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INTRODUCTION 

Let N = n2 for some positive integer n, and consider a 
square n by n grid consisting of (n—l)2 small squares 
and having a node at each of the n2 grid points. In this 
paper we consider the problem of directly solving the 
class of N by N symmetric positive definite linear 
systems of equations 

Ax^b, (1) 

where each Xi is associated with a grid point and A has 
the property that A a 5*0 only if Xi and Xj are associated 
with nodes belonging to the same small square. We 
must specify how the unknowns are to be numbered if 
the above remark is to precisely determine the structure 
of A. 

Our method of solution is to factor A into LLT, 
where L is lower triangular, and then to solve Ly = b 
followed by the solution of LTx = y* The algorithm is 
essentially the well-known Cholesky (or square root) 
method, which has the agreeable property that it is 
numerically stable when applied to PAPT, where P is 
any N by N permutation matrix.14 Thus, we are free to 
permute the rows and columns of A to achieve other 
objectives, such as reduced computation and/or storage 
requirements, or convenient storage management. 
These objectives often compete with each other, and 
their relative importance depends upon the problem 
being solved, the characteristics of the computing system 
available, and programming expertise. The "best" 
way to number the equations depends upon which of 
the objectives we consider to be most important. 

Certain members of our problem class which arise in 
connection with difference discretizations of Poisson's 

* For sparse matrix calculations, the LDLT factorization may
be more efficient, where L is unit lower triangular and D is a 
positive diagonal matrix. The scheme we propose works equally 
well for either factorization. 

equation on a rectangular domain can be solved using 
special fast direct methods which require only 
0(n2log2n) arithmetic operations and 0(n2) storage 
locations.1,3 

For any system in our class, it is possible to number 
the equations (1) so that A can be factored in 0(n3) 
arithmetic operations, and the number of non-zero 
components in L is only 0(n2log2n).5 Unfortunately, 
these latter numbering schemes are somewhat com
plicated, and yield L's having their non-zero components 
scattered throughout the lower triangle. In order to 
achieve the above bounds on storage and computation, 
general sparse matrix techniques must be used. Their 
programming is relatively complicated, and their per
formance and efficiency is sensitive to hardware and 
software characteristics. See Gustavson6 for a careful 
discussion of these methods. 

On the other hand, if we number the equations in the 
natural row by row fashion, and employ a standard 
band linear equation solver,8 the programming and 
data management are straightforward and convenient. 
Unfortunately, the computation and storage require
ments are 0(n4) and 0(n3) respectively. 

In this paper we describe a computational scheme for 
solving (1) which requires no sparse matrix techniques; 
only dense or band linear systems must be solved. 
Furthermore, we show that the computation and 
storage requirements for our scheme are respectively 
0(n3\/ft) and 0 (n2 y/n). 

Our method and results apply with little modification 
to more general situations where there are nodes on the 
sides of the small squares, and where there is more than 
one unknown associated with each node.4,15 Our scheme 
also applies to matrix problems which arise in connec
tion with the use of spline bases to solve elliptic bound
ary value problems.12 In this case unknowns associated 
with nonadjacent squares may be connected. We 
discuss these generalizations in our concluding remarks, 
but since the extensions are straightforward, for clarity 
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we present the simplest case. We shall not, therefore, dis
tinguish between "node" and "unknown" in the sequel. 

DESCRIPTION OF THE COMPUTATIONAL 
SCHEME 

For some positive integer a<£n, choose a— 1 horizontal 
lines of our n by n grid which divide the mesh into a 
approximately equal parts, each part containing 
approximately n2/a nodes. These sets of nodes (un
knowns) are independent in the sense that if Xi and xj 
lie in different sets, then .A # = 0. 

Consider Figure 1 below, where for definiteness we 
choose a = 3. 

Factoring A into LLT, we obtain 

Figure 1—The n by n mesh divided into 3 parts. Circled numbers 
indicate the order in which node sets are to be numbered. 

The lines 0 and © each consist of n nodes, and follow
ing Rose,10 we refer to them as separators. The node sets 
designated by © , ® and @ will be referred to as the 
independent blocks. In general, we have a independent 
blocks separated by a— 1 separators. 

We number the unknowns in © followed by those in 
© column by column, followed by the unknowns in © 
in any order. We then number the unknowns in © 
column by column followed finally by those in © in 
any order. 

In block form, the coefficient matrix A has the 
structure below 

A = 

Ax CiT 

A 2 B2
T 

'i B2 As 

c2 

C2
T 

A* B? 

£4 As 

L = C\Lx T B2L2
 T L3 

C2L2
 T F3 BJb\ T L5 

where 

F3
T=-L3-

lB2A2~
lC2

T, 

Ai=LiLi
T,i = l,2, 4, 

Az = A3 - BzA^Bf - dAr'W=L3L3
T, 

and 

A5=A&-BiAA-1Bi
T-F3F3

T~C2A2-
1C2T=L5L5'

r. (2) 

Note that for a > 3 , the structure of the last two columns 
and rows of A and L would simply repeat. 

Using the important observation of Rose and Bunch11 

that the matrices Bi~LcT and CiLcT will be fuller than 
Bi or d, we propose only to store the L/s and F/s. 
Having them available, the solution of our example 
would proceed as follows, where x and y are partitioned 
corresponding to A. Parentheses indicate the order in 
which computations are performed. Note that only 
triangular systems of equations are solved. For example, 
in 1(c) below the vector LcTy\ is obtained by solving 
a triangular system. 

1. (a) Solve Liyi = bi, i = l, 2, 4. These can be 
solved in any order, or simultaneously. 

(b) Compute 63
, = 63- JB2(L2- r2/2)-Ci(L1-^1) 

and then solve L3y3 = &/. 
(c) Compute 

W^h-B^L^y*) -F3y3-C2(L2-
Ty2) 

and then solve L5y& = W. 
2. (a) Solve L5

Tx5 = y&. 
(b) Compute yj = yi—Lcl{Birxs) and solve 

Li
Txi = yi. 

(c) Compute y3 = y3—F3
Tx5 and solve L3

Tx3 = y3. 
(d) Compute .y*'=yt-Li-HC*TXi) -L2-

l(B2
Tx3) 

and solve L^x^ = y2. 
(e) Compute yi =y\—Lrl{C\Tx3) and solve 

LiTXi = y1'. 

The scheme for a > 3 is obvious. 
Before proceeding to the next section, the reader 

should verify that our storage needs in the example 
above are only n3 /3+0(n2) , rather than the n3+0(n2) 
required for the usual row by row numbering scheme. 
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We assume throughout that the so-called diagonal 
storage scheme8 is used to store the band matrices. 

Storage requirements and operation counts 

Following Cuthill and McKee,2 we define the band
width m of a symmetric matrix W by 

m= max | i—j | 

Using the notation ~ to mean "approximately," and 
assuming a<gji, we observe that the dimension of the 
A/s and L/s corresponding to the independent blocks 
will be ~n2/a. The A's corresponding to the separators 
are of dimension n, and although they are sparse, their 
corresponding L/s are in general full lower triangular 
matrices. The FJs are in general full matrices. Recalling 
that there are a independent blocks, a—1 separators, 
and a—2 F/s, and adding several more n2 words of 
storage for x, b and temporary space, we obtain the 
following estimate S(a) of our storage requirements: 

S(a)=nz/a+3an2/2. 

We ignore the storage required for the Bi and C*, since 
their requirements are only 0 (an). 

The above is minimized when a = a — \/2n/3, and 

S(a) =\/6n5 / 2 . 

Table 1 demonstrates the rather significant reduction 
in storage requirements over the usual row by row 
ordering scheme. 

TABLE 1—Storage Requirements for our Block Scheme 
Compared to the Row by Row Ordering 

n 

10 
20 
30 
40 
50 

100 

N 

100 
400 
900 

1,600 
2,500 

10,000 

V6 n6/2 

775 
4,380 

12,075 
24,800 
43,250 

244,950 

n3 

1,000 
8,000 

27,000 
64,000 

125,000 
1,000,000 

We now obtain a crude estimate for the number of 
multiplicative operations required for our scheme. We 
use ^ m W as an estimate for the cost of factoring an 
N by N symmetric positive definite matrix having 
bandwidth m. 

First observe that the calculation of the L/s corre
sponding to the independent blocks requires about 
«(M) (n/a)2(n2/a) = (n4/a2)/2 multiplicative opera
tions. The calculation of the L/s corresponding to the 
separators (once we have computed the A/s) requires 
approximately (a—2) n3/Q « cm3/6 operations. 

Now consider the calculation of the Ai's from for
mulas of the type (2). An example is 

Ai=Ai—Bi-iAi-.i~1Bi-xT—Fi-j%Fi—2T—Ci-$A i-3~1Ci-$F. 

Normally, we would compute Bi-iAi-1~
1Bi-iT by 

first calculating W=Li^r'1Bi-1
T and then computing 

WW r . However, using the structure of L;_i and as
suming exact numerical cancellation does not occur,** 
it is easy to show that W is about half full. We require 
at least n4/(3a) multiplications to compute T^TF21, and 
about n3/(2a) auxiliary storage locations are required 
forW. 

However, if we instead compute W =A;_i_1J5j_iT and 
then utilize the fact that B has fewer than 3n nonzero 
components when computing Bi-iW, we perform only 
about 2n4/a2 operations. Furthermore, we can compute 
Bi-iAi-\~lBi-xT column by column, and only n2/a tem
porary storage locations are required. 

Using this crucial observation, the calculation of the 
A/s requires about (a — 1) (4n4/a2+n3) «4n 4 /a+cm 3 

multiplications. Utilizing the sparsity of the B/s and 
Ci's in the same way, the calculation of the F / s requires 
about (a—2) (2n4/a2+n3/2) «2n 4 / a+«n 3 /2 operations. 

Collecting terms, we obtain the estimate M(a) for 
the number of multiplications required to produce L: 

M(a)= 6n4/«+5cm3/3+n4/ (2a2). 

Assuming c£>>l, M(a) is approximately minimized 
for a—6t= -s/l8n/5, yielding 

M{a) = 2 \ / i 0 n 3Vn+5nV36. 

Thus, M(d)>n4/2 unless N is very large indeed 
( « 25,000), although M (&) < n* if N is larger than about 
1,600. Thus, unless N is very large we will pay a modest 
premium in arithmetic operations if we use our block 
scheme. In exchange we obtain a substantial decrease 
in storage requirements. I t is interesting to note that if 
we do not make use of our observation in computing 
A/s, the operation count is 0(?i4). 

CONCLUDING REMARKS 

1. The procedure represents a considerable improve
ment over the standard row by row scheme; 
whether its comparative simplicity renders it 
competitive or superior to the use of more 
sophisticated orderings depend upon our particu
lar computing environment and programming 
expertise. An attempt to at least partially 
answer this question is a topic of further re
search. 

** This is a reasonable assumption in the presence of rounding 
error. 
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2. As we stated in the introduction, similar results 
hold for more general grid problems. When edge 
or interior nodes occur, one should use "profile" 
or "envelope" methods4 >7,9 rather than band 
schemes for best results. Problems arising 
through the use of splines have the property 
that unknowns associated with grid points p and 
q are connected provided the maximum differ
ence in their x or y grid coordinates is bounded 
by some number d, which depends upon the 
degree of the spline. To apply our scheme we 
simply choose sets of d adjacent parallel grid 
lines as separators and proceed as before. 

3. For matrix problems arising from the 3-dimen-
sional unit cube grid having ns nodes, we can 
choose separators consisting of planes of grid 
points and again apply the same techniques. The 
computation and storage estimates achieved are 
respectively 0(n6\/n) and 0(n4 \ / f t ) , compared 
to 0(n7) and 0(n5) for the standard plane-by-
plane numbering scheme. 

4. It seems fairly obvious that similar ideas can be 
applied to less regular problems, but it is difficult 
to obtain quantitative estimates of how much 
might be gained. Intuitively, we want to choose 
small separators, yielding independent blocks of 
nodes which can be numbered so as to have a 
small band or profile. The study of automatic 
schemes for doing this is another topic for future 
research. 
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