
From Spreadsheets to Relational Databases
and Back?

Jácome Cunha1, João Saraiva1, and Joost Visser2

1 Departamento de Informática, Universidade do Minho, Portugal
2 Software Improvement Group, The Netherlands

Abstract. This paper presents techniques and tools to transform spread-
sheets into relational databases and back. A set of data refinement rules is
introduced to map a tabular datatype into a relational database schema.
Having expressed the transformation of the two data models as data re-
finements, we obtain for free the functions that migrate the data. We
use well-known relational database techniques to optimize and query the
data. Because data refinements define bidirectional transformations we
can map such database back to an optimized spreadsheet.
We have implemented the data refinement rules and we have constructed
tools to manipulate, optimize and refactor Excel-like spreadsheets.

1 Introduction

Spreadsheet tools can be viewed as programming environments for non-profes-
sional programmers. These so-called “end-user” programmers vastly outnumber
professional programmers [28].

As a programming language, spreadsheets lack support for abstraction, test-
ing, encapsulation, or structured programming. As a result, they are error-prone.
In fact, numerous studies have shown that existing spreadsheets contain redun-
dancy and errors at an alarmingly high rate [24, 27, 29, 30].

Spreadsheets are applications created by single end-users, without planning
ahead of time for maintainability or scalability. Still, after their initial creation,
many spreadsheets turn out to be used for storing and processing increasing
amounts of data and supporting increasing numbers of users over long periods
of time. To turn such spreadsheets into database-backed multi-user applications
with high maintainability is not a smooth transition, but requires substantial
time and effort.

In this paper, we develop techniques for smooth transitions between spread-
sheets and relational databases. The basis of these techniques is the fundamental
insight that spreadsheets and relational databases are formally connected by a
data refinement relation. To find this relation we discover functional dependen-
cies in spreadsheet data by data mining techniques. These functional dependen-
cies can be exploited to derive a relational database schema. We then apply data
? This work is partially funded by the Portuguese Science Foundation (FCT) under

grants SFRH/BD/30231/2006 and SFRH/BSAB/782/2008.

calculation laws to the derived schema in order to reconstruct a sequence of re-
finement steps that connects the relational database schema back to the tabular
spreadsheet. Each refinement step at the schema level is witnessed by bidirec-
tional conversion steps at the data level, allowing data to be converted from
spreadsheet to database and vice versa. Our approach is to employ techniques
for bidirectional transformation of types, values, functions, and constraints [32],
based on data refinement theory [23].

We have implemented data refinement rules for converting between tabular
and relational datatypes as a library in the functional programming language
Haskell [25]. On this library, frontends were fitted for the exchange formats
used by the spreadsheet systems Excel and Gnumeric. We have constructed two
tools (a batch and an interactive version) to read, optimize, refactor and query
spreadsheets. The tools get as argument a spreadsheet in the Excel or Gnumeric
format and they have two different code generators: the SQL code generator,
that produces SQL code to create and populate the corresponding relational
database, and an Excel/Gnumeric code generator that produces a (transformed)
spreadsheet.

This paper is organized as follows: Section 2 presents a motivating example
that is used throughout the paper. Section 3 briefly discusses relational databases
and functional dependencies. In Section 4 we define data refinements and frame-
work for constraint-aware two-level transformation. In Section 5 we present the
refinement rules to map databases into spreadsheets. In Section 6 we describe the
libraries and tools constructed to transform and refactor spreadsheets. Section 7
discusses related work and Section 8 contains the conclusions. In Appendix we
show the API of our library.

2 Motivating Example

Throughout the paper we will use a well-known example spreadsheet taken
from [8] and reproduced in Figure 1. This sheet stores information about a
housing renting system, gathering information about clients, owners and rents.
It also stores prices and dates of renting. The name of each column gives a clear
idea of the information it represents.

For the sake of argument, we extend this example with two additional columns,
named totalDays (that computes the days of renting by subtracting the column

Fig. 1. A spreadsheet representing a property renting system.

rentFinish to rentStart) and total rent (that multiplies the total number of days
of renting by the rent-per-day value, rentPerDay). As usual in spreadsheets,
these columns are expressed by formulas.

This spreadsheet defines a valid model to represent the information of the
renting system. However, it contains redundant information. For example, the
displayed data specifies the house renting of two clients (and owners) only, but
their names are included 5 times. This kind of redundancy makes the main-
tenance and update of the spreadsheet complex and error-prone. A mistake is
easily made, for example by mistyping a name and thus corrupting the data.

The same information can be stored without redundancy. In fact, in the
database community, techniques for database normalization are commonly used
to minimize duplication of information and improve data integrity [31, 11]. Data-
base normalization is based on the detecting and exploiting functional depen-
dencies inherent in the data [5]. Can we leverage these database techniques for
spreadsheets? Based on the data in our example spreadsheet, we would like to
discover the following functional dependencies:

clientNo ⇀ cName
ownerNo ⇀ oName
propertyNo ⇀ pAddress, rentPerDay , ownerNo, oName
clientNo, propertyNo ⇀ rentStart , rentFinish, total rent , totalDays

We say that an attribute b (the consequent) is functionally dependent on at-
tribute a (the antecedent), if a uniquely determines b (notation: a ⇀ b). For
instance, the client number functionally determines his/her name, since no two
clients have the same number.

After discovering these dependencies we would like to infer a relational data-
base schema which is optimized to eliminate data redundancy. This schema can
then be used, either to store the data in a relational database management sys-
tem, or to create an improved spreadsheet. Figure 2 presents such an optimized
spreadsheet for our example. This new spreadsheet consists of four tables (bold
boxes) and the redundancy present in the original spreadsheet has been elimi-
nated. As expected, the names of the two clients (and owners) only occur once.
As we will demonstrate in the remaining sections of this paper, the process of
detecting functional dependencies, deriving a normalized database schema, and
converting the data to the new format can be formalized and automated.

Fig. 2. The spreadsheet after applying the third normal form refactoring.

After establishing a mapping between the original spreadsheet and a rela-
tional database schema, we may want to use SQL to query the spreadsheet.
Regarding the house renting information, one may want to know who are the
clients of the properties that where rented between January, 2000 and January
2002? Such queries are difficult to formulate in the spreadsheet environment. In
SQL, the above question can be formulated as follows:

select clientNo from rent
where rentStart between ’1/01/00’ and ’1/01/02’

Below we will demonstrate that the automatically derived mapping can be ex-
ploited to fire such SQL queries at the original or the optimized spreadsheet.

In the next sections, we will formalize the correspondence between spread-
sheets and relational schemas using data refinement rules. We will present formal
proofs that guarantee their correctness. Moreover, we will present a framework
that implements the transformation rules and includes frontends to well-known
spreadsheet systems. In fact, the example presented in this section was processed
by our framework.

3 From Functional Dependencies to RDB Schemas

This section explains how to extract functional dependencies from the spread-
sheet data and how to construct the relational schema. We start by introducing
some concepts related to relational databases. Then, we present an algorithm to
extract functional dependencies from data. Finally, we describe how to use the
FDs to create a relational schema.

Relational Databases and Functional Dependencies A relational database DB =
{R1, ..., Rn} is a collection of named relations (or tables), Ri ⊆ d1× ...× dk, de-
fined over data sets not necessarily distinct. Each relation’s Ri element (d1, ..., dk)
is called a tuple (or row) and each di is called an attribute. Each tuple is uniquely
identified by a minimum nonempty set of attributes called primary key (PK).
It could be the case of existing more then one set suitable for becoming the
primary key. They are designated candidate keys and only one is chosen to be-
comes primary key. A foreign key (FK) is a set of attributes within one relation
that matches the primary key of some relation. A relational database schema
(RDB) is a set of relation schemas each of which being a set of attributes. These
concepts are illustrated in Figure 3.

Another important concept is functional dependency (FD) between sets of
attributes within a relation [5]. A set B is functionally dependent on a set A,
denoted A ⇀ B, if each value of A is associated with exactly one value of B.

The normalisation of a database is important to prevent data redundancy.
Although, there are more normal forms, in general, a RDB is considered nor-
malised if it respects the third normal form (3NF) [8], that is, if it respects the
second normal formal (2NF) and all the non-key attributes are only dependent

Attributes

{Re
lat
ion

Tu
ple
s

Fig. 3. An example of a relation that represents part of our example.

on the key attributes. A relation respects the 2NF if it is in the first normal form
(1NF) and its non-key attributes are not functionally dependent on part of the
key. Finally, the 1NF is respected if each element of each row contains only one
element.

In order to define the RDB schema, we use the data mining algorithm Fun
[18] to compute the FD given a spreadsheet, and then database techniques,
namely Maier’s algorithm [16], to compute the RDB schema in the 3NF.

We have expressed Fun as the Haskell fun function. Next, we execute
this function with our running example (the arguments propSch and propRel
correspond to the first and remaining lines of the spreadsheet, respectively).

∗ ghci〉fun propSch propRel
ownerNo ⇀ oName
clientNo ⇀ cName
totalDays ⇀ clientNo, cName
propertyNo ⇀ pAddress, rentPerDay , ownerNo, oName
pAddress ⇀ propertyNo, rentPerDay , ownerNo, oName
...

The FDs derived by the Fun algorithm depend heavily on the quantity and
quality of the data. Thus, for small samples of data, or data that exhibits
too many or too few dependencies, the Fun algorithm may not produce the
desired FDs. For instance, in our running example and considering only the
data shown on Figure 1, the Fun algorithm does not induce the following FD
clientNo, propertyNo ⇀ rentStart , rentFinish, total rent , totalDays.

3.1 Spreadsheet Formulas

Functional dependencies are the basis for defining the RDB schema. The Fun
algorithm, however, may compute redundant FDs which may have a negative
impact on the design of the RDB schema. In this section, we discuss character-
istics of spreadsheets that can be used to define a more precise set of functional
dependencies.

Spreadsheets use formulas to define the values of some elements in terms
of other elements. For example, in the house renting spreadsheet, the column
totalDays is computed by subtracting the column rentFinish to rentStart , and
it is usually written as follows G3 = F3 - E3. This formula states that the

values of F3 and E3 determine the value of G3, thus inducing the following
functional dependency: rentStart, rentF inish ⇀ totalDays. Note also that
totalDays is the primary key of a FD produced by the Fun algorithm, namely
totalDays ⇀ clientNo, cName. Primary keys, however, must be constants rather
than formulas. Thus, such FDs should be eliminated.

Formulas can have references to other formulas. Consider, for example, the
second formula of the running example I3 = G3 * H3, which defines the total
rent by multiplying the number of days by the value of the rent. Because G3 is
defined by another formula, the values that determine G3 also determine I3. As
a result, the two formulas induce the following FDs:

rentStart , rentFinish, rentPerDay ⇀ total rent
rentStart , rentFinish ⇀ totalDays

Functional dependencies induced by formulas are added to the ones computed
by the Fun algorithm. In genereal a spreadsheet formula of the form X0 =
f(X1, . . . , Xn) induces the following functional dependency: X1, . . . , Xn ⇀ X0.
In spreadsheet systems, formulas are usually introduced by copying them through
all the elements in a column, thus making the FD explicit in all the elements.
This may not always be the case and some elements can be defined otherwise
(e.g. by using a constant value or a different formula). In this case, no functional
dependency is induced.

3.2 Computing the RDB Schema

Having computed the functional dependencies, we can now construct the schema
of the RDB. Maier in [16] defined an algorithm called synthesize that receives
a set of FDs and returns a relational database schema respecting the 3NF.

begin synthesize :
Input a set of FDs F
Output a complete database schema for F

1. find a reduced, minimum annular cover G for F ;
2. for each CFD (X1, X2, ..., Xn) ⇀ Y in G, construct a relational schema

R = X1X2...XnY with designated keys K = {X1, X2, ..., Xn};
3. return the set of relational schemas constructed in step 2.

end synthesize

This concise, but complex algorithm works as follows: To find a minimum
annular cover G for F we start by compute a minimum cover G′ for F . G′

is minimum if it has as few FDs as any equivalent set of FDs. Transform G′

into G is simple: just combine the FDs with equivalent left sides into compound
functional dependencies (CFDs) having the form (X1, X2, ..., Xn) ⇀ Y where
X1, ..., Xn, Y are sets of FDs and the left sets are equivalent.

Now we need to reduce the set of CFDs and this is achieved when all the CFDs
into the set are reduced. A CFD is reduced if no left set contains any shiftable
attributes and the right side contains no extraneous attributes. An attribute is

shiftable if it can be removed from the left side of the FD and inserted into the
right side without changing the equivalence of the set of FDs. An attribute is
extraneous if it can be removed from the FD without changing the equivalence
of the set of FDs.

We have implemented this algorithm in Haskell as the synthesize function.
It gets as argument the functional dependencies (produced by the Fun) and
returns a set of CFD. Next, we execute synthesize with the FDs induced by our
running example (sets are represented by the predefined Haskell lists).
∗ ghci〉synthesize ◦ fun propSch propRel
([ownerNo], [oName]) ⇀ []
([clientNo], [cName]) ⇀ []
([totalDays]) ⇀ [cName]
([propertyNo], [pAddress], [rentPerDay]) ⇀ [oName]
([rentStart , rentFinish, rentPerDay]) ⇀ [total rent]
([rentStart , rentFinish]) ⇀ [totalDays]
...

Each CFD defines several candidate keys for each table. However, to fully
characterise the RDB schema we need to chose the primary key from those can-
didates. To find such key we use a simple algorithm: first, we produce all the
possible tables using each candidate key as a primary key. For example, the sec-
ond CFD above expands to two possible tables with the same attributes: one has
clientNo as primary key and in the other is cName the primary key. Next, we
choose the table which has the smallest PK, since in general a ’good’ table has the
smallest key as possible. The more attributes the key determines the best. A final
cleanup is necessary: we remove FD that all their attributes are already repre-
sented in other FDs. We also merge two FDs whenever antecedents/consequents
are subsets. The final result is listed bellow.

ownerNo ⇀ oName
clientNo ⇀ cName
propertyNo ⇀ pAddress, rentPerDay , ownerNo
clientNo, propertyNo ⇀ rentStart , rentFinish, total rent , totalDays

As a final step, the set of foreign keys has to be computed by detecting which
primary keys are referenced in the consequent of the FD.

Next, we show the the RDB schema derived for the house renting system
example. The RDB is represented as a tuple of tables. A table is a map between
the PK and the remaining attributes. This datatype is constrained by an in-
variant, defining the foreign keys, which will be explained in detail in the next
section.

(clientNo × propertyNo ⇀ rentStart × rentFinish × total rent × totalDays ×
clientNo ⇀ cName ×

(propertyNo ⇀ pAddress × rentPerDay × ownerNo ×
ownerNo ⇀ oName)inv1)inv2

where
inv1 = πownerNo ◦ ρ ◦ π1 ⊆ δ ◦ π2

inv2 = πclientNo ◦ δ ◦ π1 ⊆ δ ◦ π1 ◦ π2 ∧ πpropertyNo ◦ δ ◦ π1 ⊆ δ ◦ π1 ◦ π2 ◦ π2

The tables are indexed by a binary function that represents the foreign keys
restriction. This notation and operators are introduced in the next section.

4 Constraint-aware Rewriting

As we have explained before, the mapping between the spreadsheet and the
RDB models is performed through data refinements using the 2LT system. Thus,
before we present the data refinement rules to map spreadsheets into databases,
let us briefly describe data refinements and the 2LT system3.

4.1 Datatype Refinement

Data refinement theory provides an algebraic framework for calculating with
datatypes. Refining a datatype A to a datatype B can be captured by the fol-
lowing diagram:

A

to

%%
6 B

from

ee where

 to : A → B is an injective and total relation;
from : B → A a surjective function;
from · to = idA (identity function on A);

We will use A 6to
from B as a short notation to the above diagram.

Refinements can be composed, that is, if A 6to
from B and B 6to′

from′ C then
A 6to′·to

from·from′ C. Also, transformation in specific parts of a datatype must
be propagated to the global datatype in which they are embedded, that is, if
A 6to

from B then FA 6F to
F from FB where F is a functor that models the context

of the transformation. A functor captures i) the embedding of local datatypes
inside global datatypes and ii) the lifting of value-level functions to and from
on the local datatypes to value-level transformations on the global datatypes.
In the particular case where the refinement works in both directions we have an
isomorphism A ∼= B.

A common example is that maps are the implementation for lists [9] –
A? 6seq2index

list N ⇀ A – where seq2index creates a map (or finite function,
here represented as Map) where the keys are the indexes of the elements of the
list. list just collects the elements in the map. For more details about data re-
finements the reader is referred to [17, 19, 23].

Consider now a RDB with two tables, A ⇀ B and A ⇀ C. Suppose that
the key of the first table is a foreign key to the key of the second one. This is
represented with the datatype constraint δ ◦ π1 ⊆ δ ◦ π2, where π1 and π2 repre-
sent left and right projection, respectively, and δ denotes the domain of a map.

3 2LT stands for Two-Level Transformations. The tool is available at
http://code.google.com/p/2lt/.

Constraints on data types are modelled as boolean functions which distinguishes
between legal values and values that violate the constraint. A data type A with
a constraint φ is represented as Aφ where φ : A → Bool is a total function So,
our example becomes as follows: ((A ⇀ B)×(A ⇀ C))δ◦π1⊆δ◦π2 . Further details
about constraint data types can be found in [4, 20].

4.2 Two-Level Transformations with Constraints

The data refinement theory presented in the previous section was implemented as
a rewriting system named 2LT in Haskell [4, 9]. We will now briefly introduce
this system.

A type-safe representation of types and functions is constructed using gen-
eralised algebraic datatypes (GADTs) [26]. To represent types, the following
GADT is used:

data Type t where
String :: Type String
[·] :: Type a → Type [a]
· ⇀ · :: Type a → Type b → Type a ⇀ b
· × · ::Type a → Type b → Type (a, b)
Maybe :: Type a → Type (Maybe a)
·· :: Type a → PF (a → Bool) → Type a
...

Each refinement rule is encoded as a two-level rewriting rule:

type Rule = ∀ a . Type a → Maybe (View (Type a))
data View a where View :: Rep a b → Type b → View (Type a)
data Rep a b = Rep{to = PF (a → b), from = PF (b → a)}

Although the refinement are from a type a to a type b, this can not be directed
encoded since the type b is only known when the transformation completes, so
the type b is represented as a view of the type a. A view means that given a
function to which transforms a type a into a type b and a vice versa function
from it is possible to construct b from a.

These functions are represented in a point-free style, that is, without any
variables. Its representation is accomplished by the following GADT:

data PF a where
π1 :: PF ((a, b) → a)
π2 :: PF ((a, b) → b)
list2set :: PF ([a] → Set a)
ρ :: PF ((a ⇀ b) → Set b)
δ :: PF ((a ⇀ b) → Set a)
CompList :: PF ([(a, b)] → [(b, b)])
ListId :: PF ([(a, b)] → [(b, b)])

·? :: PF (a → b) → PF ([a] → [b])
·? :: PF (a → b) → PF (Set a → Set b)
· ∧ · :: PF (Pred a) → PF (Pred a) → PF (Pred a)
· ◦ · :: PF (b → c) → PF (a → b) → PF (a → c)
· 4 · :: PF (a → b) → PF (a → c) → PF (a → (b, c))
· × · :: PF (a → b) → PF (c → d) → PF ((a, c) → (b, d))
· ⊆ · :: PF (a → Set b) → PF (a → Set b) → PF (Pred a)
Tables2table :: PF ((a ⇀ b, c ⇀ d) → (a ⇀ b,Maybe d))
Table2tables :: PF ((a ⇀ b,Maybe d) → (a ⇀ b, c ⇀ d))
Table2sstable :: PF ((a ⇀ b) → [(a, b)])
Sstable2table :: PF ([(a, b)] → (a ⇀ b))

...

To represent datatypes with constraints the following new Type constructor
is used:
·· :: Type a → PF (a → Bool) → Type a

Its first argument is the type to constraint and the second one is the PF function
representing the constraint.

Each refinement rule can only be applied to a specific datatype, for instance,
a refinement on the type A can not be applied to the type A×B . To allow this
some rule-based combinators were created:

nop :: Rule -- identity
. ::Rule → Rule → Rule -- sequential composition
� ::Rule → Rule → Rule -- left-biased choice
many :: Rule → Rule -- repetition
once :: Rule → Rule -- arbitrary depth rule application

Using combinators, rules can be combined in order to create a full rewrite sys-
tems.

5 From a Database to a Spreadsheet: The Rules

In our approach spreadsheets are represented by a product of spreadsheet tables
(from now designated as sstables). A sstable is a product of rows and each row is
itself a product of values. Although, we wish to transform a spreadsheet into a
relational database, we will introduce rules to map databases into spreadsheets
since the former are a refinement of the later. Thus, we will use the RDB schema
constructed, as explained in Section 3.2, and refine it to a spreadsheet. Because
we do this data type migration within the 2LT system, we obtain for free the
function that we will use to migrate the data of the spreadsheet into the database.

Next, we describe several date refinements needed to transform a relational
database into a spreadsheet. We also present a strategy to apply these refine-
ments in order to obtain the desirable result.

5.1 Refining a Table to a sstable

It is possible to transform a table (a map with key of type A and values of type
B) into a sstable (a list of tuples) and vice-versa as long as there is a constraint
imposing that there exists a FD between the elements in the column of type A
and the column of type B:

A ⇀ B

Table2sstable
++

6 (A×B)?
list2set◦compList⊆list2set◦listId

Sstable2table

kk

Here, list2set transforms a list into a set, compList sees a list as a relation
and compose it with its inverse. listId is the list resulting from transforming the
id relation into a list. This definition of FD is based on the definition of FD
presented in [21]. From now on this invariant will be designated fd . The proof
of this data refinement can be found in [22].

The rule is implemented in Haskell as follows.

table2sstable :: Rule
table2sstable (a ⇀ b)i = return $ View rep [a × b]inv ′

where
inv ′ = trySimplify (i ◦ Sstable2table ∧ fd)
rep = Rep{to = Table2sstable, from = Sstable2table }

where trySimplify is a rule that simplifies the invariant.
If the relational table has already an invariant, then it is composed with

the invariant of the new type concerning with the FD. The resulting invariant
is then simplified. This is just part of the rule’s implementation since another
function is necessary to encode the rule when the initial argument does not have
an associated invariant.

Let us use this rule to map the table with information about clients of our
running example.

∗ ghci〉table2sstable (clientNo ⇀ cName)
Just (View (Rep〈to〉〈from〉) [clientNo × cName]fd)

The result of this rule is a datatype modelling a spreadsheet that constains
the attribute of the database. The invariant fd guarantees that the functional
dependency is now present in the datatype. Moreoever, the returned to and from
functions are the migration functions needed to map the data between the two
models.

5.2 Refining Tables with Foreign Keys on Primary Keys

A pair of tables where the primary key of the first table is a foreign key to the
primary key of the second table, can be refined to a pair of sstables using the
following law:

((A ⇀ B)× (C ⇀ D))πA◦δ◦π1⊆πC◦δ◦π2

Tables2sstable

��

6

((A×B)?
fd × (C ×D)?

fd)πA◦list2set◦π?
1◦π1⊆πC◦list2set◦π?

1◦π2

Sstables2tables

GG

The invariant guarantees that exists a FK from the PK of the first table
to the PK of the second table. The πA projection has type πA : A → E and
πC : C → E. A must be a tuple of the form A1× . . .×E× . . .×An and C of the
form C1 × . . .×E × . . .×Cn. This allows that just part of the PK of each table
is used in the FK definition. The proof of this refinement corresponds to apply
twice the refinement presented in Section 5.1. The invariant must be updated
to work on the new type. The Haskell function table2sstable implements the
rule.

table2sstable :: Rule
table2sstable ((a ⇀ b)× (c ⇀ d))πA◦δ◦π1⊆πC◦δ◦π2 =

return $ View rep ([a × b]fd × [c × d]fd)inv

where
inv = πA ◦ list2set ◦ π?

1 ◦ π1 ⊆ πC ◦ list2set ◦ π?
1 ◦ π2

rep = Rep{to = Table2sstable × Table2sstable,
from = Sstable2table × Sstable2table }

A particular instance of this refinement occurs when πA is the identity func-
tion. In this case all the attributes of the PK of the first table, are FKs to part
of the attributes of the PK of the second table. Another instance of this refine-
ment is when πC = id, that is, part of the attributes of the PK of the first table
reference all the attributes of the PK of the second table. Both cases are very
similar to the general one and they are not shown here. A final instance of this
rule presents πA and πC has the identity function meaning that all the attributes
of the PK of the first table are FKs to all the attributes of the PK of the second
table. In this case the refinement changes as we show next.

((A ⇀ B)× (A ⇀ C))δ◦π1⊆δ◦π2

Tables2table

++
∼= A ⇀ (C ×B?)

Table2tables

kk

The values of the second table have a ?4 because it can be the case that
some keys in the second table are not referenced in the first one. This happens
because it is not always true that all the keys have a foreign usage. The proof of
such an isomorphism is as follows.

4 This symbol means optional. it is also representable as A + 1. In Haskell it is
represented by the datatype Maybe x = Just x | Nothing .

A ⇀ (C ×B?)
∼= { A? ∼= 1 ⇀ A} (1)

A ⇀ (C × (1 ⇀ B))
∼= { A ⇀ (D × (B ⇀ C)) ∼= ((A ⇀ D) × (A × B ⇀ C))π?

1◦δ◦π2⊆δ◦π1
} (2)

((A ⇀ C)× (A× 1 ⇀ B))π?
1◦δ◦π2⊆δ◦π1

∼= { A ∼= A × 1} (3)

((A ⇀ C)× (A ⇀ B))δ◦π2⊆δ◦π1

Proofs of rules 1, 2, and 3 can be found in [9], [4], and [23]. A function in
Haskell was created to define this isomorphism.

tables2table :: Rule
tables2table ((a ⇀ b)× (a ⇀ c))δ◦π1⊆δ◦π2 =

return $ View rep (a ⇀ c ×Maybe b)
where

rep = Rep{to = Tables2table, from = Table2tables }

Note that each of these rules has a dual one, that is, for each rule refining a
pair A×B there exists another one refining the pair B×A, with the appropriate
invariant.

5.3 Refining Tables with Foreign Keys on Non Primary Keys

In the previous section we have introduced refinement rules to manipulate tables
with FKs to PKs. In this section we present another set of rules to deal with FKs
in the non-key attributes. The diagram of the general rule is presented below.

((A ⇀ B)× (C ⇀ D))πB◦ρ◦π1⊆πC◦δ◦π2

Tables2sstables′

��

6

((A×B)?
fd × (C ×D)?

fd)πB◦list2set◦π?
2◦π1⊆πC◦list2set◦π?

1◦π2

Sstables2tables′

GG

The proof of this refinement corresponds again to apply twice the refinement
presented in Section 5.1. The invariant must be updated to work on the new
type too. The function tables2sstables implements this refinement.

tables2sstables ′ ((a ⇀ b)× (c ⇀ d))πB◦ρ◦π1⊆πC◦δ◦π2 =
return $ View rep ([a × b]fd × [c × d]fd)πB◦list2set◦π?

2◦π1⊆πC◦list2set◦π?
1◦π2

where
rep = Rep{to = Table2sstable × Table2sstable,

from = Sstable2table × Sstable2table }

This refinement has three other particular cases. One where πB = id, another
where πC = id, and finally when πB = πC = id. In these cases the refinement is
the same, only the invariant changes. The proof and implementation of this rule
are very similar to the general case and so not shown here.

Let us consider again our running example. In order to use this rule we
consider two FDs where all the PK of second table is referenced by part of the
non-key attributes of the first one.

∗ ghci〉let prop = propertyNo ⇀ pAddress × rentPerDay × ownerNo
∗ ghci〉let owner = ownerNo ⇀ oName
∗ ghci〉maps2tables (prop × owner)πownerNo◦ρ◦π1⊆δ◦π2

Just (View (Rep〈to〉〈from〉)
(prop′ × owner ′)πownerNo◦list2set◦π?

1◦π1⊆list2set◦π?
1◦π2)

where
prop′ = [propertyNo × pAddress × rentPerDay × ownerNo]
owner ′ = [ownerNo × oName]

In this case the two initial pairs are transformed into two lists. The constraint
is updated to work with such structures.

5.4 Data Refinements as a Strategic Rewrite System

The individual refinement rules can be combined into a compound rules and full
transformation systems using the strategy combinators shown in Section 4.2. In
particular, we define a compound rule to map a RDB to a spreadsheet:

rdb2ss :: Rule
rdb2ss = simplify B

(many ((aux tables2sstables)� (aux tables2sstables ′))) B
(many (aux table2sstable))

where
aux r = ((once r) B simplify) B many ((once r) B simplify)

This function starts by simplifying the invariants. Then the tables2sstables rule
(defined in Section 5.2) is applied exhaustively (with aux) to transform tables
into sstables. After that the tables2sstables ′ rule (Section 5.3) is applied. In a final
step, the remaining maps are transformed using the table2sstable (Section 5.1)
rule. After each rule has been applied a simplification step is executed. This
strategy requires the simplification of the invariants because pattern matching
is performed not only on the type representations, but also on the invariants.
The simplify rule is defined as follows:

simplify :: Rule
simplify = many (prodsrdb �mapsrdb � others �myRules) B compr

The functions prodsrdb,mapsrdb, others, and myRules are functions that simplify
invariants. We include here the code of the first one. It simplifies products:

prod def :: Rule
prod def (Func (a × b)) (f × g) = success "Prod-Def" ((f ◦ π1)4(g ◦ π2))
prod def = fail "Cannot apply Prod-Def!"

6 The HaExcel Framework

HaExcel is a framework to manipulate, transform and query spreadsheets. We
provide an overview of the various parts of the framework and we demonstrate
its use by example.

6.1 The Framework

HaExcel is implemented in Haskell and consists of the following parts:

Library A generic/reusable library to map spreadsheets into relational database
models and back: This library contains an algebraic data type to model a
(generic) spreadsheet and functions to transform it into a relational model and
vice versa. Such functions implement the refinement rules introduced in Sec-
tion 5. The library includes two code generator functions: one that produces
the SQL code to create and populate the database, and a function that gen-
erates Excel/Gnumeric code to map the database back into a spreadsheet. A
MySQL database can also be created and manipulated using this library under
HaskellDB [7, 15]. The API of HaExcel is included in Appendix A.

Front-ends A frontend to read spreadsheets in the Excel and Gnumeric for-
mats: The frontend reads spreadsheets in the portable XML documents using
the UMinho Haskell Libraries [1]. We reuse the spatial logic algorithms from the
UCheck project [3] to discover the tables stored in the spreadsheet. The first
row of each table is used as labels and the remaining elements are assumed to
be data.

Tools Two spreadsheet tools: A batch and a online tool that allow the users to
read, transform, refactor and query spreadsheets.

6.2 The House Renting Spreadsheet Revisited

In Section 2 we have informally presented the refactoring of the house renting
spreadsheet. In this section, we will use the HaExcel library functions to perform
such refactoring automatically.

The library function ss2rdb (see Appendix A) reads the Excel spreadsheet
from a file and produces the RDB schema and the migrated data. This function
performs the following steps: First, it uses the function readSS to read the spread-
sheet stored in the file received as argument. This function not only reads the

Excel file, but it also detects the tables in the spreadsheet (using UCheck func-
tions). Next, the rel2rdb function uses the already presented fun and synthesize
functions to compute the functional dependencies and construct the relational
database schema. The data refinement rules are used to map the spreadsheet
into a database model. The ss2rdb returns a pair containing the the database
schema and the migrated data, that conforms to the returned schema. The mi-
grated data is computed using the functions automatically derived during the
refinement. Next, we show the returned RDB schema obtained for the running
example.

(clientNo × propertyNo ⇀ rentStart × rentFinish × total rent × totalDays ×
clientNo ⇀ cName ×

(propertyNo ⇀ pAddress × rentPerDay × ownerNo ×
ownerNo ⇀ oName)inv1)inv2

where
inv1 = πownerNo ◦ ρ ◦ π1 ⊆ δ ◦ π2

inv2 = πclientNo ◦ δ ◦ π1 ⊆ δ ◦ π1 ◦ π2 ∧ πpropertyNo ◦ δ ◦ π1 ⊆ δ ◦ π1 ◦ π2 ◦ π2

and, the migrated data.

{((cr76 , pg4), (1/7/00, (8/31/01, (30100, 602)))),
((cr75 , pg16), (9/1/01, (9/1/02, (25550, 365)))),
((cr56 , pg4), (9/2/99, (6/10/00, (14100, 282)))),
((cr56 , pg36), (10/10/00, (12/1/01, (25550, 417)))),
((cr56 , pg16), (11/1/02, (8/10/03, (19740, 282))))}

({(cr76 , john), (cr56 , aline)},
({(pg4 , (6 Lawrence St ., (50, co40))), (pg16 , (5 Novar Dr ., (70, co93))),

(pg36 , (2 Manor Rd , (60, co93)))},
{(co40 , tina), (co93 , tony)}))

The returned RDB schema defines a 3NF database, consisting of four tables.
This corresponds exactly to the four tables in the spreadsheet of Figure 2. The
same happens with the data: it corresponds to the data stored in that spread-
sheet. Having computed the relational database tables and the migrated data,
we can now export it into SQL and back into refactored spreadsheet.

The SQL Backend: This backend generates SQL code which creates the database
according to the derived RDB schema. This is basically a simple SQL create
instruction based on the RDB schema. Furthermore, it produces SQL code to
insert the migrated data in the database, and, again, this corresponds to a SQL
insert instruction with the migrated data as argument. Because some values
of the spreadsheet are defined through formulas, we generate also a SQL trigger
that models the spreadsheet formulas which are used to update the database and
guarantee its integrity. Next, we present the trigger induced by the two formulas
of our running example:

create trigger ssformulas before insert on tbl
for each row begin

set new . totalDays = new . rentFinish − new . rentStart ;
set new . total rent = new . rentPerDay ∗ new . totalDays;

end ;

The SQL code to create the database and insert the migrated data can be
obtained from the HaExcel webpage. We omit them here.

The Spreadsheet Backend: It generates the spreadsheet in the XML-based Ex-
cel/Gnumeric format. The data refinements define bidirectional transformations,
so we can map the optimized relational database back into a spreadsheet. Thus,
this backend implements a spreadsheet refactoring tool. Figure 2 shows the result
of using this backend for the house renting system. Because, the spreadsheet for-
mulas are stored in the database via triggers, the refactored spreadsheet contains
such formulas too.

7 Related Work

Frost et al [14] describe a method of providing a spreadsheet-like interface to
a relational database. The method starts from meta-data about the data orga-
nization in the spreadsheet. Using this meta-data a bidirectional connection is
established between the spreadsheet and the database. No intermediate storage
or transformation is performed on the data, and the database schema is a direct
reflection of the spreadsheet organization captured by the metadata. No specific
method is given for providing the required meta-data in an automated fashion.
By contrast, our approach includes automated discovery of spreadsheet organiza-
tion, derivation of a normalized database schema, and calculational construction
of the bi-directional connection between database and spreadsheet, which may
include complex transformations of the data that is exchanged.

Pierce et al [6, 13] have addressed the view-update problem for databases with
combinators for bi-directional programming, called lenses. A database view con-
structed by composition of lenses allows updates at the view level to be pushed
back to the database level. Lenses are similar, but fundamentally different from
data refinements (a formal comparison is given by Oliveira [23]). Lenses can
be used to fit a flattened, spreadsheet-like view onto a normalized relational
database. Though our approach starts from a spreadsheet and derives a rela-
tional database, part of our solution involves the calculation of bi-directional
conversion functions, starting from the database schema and working back to
the initial spreadsheet. It would be interesting to investigate whether lenses can
be calculated similarly.

The 2LT project [32] uses two-level strategic term rewriting for coupled trans-
formation of data schemas, instances [9], queries [10], and constraints [4], in par-
ticular, hierarchical-relational data mappings. We adopted the same techniques
and demonstrated their application to transformation from non-structured data
(spreadsheets) to relational databases. We added new transformation rules and
strategies with corresponding proofs. We integrated the rewriting machinery with

algorithms for detection of tables and functional dependencies and generation of
relational schemas.

Erwig et al have applied to spreadsheets various software engineering and
programming language principles, including type inference [3], debugging [2],
and object-oriented design [12]. In particular, the UCheck system [3] detects
errors in spreadsheets through automatic detection of headers and (numeric)
unit information. We have adopted some of the spatial logic algorithms from
UCheck in order to detect table boundaries.

8 Conclusions

In this paper, we have explored the relation between spreadsheets and relational
databases. In particular, we have made the following contributions.

1. We have extended the 2LT framework for two-level transformations with
constraint-aware

2. conversion rules between relational and tabular data structures. The correct-
ness of these rules is supported with proofs.

3. We have shown how these rules can be combined into a strategic rewrite
4. system that transforms a relational schema into a tabular schema and on

the fly derives conversion functions between these schemas.
5. We have combined this rewrite system with methods for discovering tables

in spreadsheets, deriving functional dependencies from the data contained in
them, and deriving relational schemas from these functional dependencies.

6. To these algorithmic components, we have connected importers and ex-
porters for SQL and spreadsheet formats.

7. We have shown how the resulting system can be employed to convert spread-
sheets to relational databases and back. This allows refactoring of spread-
sheets to reduce data redundancy, migration of spreadsheet applications to
database applications, and advanced querying of spreadsheets with SQL
queries.

Notwithstanding these contributions, our approach presents a number of limita-
tions that we hope to remove in future. For example, we are currently supporting
only set of commonly used formulas, which remains to be enlarged to a wider
range.

More importantly, the algorithm for inferring functional dependencies needs
improvement. This algorithm does not work well for small sets of data and is
sensitive to “accidental” patterns in the data. Some well-chosen heuristics and
limited user interaction could alleviate this problem.

In the two-level rewrite system, syntactic matching is performed on repre-
sentations of constraints. Such syntactic matching could be generalized to verifi-
cation of logical implication of the actual constraint and the required constraint.

With respect to formulas and queries, we are not yet exploiting some inter-
esting opportunities. For example, a formula or query expressed in terms of the
source spreadsheet may be composed with the backward conversion function to

obtain a query on the target database or refactored spreadsheet. Such migrations
of queries have been explored in [10].

Finally, we are currently ignoring the possibility of having repeated rows in
the source spreadsheet. Also the order of rows is not taken into account. Thus,
we are effectively treating spreadsheet tables as sets of rows rather than bags or
lists of rows. The data refinement theory that underpins our approach can be
exploited to support these alternative perspectives where order and repetition
are considered relevant.

Availability The HaExcel library and tools are available from the homepage of
the first author.

References

1. UMinho Haskell Software – Libraries and Tools -
http://wiki.di.uminho.pt/twiki/bin/view/research/pure/puresoftware.

2. R. Abraham and M. Erwig. GoalDebug: A spreadsheet debugger for end users. In
29th International Conference on Software Engineering (ICSE 2007), pages 251–
260. IEEE Computer Society, 2007.

3. R. Abraham and M. Erwig. UCheck: A spreadsheet type checker for end users. J.
Vis. Lang. Comput., 18(1):71–95, 2007.

4. T.L. Alves, P.F. Silva, and J. Visser. Constraint-aware Schema Transformation.
In The Ninth International Workshop on Rule-Based Programming, 2008.

5. C. Beeri, R. Fagin, and J.H. Howard. A complete axiomatization for functional and
multivalued dependencies in database relations. In Proc. of the ACM SIGMOD
Int. Conf. on Management of Data, pages 47–61, 1977.

6. A. Bohannon, J.A. Vaughan, and B.C. Pierce. Relational lenses: A language for
updateable views. In Principles of Database Systems (PODS), 2006.

7. B. Bringert, A. Höckersten, C. Andersson, M. Andersson, M. Bergman,
V. Blomqvist, and T. Martin. Student paper: HaskellDB improved. In Haskell
’04: Proceedings of the 2004 ACM SIGPLAN workshop on Haskell, pages 108–115,
New York, NY, USA, 2004. ACM.

8. T. Connolly and C. Begg. Database Systems, A Practical Approach to Design,
Implementation, and Management. Addison-Wesley, 3 edition, 2002.

9. A. Cunha, J.N. Oliveira, and J. Visser. Type-safe Two-level Data Transformation.
In J. Misra et al., editors, Proc. Formal Methods, 14th Int. Symp. Formal Methods
Europe, volume 4085 of LNCS, pages 284–299. Springer, 2006.

10. A. Cunha and J. Visser. Strongly typed rewriting for coupled software transfor-
mation. ENTCS, 174(1):17–34, 2007. Proc. 7th Int. Workshop on Rule-Based
Programming (RULE 2006).

11. C. J. Date. An Introduction to Database Systems, 6th Edition. Addison-Wesley,
1995.

12. G. Engels and M. Erwig. ClassSheets: automatic generation of spreadsheet appli-
cations from object-oriented specifications. In David F. Redmiles, Thomas Ellman,
and Andrea Zisman, editors, 20th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE 2005), November 7-11, 2005, Long Beach, CA,
USA, pages 124–133. ACM, 2005.

13. J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce,
and Alan Schmitt. Combinators for bidirectional tree transformations: A linguis-
tic approach to the view-update problem. ACM Transactions on Programming
Languages and Systems, 29(3):17, May 2007.

14. B.H. Frost and S.D. Stanton. Spreadsheet-based relational database interface,
January 2008. US Patent 20080016041.

15. D. Leijen and E. Meijer. Domain specific embedded compilers. In 2nd USENIX
Conference on Domain Specific Languages (DSL’99), pages 109–122, Austin,
Texas, October 1999.

16. D. Maier. The Theory of Relational Databases. Computer Science Press, 1983.
17. C. Morgan and P.H.B. Gardiner. Data refinement by calculation. Acta Informatica,

27:481–503, 1990.
18. N. Novelli and R. Cicchetti. Fun: An efficient algorithm for mining functional and

embedded dependencies. In ICDT ’01: Proceedings of the 8th International Con-
ference on Database Theory, pages 189–203, London, UK, 2001. Springer-Verlag.

19. J.N. Oliveira. A reification calculus for model-oriented software specification. For-
mal Asp. Comput., 2(1):1–23, 1990.

20. J.N. Oliveira. ”Fractal” Types: an Attempt to Generalize Hash Table Calculation.
In Workshop on Generic Programming (WGP’98), Marstrand, Sweden, June 1998.

21. J.N. Oliveira. Functional dependency theory made ’simpler’. Technical Report
PURe-05.01.01, DI-Research, January 2005.

22. J.N. Oliveira. Pointfree foundations for (generic) lossless decomposition. 2007.
Submitted.

23. J.N. Oliveira. Transforming data by calculation. In R. Lämmel, J. Saraiva, and
J. Visser, editors, Generative and Transformational Techniques in Software En-
gineering II, International Summer School, GTTSE 2007, Braga, Portugal, July
2-7, 2007. Revised Papers, volume 5235 of Lecture Notes in Computer Science.
Springer, To appear, 2008.

24. R.R. Panko. Spreadsheet errors: What we know. what we think we can do. Pro-
ceedings of the Spreadsheet Risk Symposium, European Spreadsheet Risks Interest
Group (EuSpRIG), July 2000.

25. S. Peyton Jones. Haskell 98: Language and libraries. J. Funct. Program., 13(1):1–
255, 2003.

26. S. Peyton Jones, G. Washburn, and S. Weirich. Wobbly types: type inference
for generalised algebraic data types. Technical Report MS-CIS-05-26, Univ. of
Pennsylvania, July 2004.

27. K. Rajalingham, D. Chadwick, B. Knight, and D. Edwards. Quality control in
spreadsheets: A software engineering-based approach to spreadsheet development.
In HICSS ’00: Proc. 33rd Hawaii International Conference on System Sciences-
Volume 4, page 4006, Washington, DC, USA, 2000. IEEE Computer Society.

28. C. Scaffidi, M. Shaw, and B. Myers. Estimating the numbers of end users and end
user programmers. Visual Languages and Human-Centric Computing, 2005 IEEE
Symposium on, pages 207–214, 20-24 Sept. 2005.

29. T. SH Teo and M. Tan. Quantitative and qualitative errors in spreadsheet devel-
opment. Proc. Thirtieth Hawaii Int. Conf. on System Sciences, 3:149–156, 1997.

30. M. Tukiainen. Uncovering effects of programming paradigms: Errors in two spread-
sheet systems. 12th Workshop of the Psychology of Programming Interest Group
(PPIG), pages 247–266, April 2000.

31. J.D. Ullman. Principles of Database and Knowledge-Base Systems, Volume I.
Computer Science Press, 1988.

32. J. Visser. Coupled transformation of schemas, documents, queries, and constraints.
Electr. Notes Theor. Comput. Sci., 200(3):3–23, 2008.

A API

-- type definitions
type R a = Attributes a
type Relation a = [[a]]
data Attributes a = Atts{atts :: [Attribute a]}
data Attribute a = Att{att :: a }
type FD a = (Attributes a,Attributes a)
type FDS a = [FD a]
type CFD a = (LeftSets a,RightSets a)
type CFDS a = [CFD a]
type LeftSets a = [Attributes a]
type RightSets a = Attributes a
type LKS a = [LK a]
data LK a = LK{candidate :: Candidate a, cardinality :: Int ,

quasiClosure :: Attributes a, closure :: Attributes a }
type Candidate a = Attributes a
data Box where Box :: Type a → a → Box

-- functions to manipulate FDs
fun :: Monad m ⇒ R b → Relation a → m (LKs b) -- implementation of Fun
lks2fds :: Eq a ⇒ LKS a → FDS a -- transforms LKS into FDS
rel2rdb :: R a → Relation b → Box -- produces a RDB schema
synthesize :: FDS a → CFDS a -- implementation of synthesize

-- import/export functions
readSS :: FilePath → IO [Sheet Fml] -- reads a SS file; returns tables
ss2boxes :: FilePath → IO [(Maybe Box ,Maybe Box)] -- returns type tables
ss2rdb :: FilePath → IO [Maybe Box] -- SS to RDB type
ss2SQL :: FilePath → FilePath → IO () -- SS to an SQL script
genSQL :: [(Maybe Box ,Maybe Box)] → [[String]] -- produces SQL queries
ss2DB :: FilePath → MySQLOptions → IO () -- SS to a MySQL DB
genDB :: [(Maybe Box ,Maybe Box)] → MySQLOptions → IO () -- gives a DB
ss2SS :: FilePath → FilePath → IO () -- SS to a new SS
genSS :: [Maybe Box] → Gmr ′Workbook → Gmr ′Workbook -- produces a SS

-- refinement law functions
table2sstable :: Rule -- rule from Section 5.1
tables2table Rule -- rule from Section 5.2
tables2sstables :: Rule -- rule from Section 5.3
rdb2ss :: Rule -- strategy: rule from Section 5.4

