent when hardware capabilities
change. One immediate consequence of this is that once
requirements are implemented in COBOL, the programs
must be redone for the next generation, otherwise the
result is merely emulation.

As a requirements statement language, COBOL is
also limited because much of the information of the
type illustrated in Figure 1 cannot be represented. For
example, there is no provision for stating that outputs
are needed at a certain time or for stating the number
of outputs that will be needed.

Intermixing of business specifications and
processing procedures

The use of the COBOL language forces the inter­
mixing of the definition of information needs, here
called business data specification functions, and the
procedures chosen to satisfy the needs, here called data
processing functions.

—Business Data Specification Functions (BDSF)
define the data manipulation and calculation that
must be accomplished to satisfy requirements.
Usually these are formulas that define the value for
one or more variables, e.g., a BDSF may be "ex­
pected sales in a given region, in a given period for
a given class of products" or "the total value of
inventory at a given time." BDSF are part of the
statement of information requirements; in the
example in Figure 1, the BDSF are:

NET PAY = GROSS PAY-DEDUCTIONS
GROSS PAY = TOTAL HOURS WORKED*
RATE

In many cases, there may be several ways to define
a business function. For example, "inventory
value" may be defined using the First In-First Out
or First In-Last Out method. It is the responsibility
of the user to state the exact definitions he wishes
to have used. The BDSF are independent of the
particular computer implementation that is used
to perform the computation.

—Data Processing Functions (DPF) are the opera­
tions that must be used in any particular imple­
mentation in order to accomplish the actual com­
putation of the values of the business data specifica­
tion functions at the time they are needed. For
example, in order to (eventually) compute "in­
ventory value," data values such as quantity and
price must first be stored somewhere. Then they
must be retrieved, multiplied, and summed. Other
BDSF may use one or both of quantity and price,
and hence, it may be better from a data processing
point of view to combine several of these require­
ments. The DPF used are dependent on the
particular hardware and processing procedures
selected for their implementation. Data processing
functions are selected during the design process; in
the example in Figure 2 some of the DPF's used are:

SORT, MERGE, UPDATE

It is essential to be very precise in distinguishing
between BDSF and DPF. For example, the user may
specify that the IPS in Figure 1 is to produce PAY­
CHECK alphabetically by NAME. This is different
from saying, SORT by NAME. SORT is a DPF which
may or may not have to be performed depending on
other system design decisions.

The use of COBOL results in a program containing
both the BDSF's such as

NET PAY= GROSS PAY-DEDUCTIONS

and the DPF's that the systems designer has selected,
e.g.,

SORT

Since both BDSF and DPF are intermixed, usually
in relatively complicated ways, it is difficult for pro­
grammers to separate out the statements which imple­
ment the BDSF from those which implement DPF and
it is certainly impossible for a computer program or a
user to do so. COBOL designers recognized the necessity
to separate data descriptions from the statements in
the procedure division. It is now necessary to go one
step further and separate BDSF from DPF.

Most organizations are now trying to develop data
directories and data bases on an integrated basis for as

Survey of Languages for Computer-Based Information Systems 1209

large a part of the organization as possible in order to
avoid duplication and permit comprehensive analysis.
In the same way, organizations in the future can be
expected to develop directories of BDSF so that they
can have standard definitions that can be specified once
and used whenever needed.

Freezing processing procedures in programs

One of the consequences of intermixing BDSF and
DPF is that the processes are frozen into the program.
The programmer expresses the means that the system
designer has selected which then become goals to the
compiler. The language forces the programmer to
specify processing at the level of locating, reading, and
writing records and operations on individual data
items (PL/1 permits some operations on arrays, i.e.,
matrices). Therefore, once a program is written units of
data cannot be changed without changing the pro­
grams. In general, whenever the processing procedures
are changed because of changes in hardware, volume of
processing, etc., it is necessary to reprogram.

GPPL's as documentation for communicating
information needs

When general purpose programming languages were
first considered for business problems it was expected
that the language being developed, COBOL, could be
used for the documentation of information needs. How­
ever, this has not happened, as is well stated by
Weinberg:18

"Some years ago, when COBOL was the great
white programming hope, one heard much talk
of the possibility of executives being able to read
programs. With the perspective of time, we can
see that this claim was merely intended to attract
the funds of executives who hoped to free them­
selves from bondage to their programmers.
Nobody can seriously have believed that executives
could read programs."18

COBOL programs are not satisfactory as a com­
munication medium between the user and programmer
precisely because they must contain the DPF's. Much
of what a user reads when he tries to read a COBOL
program is not of interest to him.

Programmer productivity

The amount a programmer can write in COBOL in
any given time is limited. Programmer productivity is

measured in terms of statements per day—from five to
twenty-five. There are not enough programmers to
write all the programs that are needed. The reasons for
this rate of productivity are partly the difficulties
caused by lack of adequate documentation of require­
ments and partly the fact that the DPFs are pro­
grammed many times.

Improvements and extensions to General Purpose
Programming Languages

The limitations inherent in the GPPL's listed above
are, of course, well-known and a number of attempts to
improve or extend COBOL have been made. These
need to be listed to examine whether an extended lan­
guage could eliminate the need for a new requirements
language.

"Larger" verbs such as SORT and REPORT
WRITER have been embedded in COBOL so that the
program is easier to understand and requires less pro­
grammer time. Facilities have been added to COBOL to
make it possible to use the capabilities of third genera­
tion hardware. For example, one manufacturer added
IDS to COBOL to make it possible to use random
access devices efficiently. Operating Systems and Job
Control Languages have been developed to interface
the programs and the machines with new capabilities.

These efforts, and the efforts to build data base
management systems, are necessary in order to use the
present day machines to solve today's problems. How­
ever, it is unlikely that such incremental improvements
will be sufficient, just as it is doubtful that continued
incremental improvement in assembler languages would
ever have led to FORTRAN because of the limitations
inherent in assembler languages. Similarly, the present
effort to solve the problems of adequately documenting
information needs by building data base management
systems starts by accepting some current features which
will, in the long run, limit the effectiveness of the
approach.

Need for a requirement statement language

What is required to overcome the difficulties cited
above is a formal method of communicating information
needs. I t must be able to express needs of the type
exemplified by Figure 1 without implying any data
processing functions of the type selected in the design
process exemplified by Figure 2. The analysis in this
section has been directed toward showing that general
purpose programming languages and their extensions
are not suitable for this purpose. The next section will
describe a number of languages that have been proposed.

1210 Fall Joint Computer Conference, 1972

A set of detailed specifications for an ideal "require­
ments statement language" will then be given.

COMPARISON OF REQUIREMENTS
STATEMENT TECHNIQUES

Survey of techniques

The need for a more formal method of documenting
requirements for information during the analysis phase
has long been recognized. A number of techniques have
been proposed. Some of these are listed in Table I.19-53

Undoubtedly this list is not complete but it includes the
known techniques that state as their objective the
formalization of statement of requirements or include

TABLE I—Systems Analysis and Requirements

Acronym

ADS

ASYST
AUTOSATE

CADIS
CAMIL
CASCADE
CODIL
CORIG
DATAFLOW

IA

LA
LO

MINOS
PSL

SCOTT

SYMOB
SYNGE
SPEC

SSP

Statement Techniques

References

19,20

21
22,23

24,25
26
27,25
28

29,30,31

32,33

34

35,36,37
38,39

40

41

42

43

SYSTEMATICS 44,45,46,47,

TAG

ucs
YK

48,49
50,51
52

53

Developer

National Cash
Register Co.

Miles Hudson
Rand Corpo­

ration
J. Bubenko
S. Waters
Arne Solvberg

Status

In use

In development
Inactive

In development
In development

C. F. Reynolds In development
Not known
National Com­

puting
Centre

CODAS YL
Committee

H. B. Ladd,
W. P.
Marcovic

B. Langefors
Lionelle

Lombardi
CEGOS
ISDOS

Project
SDI

Associates
Bull, France
Not known
Englic

Electric
Robert Brass
C. B. B.

Grindley
IBM
Taggart
Phillips
Young and

Kent

Inactive

Inactive

Inactive

In development

Not known
In development

In use

Not known
Not known
Inactive

In development
In development

In use
Not known
In development
Inactive

"analysis" in their title. (Information on omitted
techniques is welcome.)

The basic criteria used for inclusion in Table I were
as follows:

i. The language must be designed to state in­
formation needs to the system designer and
programmer, i.e., it must not permit Data
Processing Function statements,

ii. There must be some attempt to develop a formal
syntax sufficient to permit analysis by computer
programs if desired,

iii. There must be a reasonably detailed description
of the language available in the published
literature.

These criteria eliminate a number of languages. In
particular, all the languages and techniques mentioned
in the second section of this paper are not considered
further. The second criterion eliminates the (manual)
documentation techniques that are part of most system
building procedures.1,2,3 The language developed by
Bosak54 is not included because it is a file processing
language rather than a problem statement language.
The output decompositions method (ODM)55 and
simulators56,57 are not included because they are pri­
marily design techniques though they require a state­
ment of requirements in a structured form as input.
Programming languages such as APL,58 Dataless
Programming59 and BCL60 are eliminated under the
first criterion since they require statements describing
data processing functions. Software packages concerned
with only parts of the information needs such as
LEXICON61 for data definition will be analyzed sepa­
rately in a later paper.

Previous surveys of some of this literature (and of
other related languages) are given by Young,62 Shaw,63

Head7 and in the discussion and proceedings of two
workshops.64,65,25 Shaw's survey includes Information
Algebra,32 Lombardi's Algebraic Data System,39

Iverson's language,58 BEST,11 as well as Decision
Tables, IDS, LUCID, ADAM, COLINGO and ATS,
which are not included in this paper. Young62 surveyed
BEST,11 Decision Tables, Lombardi's Algebraic Data
System,39 Iverson's language,58 Information Algebra,32

and Young's and Kent's Abstract Formulation.53

Information Algebra is also discussed by Sammet66 in
the chapter on "Significant Unimplemented Concepts."

All of these techniques have in eommon the attempt
to bridge the communication gap between the Analysis
and the Design phases shown in Figure 3. However, a
detailed analysis and comparison of all of these pro­
posals is clearly not feasible in this paper. Therefore, a
few techniques have been selected for more detailed

Survey of Languages for Computer-Based Information Systems 1211

examination. All these techniques satisfy one or more of
the following: they are in current use, they represent
areas for further improvement and development or
they add to the understanding of the historical de­
velopment.

Most of the analysis in this section is based on seven
selected techniques. The earliest is the work by Young
and Kent (YK).53 Information Algebra (IA) is the
result of work by the CODASYL Development Com­
mittee.32 Langefors (LA) published several papers in
BIT,35,36 which have been incorporated into a book.37

This work is being continued by a number of projects
in Scandinavia.25 Lombardi's Algebraic Data System
(LO) was published in COMMUNICATIONS OF
THE ACM.32 Accurately Defined Systems (ADS) was
developed by the National Cash Register Company.19'20

TAG was initially developed by Myers50 and is described
in Reference 51. Grindley has published several papers
describing SYSTEMATICS (SY).44"49

All these seven approaches are concerned with the
problem definition phase of IPS building and hence
satisfy the first criterion:

IA: "The goal of this work is to arrive at a proper
structure for a machine-independent problem-
defining language at the systems level of data
processing."

LA: "A formal method for performing systems
analysis of information systems in business and
elsewhere is needed in order to save systems work
and programming and to obtain better systems."

YK: "There are three stages in the application of
high speed digital computers to data processing
problems:

i. Systems analysis—the task of determining
what is to be done,

ii. Programming—a statement of how it is done,
iii. Coding—a translation of this statement into

machine language.
This paper presents a first step in the direction
of automatic programming as well as a tool which
should be useful in systems analysis."

LO: "[The language] relies exclusively on non­
procedural representation of processes as sets
(tables) of relations between data and results
(there are no control statements such as GO TO,
etc.) instead of procedure descriptions (which
are one-to-one translations of flow charts)."

ADS: ADS is specifically intended for complete
specifications of problem requirements: "The
completion of ADS forms gives the definer a
well-documented application that includes all of
the information requirements of the problem."

TAG: "The Time Automated Grid (TAG) tech­
nique is a computer tool for use in systems
definition, analysis, design and program defini­
tion."

SY: "SYSTEMATICS is a language for describing
information systems without considering the
strategy needed to implement them."

YK, ADS and TAG are problem statement tech­
niques that use a practical, straightforward approach
without any attempt to develop a "theory" of data
processing. They consist of a systematic way of record­
ing the information that an analyst would gather in
any case; any experienced analyst could use either ADS
or TAG with very little instruction. IA is more con­
cerned with developing a theory. I t uses a terminology
and develops a notation which is not at all natural to
most analysts. LO is more like a non-procedural pro­
gramming language than a requirements statement
technique, since in order to use it, the system design
must be completed, i.e., the file processing runs needed
must be known. (The language as described in the
literature applies to batch processing only.) The
approach, however, is relevant because it presents a
"non-procedural" technique for stating processing
requirements once the runs are determined. LA starts
with a precedence relationship among information sets
(files) but does not indicate how these are obtained.
This technique therefore is more relevant to the analysis
of a problem statement and to the design of a system.
However, it does suggest some desirable features of a
problem statement technique.

Comparison of features of selected languages

In his review, Young states his difficulty in comparing
the techniques he considered:

"I wish that I could fit all of the developments
described here into some sort of nice conceptual
framework, but I find it difficult to do so. Each of
these systems is intended for a somewhat different
purpose, and each implementor has had his own
ideas on philosophy and language. Perhaps the
best I can do is state what I feel are some of their
major advantages and leave as an exercise for the
reader any sort of generalization."

These seven approaches, on the surface, appear to
be very different but upon detailed examination, they
have some major similarities.

All of the techniques take essentially the same view
of the problem. The purpose is to describe how to

1212 Fall Joint Computer Conference, 1972

03

• § S3

a >*
S CO - (J
GO

CO

O
g

£
s3
o T3

O .3
0> -+3

ST <D

D
O

C
U

-
A

N
D

D
O

C
U

-

N
P

U
T

M

E
N

T

F
IL

E
S

U

T
P

U
T

M

E
N

T

i—i

o

a ^
O

M
•8 M

S3
53

o .
T 5 w

{ *

E

^2

o
PH

i CO

<J s so a o £
e fa CQ 3 s H

§ CO
M

 PH

PH

o

p
o
O

CO

PH
«

H
P
PH

EH

P „ °a
Py-
PH H

tfPn

o

P
O
O
P
r SQ
^ ^ £&
PH M
EH 5
£>§
O
CO
<
PH

EH
13
PH
H
P
O

PH
O
fa

CO
PH

S CO
H
CO

PH

P

g
f—i

o

P
i—i

T3
<U
co
S

- * 3

o d

TS
<X>
OS
3

-+a
O
CI

T3
o>
03
53

+s
O
d

• ^ 8
cl t-i

O
h-1
H
<3

PH
O
fa

PH
P

-d

o
i—i

EH
<3

PH
O
fa
55

CO
P
PH

w
hH

Q

P

W PH PH PH O P PH K ? < 5

EH
P
PH
EH
P
O

O

uJ '"H

« c o

EH

P
CM

o

EH

H »-H

O
EH

PH

O

o
o
HH

fc o

^ Pi co
PH

CO

13

PH Q

CO

J . ^
O ^ PH &

^ o o w

gtf.SJA

CO

o
»—•
PH
PH

CO

as
A

55
O
i—i
H

P •—(
PH O

O ^
O

<3S

Q 2

SPEH

CO

g
S
H
P co
PH •—•

co
W

s
O

CO

a
HH
fa
fa
o
w
CS3
t—i
CO

CO

s
Pi
O
fa

fa

o

9 PH
P <1
W PH
O O

PH

Woo

PH ffl PH S {5

o g g § H H 2

fa^oS^coWo
l ^ f a ^ g P H ^ ^

n -̂H

P fc!

EH

PH
O
fa

PH

S
PH
fa

E ^ P

W «2

W f a

Survey of Languages for Computer-Based Information Systems 1213

produce outputs from inputs. All of the techniques
provide some method for describing data relationships
as the user views them. All provide some way for
stating the computational relationships, i.e., the busi­
ness data specification function. Several provide some
method for stating other data such as time and volume.
All are concerned with appropriate methods of re­
cording and presentation of requirements.

The techniques are compared in these five areas of
similarity and a summary is given in Table II. Each
line of this table gives the different names used by
different authors. Throughout this section terms that
are used with specific meanings in the techniques are
capitalized.

Form of the problem

The first category for comparing the seven approaches
deals with their view of the overall problem. The
following quotes give the authors' definition of data
processing systems and their approach to analysis and
design.

IA: "An information system deals with objects and
events in the real world that are of interest.
These real objects and events, called "entities"
are represented in the system by data. The data
processing system contains information from
which the desired outputs can be extracted
through processing. Information about a particu­
lar entity is in the form of "values" which
describe quantitatively or qualitatively a set of
attributes or "properties" that have significance
in the system. Data processing is the activity of
maintaining and processing data to accomplish
certain objectives."

LA: "There are some basic propositions made
here in connection with the systematic approach
advocated, which appear to be in contradiction
to present practices or assumptions. One is the
hypothesis that in most cases it is possible to
isolate and define the relevant organization
functions in a separate operation to be per­
formed before the actual design of the system is
attempted. I t is thus assumed that these func­
tions are defined from the basic goals of the
organization and therefore will not need to await
the detailed construction of the system. The
other hypothesis is that it is possible to define all
input information necessary to produce a desired
output. The basic assumption here is that
actually any information can only be defined in
terms of more elementary information, which
will then occur as input parameters. Therefore,

once a class of information is defined then it is
known what input information is required for its
production. The point here is that it should not
be necessary to work out formulas, or even
computer programs, before it can be determined
what input data are needed. In fact, it is well
possible to work out formulas or programs for an
entity, where important variables are missing,
so that starting by programming is no safeguard
against ignoring important data."

YK: "The content of our analysis is that the
objectives of the data processing system have
been stated in terms of the required outputs;
these outputs are not considered as subject to
revision. On the other hand, although the inputs
may be organized in any desired fashion, it
appears necessary or at least convenient, to
state one of the possible input organizations
from which any equivalent one can be derived.
I t should be noted that the input may supply
any one of a number of equivalent pieces of
information, e.g., either customer's name to be
copied directly onto an output or an identifica­
tion number from which the name can be looked
up."

LO: "The common denominator of file processes
is the production of output files as functions of
input files."

ADS: "The starting point is the definition of the
reports—what output information is required.
Once the reports are defined, the next step is to
find out what information is immediately avail­
able. This is followed by laying out the informa­
tion system in between the output and input.
The origin of all information needs to be speci­
fied. The outputs of this system are always
looked at in terms of inputs."

TAG: "The technique requires initially only out­
put requirements of a present or future system.
These requirements are analyzed automatically
[by a computer program] and a definition is
provided of what inputs are required at the data
level."

SY: "SYSTEMATICS is a language solely con­
cerned with techniques and concepts useful to
systems analysts in designing information models
to meet user's requirements. . . . I t is a tool for
specifying solutions to information systems
problems. More important, it is also a tool for
developing such solutions."

Six of the approaches (all except SYSTEMATICS)
assume that the problem statement starts at output,
e.g., IA: " . . . from which the desired outputs . . .";

1214 Fall Joint Computer Conference, 1972

YK: " . . . in terms of desired outputs . . . " Therefore, a
necessary part of the problem statement should be the
description of the desired output. This requirement is
implied by LA in the definition of TERMINAL SETS

and in YK by the definition of OUTPUT DOCU­
MENTS. IA does not mention required output as such
and, in fact, in the example given in the paper says,
"The problem is to create a new pay file from . . . "

TABLE III—Description of Documents

FOR WHOLE DOCUMENT

1. NAME
2. TYPES OF DOCUMENTS

3. WHEN PRODUCED

4. MEDIA
5. SEQUENCING CONTROL

MAJOR
INTERMEDIATE
MINOR

6. VOLUME
AVERAGE (A)

MINIMUM (M)
PEAK (P)

7. DESIGNED FOR PEAK,
AVERAGE OR
MINIMUM

8. OTHER DATA

FOR EACH DATA ITEM

1. NAME
2. HOW USED

3. COMPUTATION
FORMULAS

4. SEQUENCING ROLE
5. VALIDATION RULE
6. FORMAT

A or N

SIZE (NO. of CHAR.)
FOR OUTPUT

7. NO. OF TIMES PER DOC.
MINIMUM
AVERAGE
MAXIMUM

YOUNG & KENT

V*
INPUT,OUTPUT

PRODUCING
RELATIONSHIP

NOT MENTIONED
NOT MENTIONED

V

V
V

NOT MENTIONED

YOUNG & KENT

V

DEFINING RELATION­
SHIPS FOR VARIABLES
ON OUTPUT REPORTS

NOT MENTIONED
NOT MENTIONED

IN INFORMATION
SET TABLE

V

TAG

V
INPUT
OUTPUT
FILE

PERIOD (S,MI,
H;D,W,MO,Q,Y)
PRIORITY (NUMERIC)
FREQUENCY
NOT MENTIONED
NOT MENTIONED

V

V
V

DESIGNER'S CHOICE

REFERENCE AUDIT

TAG

V
FI-FIXED;
INFORMATIONAL
FF-FIXED; FUNCTIONAL
VF-VARIABLE; FACTOR

VR-VARIABLE; RESULT

NOT INCLUDED
(MAY BE ADDED AS
COMMENTS)

V
NOT MENTIONED

V

V
Ordering number of P
for presence.

RATIO

ADS

V
INPUT
REPORT
HISTORY

SELECTION
RULES FOR
REPORT

FOR INPUT
SEQUENCES

MAJOR
INTERMEDIATE
MINOR

ARBITRARY NUMBER
EXPECTED VOLUME
FOR HISTORY
AND INPUT
AND REPORT

NOT MENTIONED

MEMOS

ADS

V
MODIFIED BY
— FORMULA
— PARTICULAR

VARIABLE
HOW OFTEN?
— NEVER**
— PARTICULAR CYCLE**
— FIXED TIME**
— LOGICAL CONDITION
** by memo only

COMPUTATION FORM
LOGIC FORM

V
V
V

V

RATIO

* A checkmark denotes provision for including the information listed in the left hand column.

Survey of Languages for Computer-Based Information Systems 1215

Data relationships

A requirements statement must have some description
of the data that will be produced. The most exten­
sive data description facility is the one used by IA.
This starts with the concept of an ENTITY which has
a connotation of a physical entity in the real world such
as an employee, a paycheck, or an order. Each ENTITY
has PROPERTIES which describe that entity, e.g., an
employee has an employee number, hourly rate, etc.
For any given ENTITY there is a VALUE for each
PROPERTY. The PROPERTY VALUE SET is the
set of all possible VALUES that a PROPERTY can
have in the problem. The COORDINATE SET is the
list of all PROPERTIES that appear in the problem.
A DATUM POINT is a set of values, one for each
PROPERTY in the COORDINATE SET, for a par­
ticular ENTITY. The PROPERTY SPACE is the set
of all DATUM POINTS, i.e., all possible points ob­
tained by taking the cartesian project of all possible
PROPERTIES. Once this PROPERTY SPACE has
been defined, further definitions deal with subsets of
this space. A LINE is a subset which is roughly equiva­
lent to a record and an AREA is a subset roughly
equivalent to a file. Other subsets of the PROPERTY
SPACE are BUNDLES and GLUMPS. The basic
reason for this choice of data description is to use the
concepts of a set theory as the formulation for a theory
of data processing. (The authors of IA reject data
description by arrays as being too limited.)

In YK, the basic units of data are called ITEMS,
which corresponds to PROPERTIES in IA. Their term
INFORMATION SET is used for the set of all possible
values of a particular item and is, therefore, equivalent
to the PROPERTY VALUE SET in IA. The informa­
tion that can be provided for each INFORMATION
SET are: (i) the number of possible values, (ii) the
number of characters or digits, and (iii) relationships.
The following relationships are defined:

Graphic
Description Symbol Symbol

Isomorphism —one to one • - *
correspondence •-*

Homomorphic —many to one —
correspondence

Cartesian
product —PjXPk means X

a pair of Pj
andPfc

—contained in e
Equal to =

The relationships may be used to make statements

such as, there is one employee number for each em­
ployee name and address. YK did not want to make any
statements about the file structure and, hence, there are
no terms that correspond to records or files. YK also
provides a graphical notation for showing relationships.

In LO, the definition of data is more conventional
including FIELD (which corresponds to PROPERTY),
RECORDS, FILES, etc. The word BUNDLE is used
to denote a set of files which is merged on a single
input or output unit.

In LA, there is no definition of data corresponding to
data items. The problem definition starts with collec­
tions of data which are called INFORMATION SETS.
This corresponds roughly to the notion of a file in
common terminology. LA introduces the concept of an
elementary file in which each record contains a data
value and enough "keys" to identify it uniquely.

ADS provides three forms on which data is described:
REPORT, INPUT, and HISTORY. Each of these
forms provides space for some information describing
the particular report or input: name, media, volume and
sequence and space for each variable. For each variable
the forms provide space for name, how the value of the
variable is obtained (INPUT, COMPUTATION,
HISTORY), a cross-reference, how often the variable
appears, and size (number of characters).

TAG provides one form which contains space for data
describing the document (or file) and space for each
variable. Table I I I shows a detailed comparison of the
data required by YK, TAG and ADS to describe
documents and data items.

SYSTEMATICS does not have any rules for speci­
fying structure of data. The major emphasis is on
IDENTIFIERS.

Computational relationships—data definition
by formula

When general purpose programming languages are
used, each program, or sub-program, includes state­
ments which produce output, statements which test
the conditions under which the output is produced and
statements which compute the values of the variables
that appear in the output. I t has been argued by
Lombardi, in particular, that a "non-procedural"
language must separate the statement of what output is
to be produced when, from the statement of the pro­
cedure for producing the value of the variables that
appear in the output. All seven approaches follow this
concept.

In IA the basic operation that the problem definer
can use to state his processing requirements is a mapping
of one subset of the PROPERTY SPACE into another

1216 Fall Joint Computer Conference, 1972

subset. Two kinds of mappings are defined. One corre­
sponds to operations within a given file. For example,
suppose a tape contains time cards, sorted in order by
employee number, one for each day of the week. A
mapping could be defined which would take the set of
(five) POINTS for each employee into one new POINT
which would contain the total for the week. The second
type of mapping corresponds to the usual file main­
tenance operation in which POINTS from a number of
input files are processed to produce new output files.
These two types of mappings are called GLUMPING
and BUNDLING respectively. The actual computation
of the PROPERTY VALUES of the new POINTS
produced by a mapping is specified by a COORDINATE
DEFINITION which must contain a computational
formula for each PROPERTY in the COORDINATE
SET.

In YK the major unit of processing is a PRODUCING
RELATIONSHIP; there must be one PRODUCING
RELATIONSHIP for each output document. This
PRODUCING RELATIONSHIP gives the conditions
under which a document will be produced. This state­
ment may contain conditions (Boolean expressions)
that depend on values of data ITEM or on time. For
example, a PRODUCING RELATIONSHIP might be
a "a monthly statement is produced for a customer each
month for all customers with a non-zero balance.'' A
PRODUCING RELATIONSHIP may also state that
one output Document D2 is produced for each input
Document Dx. The values of the data ITEMS which
appear in the output documents are calculated using a
DEFINING RELATIONSHIP. There must be one
defining relationship for each data item which appears
on an output document.

In LO the statements which control whether or not
an output record is produced are called CONTROL
PREDICATES. There must be one control predicate
for each record for each output file. The CONTROL
PREDICATES, in general, are Boolean expressions
which may involve the use of INDICATORS. The
values of the variables which appear on the output
records are produced by FIELD DECLARATIONS
which are evaluated at the end of each PULSE in
a PHASE.

In LA the relationships are given for production of
INFORMATION SETS and, hence, correspond to
PRODUCING RELATIONSHIPS. However, they are
stated only as precedence relationships, e.g., IN­
FORMATION SETS a, b, and c are necessary to
produce d. No computational formulas are given. A
problem statement may be represented by a graph as
shown in Figure 4 where circles represent elementary
INFORMATION SETS and rectangles represent
PROCESSES.

Figure 4—Network representation of problem statement in LA

In ADS some basic information is specified about
when reports are to be produced. However, in many
cases this is supplied by written notes. This information
may be regarded as analogous to the PRODUCING
RELATIONSHIPS in YK. ADS requires that each
variable be identified as coming from INPUT, COM­
PUTATION or HISTORY. A form is provided for
specifying the computations; this specification is some­
what limited. Another form is used to state logical
conditions and these may be used to state when outputs
occur and under what conditions computations are
performed.

TAG provides for stating how often outputs will be
produced by specifying a PERIOD. The available
codes are: second, minute, hour, daily, weekly, monthly,
quarterly, and yearly. A PRIORITY can be assigned to
distinguish a sequence ordering between two documents
with the same period. TAG does provide a means for
stating which data elements are to be computed but it
does not provide for stating the formula for the com­
putation. (The formula can be included in the "Com­
ments" section of the form but it will not be analyzed
by the program.)

In SYSTEMATICS there are two types of data items,
GIVENS and DERIVED. For each DERIVED item
there is a Derivation rule that states the formula by
which it is computed. Considerable effort is devoted in
SYSTEMATICS to specifying the sets of values over
which the rules hold. Consequently data items may be
IDENTIFIERS and there are a number of different
kinds: PRIMARY, SECONDARY, COMBINED, and
COMMON.

Other information

IA and LO do not specify any additional informa­
tion; LA assumes that the relative size of files is avail­
able. YK, ADS and TAG all provide for specifying
time and volume requirements.

Survey of Languages for Computer-Based Information Systems 1217

YK defines two kinds of time: extrinsic (when an
event occurs) and intrinsic (the time written on a
document). The "operational requirements" consist
of a volume for each document (input and output) and
a time statement for each output document. Volumes
of documents may be expressed in terms of averages
over some time period.

ADS permits specification of average and maximum
volume in INPUT, REPORT, and HISTORY forms.
In addition, each variable in HISTORY is characterized
by how long it is to be retained; this may be a fixed
number or may depend on a computation.

TAG provides for volume information for documents,
size information on data elements and repetition in­
formation on data elements within documents. (The
information is apparently not used in the programs
which process TAG statements.)

Presentation

Both ADS and TAG have well-structured forms for
recording the problem statement. They differ in that
ADS has five relatively highly structured forms while
TAG has a single form. The others do not specify any
particular way in which the problem statement must
be made. YK describes a graphical method of presenta­
tion and LA uses a precedence graph for illustration
only.

Analysis, summary and conclusion

Extent of use

Despite extensive recognition of the need for better
ways of stating requirements and despite the avail­
ability of basic concepts of problem statement languages
since 1958 (Young and Kent) and 1962 (Information
Algebra) the use in practice of these techniques has not
been extensive. Even now ADS and TAG have a limited
number of users. Young and Kent's and Lombardi's
languages have not been used at all and the develop­
ment of SYSTEMATICS has not continued after a field
trial.48 Information Algebra has only been used once,33

and then only for describing requirements for an
assembler.

There is no published evaluation of why the tech­
niques are not being used more. There is considerable
evidence that many organizations have recognized a
need and have attempted to develop their own problem
statement techniques but after a while the attempt has
usually been abandoned. Comments from a number of
such organizations are too subjective to be quoted here,
but are incorporated into the following analysis.
Specific comments on the use of TAG are that its

advantages as a requirement statement language in­
clude ease of learning and simplicity in use, its provision
of computer processing of requirements data improves
ease of modification of the requirement statement, and
as a systems design procedure it gives machine-printed
copy of program requirements. The disadvantages of
TAG as a requirement statement language are that
documents cannot be related to each other except
through PERIOD, FREQUENCY and PRIORITY
and through data elements, that only a two-level data
structure is permitted, that repeating groups cannot be
handled except through ratios for each variable and
formulas cannot be specified. As a systems design
procedure, a disadvantage is that it requires manual
intervention in the process.

The arguments made against formal problem state­
ment languages can be grouped broadly into two
categories: technical problems—the techniques are not
satisfactory for stating requirements—and human
problems—getting analysts to accept and use them. In
practice these two are closely related—an analyst who
does not want to change to formal method can usually
find some technical reason why the proposed method
is not satisfactory. The difficulty here is very similar to
that faced in improving other aspects of the system
building process.68,65

There are a number of reasons that have been sug­
gested for the people problem. One reason is that
preparing a rigorous and complete problem statement
requires (or at least seems to) more time than the
present procedure in which problem statement, systems
analysis and programming are collapsed into one indis­
tinguishable process. A second reason is that there has
not been any immediate advantage to an analyst or
programmer to invest additional time in a more sys­
tematic problem statement. Such advantage could
come from either or both of the facilities to manipulate
the problem statement symbolically and a computer
processing of the problem statement itself. TAG cur­
rently provides such a software package and one is also
available for ADS.67 (Computer-aided analysis of
problem statements will be discussed in a later paper.)

A number of concepts that should be included in a
requirements statement language in order to eliminate
the technical problem (by ensuring that the formal
technique is sufficient to state requirements) are sum­
marized here to provide a basis for the enumeration of
desirable objectives of future requirements statement
languages.

Form of the problem

There can be no question that the basic purpose of an
IPS is to produce outputs. Howrever, it is not clear that

1218 Fall Joint Computer Conference, 1972

limiting the statement of data processing requirements
to outputs only (as advocated by TAG) is desirable.
Conceptually, one does not want to prejudice the
systems design by stating inputs that may not be
needed. Frequently, however, certain inputs must be
accepted by the IPS and in that case the problem state­
ment might as well include the facility for specifying
them. Also the conditions that must be stated (e.g., the
PRODUCING RELATIONSHIPS in YK) in the
absence of specification of inputs can become very
complicated. The statement of problems will probably
be simplified if the problem definer can state his require­
ments either in terms of "events" which require action
in the IPS or in terms of outputs required; whichever
is most convenient for him, i.e., either in terms of input
or of output. Providing this convenience may com­
plicate the analysis of the problem statement by the
computer, but the additional processing time is prob­
ably worth it.

One objection expressed against viewing IPS as
output producers arises from the belief that in the
future IPS will be basically data base storage and
retrieval systems in which a data administrator will
decide what data are to be stored and users will com­
municate their requests as inquiries. These two views
are not incompatible since a result of an inquiry is an
output—an output that can be described in the same
way as an output that is produced periodically.

Data description

IA is the only approach that, through the use of the
ENTITY concept, attempts to associate data with the
real world. I t should be noted, however, that the IA
language in itself does not depend on how the PROP­
ERTY SPACE is obtained, i.e., whether it is derived
from real ENTITIES or from a set of abstract concepts.
I t is desirable to give the problem definer as much help
as possible in defining his data and the analogy to the
real world through entities is the best method available.
Hence, it might as well be part of a requirement state­
ment language as long as it does not restrict the lan­
guage in defining data abstractly.

I t is important to distinguish between two possible
uses of VALUE SETS. (A VALUE SET consists of all
possible values of a PROPERTY within PROPERTY
SPACE). The first use is for PROPERTIES in which
only one value will be in the machine at any one time.
For example, the PROPERTY "warehouse number"
may have many values in the memory at one time
whereas the "quantity" of a particular part number at a
particular warehouse will have only a single value at
any particular time.

In the first case, the VALUE SETS may be used for
validation of input data. ADS, for example, permits
validation rules to be given for each data item. In
practice, validation is a complex process depending on
combination of variables rather than on single variables
and such rules are difficult to state on the ADS forms.
It may be more desirable to specify validation by
defining validation reports as outputs of the system;
these then can include any processing specification
permitted by the language for specifying data items
on output reports.

The second use of VALUE SETS will be in providing
information about how much memory space will be
required. The basic question is how the problem definer
states the role of data items. In COBOL the definition is
through the structure definition in the DATA DIVI­
SION and the use of OF and IN; in PL/1 nested quali­
fiers, separated by periods, are used. In YK the
relationships among INFORMATION SETS are used
to present this information. In future requirement
statement languages it would be desirable to infer as
much of the qualifier-identifier relationship of variables
from the processing statements themselves and only
ask for information that is not included there. I t may
be possible to obtain all needed information from
VALUE SETS and the processing requirements.

The information in a problem statement must be
sufficient to infer which data items will have to be
stored in the auxiliary memory or in the main memory.
A value must be stored in the memory if:

i. It appears in an update statement, e.g., of the
form

X (, ,) = X (, ,) + Y

Here X might be "gross pay to date" and Y
"the pay this week."

ii. I t is used in a statement without its value having
been computed, e.g., "number of exemptions"
in a payroll problem. This data item would
appear as input on a new hire transaction and in
a change transaction and would be used in pay
computation.

ADS permits the problem definer to specify data
items to be available in HISTORY. These may be
either intermediate data items that are used in a number
of places or data items whose values the problem definer
believes will have to be stored.

I t is immediately clear from the preceding paragraph
that one cannot determine what data items fall into
these categories unless the problem statement contains
information about the time at which processing require­
ments occur. In the first case (i), there must be some

Survey of Languages for Computer-Based Information Systems 1219

way of stating that payroll is computed weekly and the
"gross pay to date" is cleared (set to zero) at the end
of each year. Similarly in the second case (ii) it must be
clear that a new hire transaction only occurs once while
the pay computations occur regularly.

Time and volume information

None of the problem statement languages have a
well-developed syntax for describing the time aspects
of requirements, though YK, ADS and TAG provide
some capability. Some help in developing an acceptable
"time" language might be obtained by studying the
master time routines in simulation languages such as
SIMSCRIPT or the executive systems for real-time
systems. In a very general sense, time is just one of a
number of attributes of data items and, hence, could be
included in whatever general data description facility
is provided by the language.

I t may be noted that time specifications are required
not only for determining which data items will be stored
but also for determining feasible and optimal storage
organizations. The criteria used to determine optimality
include both memory space and processing time. One
important factor to be considered is organization of
data to reduce memory space by such techniques as
header-trailer organization as used in hierarchical files
and IDS. In order to do this, one must be able to infer
the header-trailer relationships from such information
as qualifiers and identifiers. Another important factor
is the question of what data should be stored semi­
permanently and which need only be held temporarily.
Again, the analogy to simulation may be useful—
SIMSCRIPT, for example, distinguishes between
PERMANENT and TEMPORARY ENTITIES.

The second part of the criterion is to reduce processing
time. One way this can be done is by reducing the
number of accesses to external memory. Since a number
of different types of processing requirements must be
accomplished, the problem statement must contain
both the values of each type and the time periods over
which they occur so that accesses to auxiliary memories
can be grouped whenever possible.

Both ADS and TAG permit some specification of
volume data. Since information about volumes is
usually the least accurate part of a problem statement,
future languages should have considerably extended
capabilities, for example, statement of time and volume
by symbolic names.

Presentation

Graphical techniques are extremely useful in many
areas of stating specifications, e.g., blueprints for con­

struction specification and flowcharts for algorithms. A
graphical technique for the problem statement was
given in YK and this has since been extended by
Young69 under the acronym GRIST. The problem
statement proposed by LA is equivalent to a directed
graph. At the present state of development of problem
statement languages it appears unlikely that graphical
techniques other than flowcharts and graphs will be
very useful. Some experimental work with the proposed
techniques including GRIST appears justified, however.

Future problem statement languages will undoubtedly
depend on forms, probably somewhere between the two
extremes of complete specifications by forms and com­
pletely free form. Good forms can be extremely useful
in acting as questionnaires and check lists.

Top-down approach

How much information about a problem should be
collected when? In current practice the analyst will
normally start with the general overall and summary
data and gradually he will become more and more
specific until he has enough detail to be able to write
the programs himself. In contrast, ADS attempts to
have the analyst specify all the details of the problem
statement at one time.

The best procedure may be compromise between
current practice and the ADS approach. Description of
data, for example, could be divided into two levels:

Composition—how the data is made up of smaller
units of data

Representation.—hardware related items such as
number of bits, precision, etc.

The composition information clearly is needed as
part of the problem statement. Representation in­
formation, on the other hand, may not really be needed
until program construction begins. A similar cate­
gorization could be made for processing requirements.
Ideally, a problem statement would require specification
of necessary data (composition information) for data,
for example, and make optional the statement of
information which is not needed until later. This is
because sometimes it is easier to record all relevant
data at one time.

Mathematical manipulation of the problem
statement

IA represents an attempt to develop a problem
statement notation that might be manipulated symboli­
cally. The use of set notation and the usual set opera-

1220 Fall Joint Computer Conference, 1972

tions appear a reasonable start for a language in which
data processing problems can be expressed. Since to our
knowledge IA has only been used once33 the practical
usefulness of IA remains to be demonstrated. It is also
not clear how one uses a problem statement expressed
in IA in the system design. Both of these questions
(the usefulness of IA for problem statement and the
derivation of a design from such a statement) provide
promising areas for research. Because of the size of data
processing requirements it is unlikely that facilities to
manipulate the requirements manually will be very
helpful. However, there is no reason why such manip­
ulation could not be carried out by computer programs
if the language has suitable characteristics.

A REQUIREMENTS STATEMENT LANGUAGE

Objectives of a useful requirements statement language

The discussion in the first two sections has established
the need for a better way of stating information needs.
The analysis in the previous section has shown that,
while there have been attempts to develop such lan­
guages, they have not been successful in the sense that
they are not in wide use today.

The need for such a language exists even more strongly
today and therefore research, development, experi­
mentation and evaluation are needed to develop a
satisfactory medium for communicating requirements.
A set of objectives for a Requirements Statement
Language (RSL) is proposed in this section.

—The language should accommodate the statement
of requirements of the kind that are occurring now
as well as those that will occur in the future. I t is
becoming more and more obvious that the cost of
changing from one programming language to
another is very high. Unfortunately, the present
progression from COBOL, to COBOL with exten­
sions, to Data Base Management Systems results
in relatively small incremental improvements.
The RSL should provide a quantum jump to a
completely new generation of capabilities. The
characteristics of the situation to be expected in the
future that must be accommodated are:

i. Hardware features will increase in quality and
reliability. There will be larger hardware with
more parallel capabilities—this implies that
unnecessary precedence constraints should be
avoided whenever possible.

ii. Interrelationship of varying requirements will
increase, e.g., jobs with varying priorities,
inquiries to be answered, status data to be

monitored, outputs required at predetermined
times, data to be gathered and results to be
distributed over geographically dispersed
points, automatic monitoring and control, etc.

iii. The number and type of users with varying
interface requirements will increase, e.g., on­
line interaction; data entry such as transaction
recorder; interrogation, e.g., reservation clerk,
users with no programming needed; system
builders; analysts and programmers; data
administrators; operators; etc.

iv. Systems will become larger and larger and
they will become more integrated. This im­
plies: common data bases, any given pro­
grammer does not know what else is going on,
new functions such as data administrator, etc.

v. Requirements will be more unstructured;
immediate response will be required and
requirements will be changing rapidly; jobs
require more consistency in data and business
data function specifications. This implies that
the "user" must be able to communicate with
the computer system more directly.

vi. The performance of systems will become more
important and hence there will be greater
emphasis on more explicit recognition and
statement of the criteria by which performance
is measured and requirements parameters
which affect performance.

vii. There will be more need to monitor the system
in operation. The systems change over time
either in the volume or the capabilities and
consequently there must be provision for
changing the internal structure of the system
without affecting the correct achievement of
the requirements.

—The language should be suitable for use by humans
in the necessary activity of determining and
stating requirements.

i. The language or part of it must be usable by
the manager or his assistants. This is necessary
to eliminate the (computer) systems analyst as
intermediary in order to reduce the chance for
misunderstanding and to reduce the imple­
mentation time. To some, this specification
implies that the language must be a subset of
English. However, the fact that a subset of
English is not English can severely limit the
value of a subset of English as a requirements
language. One of the objections sometimes
raised against anything other than a natural
language as a requirements language is that a

Survey of Languages for Computer-Based Information Systems 1221

manager will never take the time to use what
to him is an unnatural language. I t is unlikely
that top managers will ever specify detailed
requirements. The situation here will be
analogous to the current situation in account­
ing. When a manager first starts out in his
career, he is very familiar with the details of
accounting and prepares statements for his
immediate superior from the reports furnished
by the accounting department. As he rises in
the organization, he delegates more and more of
this to his assistants but he still understands
the accounting language and procedures. The
career path of the person using the require­
ments language will be through the manage­
ment ranks rather than the computer ranks,

ii. The language must be suitable for the top-down
approach for problem definition. Most large
systems are defined from the top down. The
broad, overall outline is developed first and
then successively more details are filled in.
The language should permit this process and
permit checking the problem statement for
consistency and unambiguity at each level
before proceeding to the succeeding lower
levels. The language should, of course, not
prohibit the bottom-up approach where this is
appropriate.

iii. The language should be suitable for helping in
the determination of requirements. It should
augment the capabilities of the analysts or
teams of analysts who are carrying out the
requirements determination.

iv. The language should facilitate the testing and
"exercising" of requirements. I t is extremely
important that statements of requirements be
tested before they are implemented. Tests
should be made for consistency and complete­
ness. In addition, the person developing the
requirements should be able to state data and
test conditions that can be used to verify
correctness of the requirements statement.

-The language should be suitable for building the
system to accomplish the requirements.

i. The language should permit the statement of
requirements only and prevent the statement
of data processing procedures. This is absolutely
necessary in order to make the requirements
statement hardware independent and to avoid
reconversion costs when the capabilities of the
equipment change. I t is also necessary to
prevent the introduction of restrictions which

may limit the efficient use of hardware re­
sources in the later stages of systems building.

ii. The requirements statement must be analyzable
by computer programs. The problem statement
should not only be readable by a computer
program so that the requirements can be stored,
but it should also be analyzable so that the
problem can be restructured for optimum
implementation efficiency without being limited
by the sequence used by the problem definers.
This is also necessary to permit the automatic
construction of the system.

iii. The requirements statement language must
permit statement of details necessary for the
production of object code. This is necessary if
the system is to be constructed automatically.
In accordance with the above specifications,
however, this detail should not have to be
provided all at one time and as much as possible
should be available from a library that is
built up over time.

iv. The language should permit statements to
facilitate the transition process. In most cases,
systems already exist with files and programs
and it is desirable to be able to move from the
present system to the future system in an
organized, controlled fashion to reduce in­
convenience to the user and reduce cost.

v. The language should be as independent as
possible of the particular area of application so
that the cost of maintaining separate systems
for a number of different applications is
eliminated.

Outline of a requirement statement language

A language designed to satisfy the above objectives
has been developed and is being tested in the ISDOS
Research Project at The University of Michigan, under
the acronym PSL (Problem Statement Language). A
brief description is given here. A more detailed descrip­
tion is given in the language specifications and user
manuals.

The language is used to describe the requirements
that refer to the desired target system as a whole,
as well as the individual units of the total requirements,
i.e., the inputs to and outputs from the target system.

The system requirements include factors such as the
parameters that are used in more than one place in the
system and whose definition is controlled at the system
level; system-wide policies, e.g., the form in which
"data" will be used; system constraints that pertain to
the system as a whole; resources available to the system,

1222 Fall Joint Computer Conference, 1972

such as hardware, software, etc.; and the performance
criterion that is to be used in evaluating the system
and in constructing it.

The description of each input to and output from the
system contains five major types of information:

i. Identification information which relates the
input or output to the external environment. For
example, where the input comes from or where
the output goes to, who has prepared the state­
ment, what functional area of the firm it is
related to. This section will also contain, where
necessary, the interface information such as, for
example, if the output has to be accepted both
on cards and by teletype.

ii. Timing information which describes the trig­
gering of particular input or output in regard to
time and/or other conditions. Time here may be
specified as real time or time related to some
other calendar which would be defined under
system requirements.

iii. Volume parameters which determine the quan­
tity of the input or output required.

iv. Data definition showing how the data groups are
related by structure.

v. Data definition by formula which gives the
individual computations which have to be per­
formed. Decision tables can be used to specify
complex logical conditions.

The language will be processed by computer programs
where output will be structured to give the analyst as
much aid as possible. An overview of the software
system is given in Teichroew and Sayani.40

CONCLUSION

Since problem statement languages have not been
widely used the comparison and analysis in this paper
have been based primarily on "paper" systems. The
specifications for an ideal requirements statement
language have come from this analysis, personal opinion
and limited reports from users. There are signs that the
situation is changing.

Head forecasts:

"Most of the work described here is still in its
germinative stages, and consequently has had
little impact so far on the day-to-day activities of
systems people. But it is likely that today's systems
analyst, with his still-primitive analytical tools, will
one day become as rare as the machine-oriented
programmer who flourished a decade ago."7

Sammet holds a similar view:

"Ideally, the user would state only the definition
of his problem and the computer system would
develop the solution. While the day of asking the
computer to "COMPUTE THE PAYROLL FOR
MY COMPANY" is at least one or two decades in
the future, I believe we will see a large decrease in
the amount of detail a user must provide. More
specifically, I expect more statements about what
is to be done and fewer details on how to do it.
There will be compilers which can effectively
determine which of many alternative algorithms
should be used in a given situation."70

Hopefully, it will be possible to base the next survey
of this kind on much more user experience.

REFERENCES

1 R I B E N J A M I N
Control of the information system development cycle
Wiley New York 1971

2 W HARTMAN H MATTHES A P R O E M E
Management information system handbook
McGraw-Hill New York 1968

3 T B GLANS B GRAD D HOLSTEIN
W E MEYERS R N S C H M I D T
Management systems
Holt Rinehart and Winston Inc 340 pp 1968 [Based on
IBM's Study Organization Plan (C20-8075-0) 1963]

4 D H S U N D E E N
General purpose software
Datamation January 1968 pp 22-27

5 Computerworld June 28 1972 p 5
6 CODASYL SYSTEMS C O M M I T T E E

A survey of generalized data base management systems
May 1969 (Available from ACM)

7 R V HEAD
Automated system analysis
Datamation August 15 1971 pp 22-24

8 R T HARRISON
The IBM application customizer services
In 65

9 G W POTTS
Natural language inquiry to an open-ended data library
AFIPS Conference Proc Vol 36 1970 pp 333-342

10 BOEING CORPORATION
MAST: modular application structuring technique
Commercial Airplane Division Seattle Washington no date
58 pp

11 NATIONAL CASH REGISTER COMPANY
BEST manual
1965

12 J R ZIEGLER
A modular approach to business EDP problem solving
Proceedings ACM 20th National Conference 1965
pp 476-484

13 J R ZIEGLER
Computer generated coding
Datamation Vol 10 No 10 October 1964 pp 59-61

Survey of Languages for Computer-Based Information Systems 1223

14 R T JONES
Basic commercial data processing functions generalized
approach to analysis, programming and implementation
IBM Systems Research Institute New York 1964

15 W STIEGER
Survey of basic data processing functions and design using
modules
ISDOS Working Paper No 11 August 1968

16 PROCTER & GAMBLE CO
Basic functions manual
Cincinnati Ohio March 1967

17 D T E I C H R O E W
Computer-aided documentation of user requirements
F Gruenberger ed Information Systems for Management
Prentice-Hall Inc Englewood Cliffs New Jersey 07632 1972
pp 97-112

18 G M W E I N B E R G
The psychology of computer programming
Van Nostrand Reinhold Company 1971 288 pp

19 NATIONAL CASH REGISTER COMPANY
Accurately defined systems
1967

20 H J LYNCH
ADS: a technique in system documentation
Database Vol 1 No 1 Spring 1969 pp 6-18

21 M H HUDSON
A technique for systems analysis and design
Journal of Systems Management Vol 22 No 5 May 1971
pp 14-19

22 O T GATTO
Autosate
Communications of the ACM Vol 7 No 7 July 1964
pp 425-432

23 D D BUTLER O T GATTO
Event-chain flow charting autosate: a new version
The Rand Corporation Santa Monica California October
1965

24 J BUBENKO O K&LLHAMMER
CADIS: computer-aided design of information systems
In 25 pp 119-149

25 J BUBENKO J R B LANGEFORS A SOLVBERG
Computer-aided information analysis and design
Studentlitteratur Lund 1971 207 pp

26 S WATERS
The CAM {computer assisted methodology) project
Proc of the NCC Workshop on Approaches to Systems
Design April 11-13 1972

27 P AANSTAD G SKYLSTAD A SOLVBERG
CASCADE—a computer-based documentation system
In 25 pp 93-118

28 C F REYNOLDS
The importance of flexibility
The Computer Journal Vol 14 No 3 March 1971
pp 217-220

29 M CROWTHER-WATSON
DATAFLOW—a tool for the analyst
3 pp no date

30 R BOOT
Computer-assisted methods in systems analysis
International Conference on Practical Experience in
Systems Analyses 18 pp

31 A S LEWIS
File organization for DATAFLOW
File Organization IAG Occasional Publication No 3 Scolts
and Zeitlinger N V Amsterdam 1969 pp 165-177

32 CODASYL DEVELOPMENT C O M M I T T E E
An information algebra phase I report
Communications of the ACM 5 4 April 1962 pp 190-204

33 J KATZ W C McGEE
An experiement in non-procedural programming
Proceedings Fall Joint Computer Conference 1963 pp 1-13

34 H B LADD W P MARKOVIC
Formalized analysis techniques-aids to computer design and
computer use
RCA Camden New Jersey 1957 8 pages and illustrations

35 B LANGEFORS
Some approaches to the theory of information systems
BIT 3 1963 pp 229-254

36 B LANGEFORS
Information systems design computations using generalized
matrix algebra
BIT 5 1965 pp 96-121

37 B LANGEFORS
Theoretical analysis of information systems
2 Vol Studentlitteratur Lund 1966 (also available from
National Computing Centre Ltd Quay House Quay Street
Manchester England)

38 L LOMBARDI
Theory of files
Proc Eastern Joint Computer Conference pp 137-141

39 L LOMBARDI
A general business-oriented language based on decision
expressions
Communications of the ACM Vol 7 No 2 February 1964
pp 104-111

40 D T E I C H R O E W H SAYANI
Automation of system building
Datamation August 15 1971 pp 25-30

41 G F R E N F E R
SCOT simplifies system design changes and time estimates
Canadian Data Systems June 1970

42 D M CAINER
SYMOB (systeme modulaire bull)
Data Processing March-April 1964 pp 106-108

43 ENGLISH ELECTRIC-LEO-MARCONI
COMPUTERS L I M I T E D
SPEC: a technique for expressing system requirements
October 1966 20 pages plus appendices

44 C B B G R I N D L E Y
SYSTEMATICS—a non-programming language for
designing and specifying commercial systems for computers
Computer Journal Vol 9 August 1966 pp 124-128

45 C B B G R I N D L E Y W G R STEVENS
Principles of the identification of information
File Organization IAG Occasional Publication No 3 Scolts
and Zeitlinger N V Amsterdam 1969 pp 60-68

46 C B B G R I N D L E Y
Specification and interrogation of formal control systems
Paper presented at T I M S XVII Conference London
July 1-3 1970

47 C B B G R I N D L E Y
The use of decision tables within SYSTEM ATICS
Computer Journal Vol 11 No 2 August 1968 pp 128-133

48 C B B G R I N D L E Y
SYSTEM ATICS field trials project
31 December 1968

49 P J H K I N G
Some comments on SYSTEMATICS
Computer Journal Vol 10 pp 116

1224 Fall Joint Computer Conference, 1972

50 D H MYERS
A time automated technique for the design of information
systems
IBM Systems Research Institute New York 1962 50 pp

51 IBM
The time automated grid system (TAG): sales and systems
guide
Publication No Y20-0358-1 (no date approx 1968) 40 pp
(Reprinted in J F Kelly Computerized Management
Information Systems Macmillan 1970 pp 367-400)

52 W M TAGGART J R
A syntactical approach to management information
requirements analysis
PhD Thesis University of Pennsylvania 1971

53 J W YOUNG H K E N T
Abstract formulation of data processing problems
Journal of Industrial Engineering November-December
1958 pp 471-479 Reprinted in Ideas for Management
International Systems-Procedures Association 1959

54 R BOZAK
A proposed file processing language
System Development Corporation Santa Monica California
T M 3392/000/00 1967 15 pp

55 M H GROSZ
Systems generation output decomposition method
Standard Oil Company of New Jersey July 1963

56 J W SUTHERLAND
Tackle system selection systematically
Computer Decisions April 1971 pp 14-19

57 D J H E R M A N F C I H R E R
The use of a computer to evaluate computers
Proceedings AFIPS 1964 SJCC Vol 25 pp 383-395

58 K E IVERSON
A programming language
John Wiley & Sons New York London 1962 286 pp

59 R M BALZER
Dataless programming
The Rand Corporation Santa Monica California July 1967

60 R H E N D R Y
BCL, a new data processing language
Datamation January 1968

61 ARTHUR ANDERSEN & CO
LEXICON: automation concept for business information
systems general description manual
1972

62 J W YOUNG J R
Non-procedural language: a tutorial
7th Annual Tech Meeting South California Chapter ACM
March 23 1965 24 pp

63 C J SHAW
Theory, practice, and trend in business programming
AD625-003 Systems Development Corporation July 1965
18 pp

64 R STAMPER
Computer aids in systems analysis
Computer Weekly International August 12 1971 p 18

65 NATIONAL COMPUTING C E N T R E
Approaches to systems design
Proceedings of Workshop 11-13 April 1972

66 J E SAMMET
Programming languages: history and future
Communications of the ACM Vol 15 No 7 pp 601-610

67 R THALL
A manual for PSA/ADS: a machined aided approach to
analysis of ADS
ISDOS Working Paper No 35 October 1970

68 E D P ANALYZER
COBOL aid packages
Vol 10 No 5 1972 Canning Publications

69 J W YOUNG
Graphical notation for information system description,
GRIST
1967

70 J E SAMMET
Programming languages: history and fundamentals
Prentice-Hall Inc 1969

