
HAL Id: hal-00341404
https://hal.science/hal-00341404

Submitted on 25 Nov 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compiling Functional Types to Relational Specifications
for Low Level Imperative Code

Nick Benton, Nicolas Tabareau

To cite this version:
Nick Benton, Nicolas Tabareau. Compiling Functional Types to Relational Specifications for Low
Level Imperative Code. Types in Language Design and Implementation, Jan 2009, Savannah, United
States. �hal-00341404�

https://hal.science/hal-00341404
https://hal.archives-ouvertes.fr

Compiling Functional Types to Relational Specifications
for Low Level Imperative Code

Nick Benton

Microsoft Research, Cambridge

♥✐❝❦❅♠✐❝r♦s♦❢t✳❝♦♠

Nicolas Tabareau

PPS, Université Denis Diderot, Paris

t❛❜❛r❡❛✉❅♣♣s✳❥✉ss✐❡✉✳❢r

Abstract

We describe a semantic type soundness result, formalized in the
Coq proof assistant, for a compiler from a simple functional lan-
guage into an idealized assembly language. Types in the high-
level language are interpreted as binary relations, built using both
second-order quantification and separation, over stores and values
in the low-level machine.

Categories and Subject Descriptors F.3.1 [Logics and mean-
ings of programs]: Specifying and Verifying and Reasoning about
Programs—Mechanical verification, Specification techniques; F.3.3
[Logics and meanings of programs]: Studies of Program Constructs—
Type structure; D.3.4 [Programming Languages]: Processors—
Compilers; D.2.4 [Software Engineering]: Software / Program
Verification—Correctness proofs, formal methods

General Terms Languages, theory

Keywords Compiler verification, type soundness, relational para-
metricity, separation logic, proof assistants

1. Introduction

What kinds of correctness properties do we wish to establish of
our compilers? The most obvious answer is that when a high-level
source program is compiled to produce a low-level target, the be-
haviour of the target always agrees with a high-level semantics of
the source. But we usually also want to be sure that the target code
satisfies certain safety or liveness properties, ensuring that ‘bad
things’ don’t happen, or that ‘good’ ones do. Such properties in-
clude memory safety, adherence to information flow policies, ter-
mination, and various forms of resource boundedness. For appli-
cations in language-based security, the good news is that (fancy)
type-like properties of this kind, which at least seem less complex
to state and check than full functional correctness, are the impor-
tant ones. On the other hand, for such applications one would really
like to certify the code that actually runs, which involves formaliz-
ing and verifying type-like properties of machine code. How to do
that is the problem we address here.

The approach is essentially that of our earlier work on spec-
ifying and verifying memory managers (Benton 2006) and type
preservation for a simple imperative language (Benton and Zarfaty

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

TLDI’09, January 24, 2009, Savannah, Georgia, USA.
Copyright c© 2009 ACM 978-1-60558-420-1/09/01. . . $5.00

2007), and we will not repeat all the methodological arguments
here. Briefly, we want to find low-level specifications that should be
satisfied by target code compiled from source phrases of particular
high-level types. Ideally, these specifications should be both mod-
ular and expressed without reference to concepts that are specific
to the particular high-level language. This is important: we are not
just interested in proving properties of complete, closed programs.
We want (and have) to prove things about the result of linking or re-
placing bits of compiled code with code from elsewhere, including
both the runtime system (which may be handcrafted machine code)
or code compiled from other high-level languages. For maximum
flexibility and strong guarantees, we would like these specifications
to be semantic, i.e. defined extensionally in terms of the observable
behaviour of programs rather than in terms of a purely syntactic
type system for low-level code. One way of characterizing our goal
is that we would like to know just what contract should be satisfied
by a C or assembly language function that is intended to behave as
an ML value of some (possibly higher order) type.

In previous work, we have proposed that these goals can be
achieved by giving a semantics for high-level types as relational
specifications over low-level code, and we have shown how this
works out in the case of a very simple imperative language. The
main contribution of the present paper is to show how such a
low-level relational interpretation of types can be extended to a
language with higher-order functions. The definitions and results
presented here have been formalized in the Coq proof assistant. As
we will explain, both our general low-level reasoning framework
and its encoding in Coq have been improved relative to our earlier
work. The Coq development is available from the authors’ home
pages.

2. Source and Target Languages

2.1 The Low Level Target

The idealized low level machine code into which we compile is
the same as in our previous work. There is a single datatype, the
natural numbers, though different instructions treat elements of that
type as code pointers, heap addresses, integers, etc.. The store is
a total function from naturals to naturals and the code heap is a
total function from naturals to instructions (immutable and distinct
from the data heap). Computed branches and address arithmetic
are perfectly allowable. There is no built-in notion of allocation
and no notion of stuckness or ‘going wrong’: the only observable
behaviours are termination and divergence. There are no registers;
we simply adopt a programming convention of using the first few
memory locations in a register-like fashion.

The Coq specification of our machine involves an inductive
type of ✐♥str✉❝t✐♦♥s, including halting, direct and indirect loads,
stores and jumps, arithmetic and tests. Details can be found in the

proof scripts or our earlier paper (Benton and Zarfaty 2007); here
we just use an obvious pseudocode in which, for example

✶✵✵✿ ❬✺❪ ← ❬❬✻❪✰✶❪ ✴✴ ✐♥ ❈✿ ✯✺ ❂ ✯✭✯✻ ✰ ✶✮❀

means that the instruction at code address 100 reads the contents
of the memory location following that pointed to by location 6, and
stores the result in location 5. The mutable state of our machine is
specified by

❉❡❢✐♥✐t✐♦♥ st❛t❡ ✿❂ ♥❛t → ♥❛t✳
❉❡❢✐♥✐t✐♦♥ ♣r♦❣r❛♠ ✿❂ ♥❛t → ✐♥str✉❝t✐♦♥✳

and there is then a one-step transition function

❉❡❢✐♥✐t✐♦♥ s❡♠❴✐♥str ✭✐♥s✿✐♥str✉❝t✐♦♥✮ ✭s✿st❛t❡✮
✭♣❝✿♥❛t✮ ✿ ♦♣t✐♦♥ ✭st❛t❡ ✯ ♥❛t✮ ✿❂ ✳✳✳

mapping an instruction, state and program counter to either a new
state and program counter, or ◆♦♥❡ in the case that the instruction
is a ❤❛❧t. A configuration is thus a triple of a program, a state
and a program counter. All our notions of behaviour arise from the
primitive notion of termination:

❋✐①♣♦✐♥t ❦st❡♣t❡r♠ ✭❦✿♥❛t✮ ✭♣✿♣r♦❣r❛♠✮ ✭s✿st❛t❡✮
✭❧✿♥❛t✮ ④str✉❝t ❦⑥ ✿ Pr♦♣ ✿❂

♠❛t❝❤ ❦ ✇✐t❤
⑤ ❖ ⇒ ❋❛❧s❡
⑤ ✭❙ ❥✮ ⇒

♠❛t❝❤ s❡♠❴✐♥str ✭♣ ❧✮ s ❧ ✇✐t❤
⑤ ◆♦♥❡ ⇒ ❚r✉❡
⑤ ❙♦♠❡ ✭s✬✱ ❧✬✮ ⇒ ❦st❡♣t❡r♠ ❥ ♣ s✬ ❧✬

❡♥❞
❡♥❞✳

❉❡❢✐♥✐t✐♦♥ t❡r♠✐♥❛t❡s ♣ s ❧ :=
∃ ❦✱ ❦st❡♣t❡r♠ ❦ ♣ s ❧✳

So a configuration terminates if there is some natural number k
such that it terminates within k steps.

2.2 The High Level Source Language

Our source is a fairly conventional simply-typed, call-by-value
functional language with recursion. The only mild novelty is that
we have included a rudimentary form of refinement typing on the
integer and boolean base types, indexing them by arbitrary Coq
predicates:

A, B ::= Nat Pn | Bool Pb | A→ B | A×B

where Pn ⊆ N and Pb ⊆ B. The refinements are not very sophis-
ticated, but their addition is easy, mildly interesting and strength-
ens the type soundness result somewhat. Entailment on refinement
predicates induces a subtype relation A <: B:

Pn ⊆ P ′
n

Nat Pn <: Nat P ′
n

Pb ⊆ P ′
b

Bool Pb <: Bool P ′
b

A <: A′ B <: B′

A×B <: A′ ×B′

A′ <: A B <: B′

A→ B <: A′ → B′

The terms are given by the following grammar:

M, N, P ::= b | n | x | λx.M |MN | Fixf x = M |
M ⋆ N |M > N | if M then N else P |
〈M, N〉 | π1(M) | π2(M)

where b ∈ B = {t, f}, n ∈ N and ⋆ ∈ {−, +, ∗}.
The type rules for our source language are shown in Figure 1.

To deal with the presence of simple refinements, the type rules [Op]
and [Gt] for the basic operations on integers involve abstract (in the
sense of abstract interpretation) operations, lifting the concrete ones

to predicates. The definitions of these abstract operations are:

P1 b⋆ P2 = {n | ∃x ∈ P1, ∃y ∈ P2, (x ⋆ y = n)}
P1

b> P2 = {b | ∃x ∈ P1, ∃y ∈ P2, (x > y ⇔ b)}.

The boolean refinements show up in the typing of conditionals,
allowing one to type the branches under additional (meta-level)
hypotheses about which way the test evaluated, much as in Hoare
logic, GADTs or dependent type theories.

The Coq definition of the syntax and type rules of our source
language comprises inductive definitions that translate the types,
subtyping relation, untyped syntax and typing relation shown above
in an entirely straightforward way. The only real differences be-
tween the LaTeX and Coq is that the Coq syntax uses de Bruijn
indices rather than variable names, and that (slightly hackily) the
Fix constructor in the Coq datatype really only binds f with the
typing rule then insisting that the body be a lambda abstraction,
binding x.

3. The Compiler

The compiler is a structurally-inductive Coq function that takes
as input an untyped source expression ❡ and produces two pieces
of low-level code: an auxiliary section, containing the code for
the bodies of functions occurring in ❡, and a main section, which
actually computes the value of ❡. In more detail:

❋✐①♣♦✐♥t ❝♦♠♣✐❧❡ ✭❡ ✿ ❊①♣✮
✭❛✉①❴❝♦❞❡✿ ❧✐st ✐♥str✉❝t✐♦♥✮
✭❛✉①❴♥❡①t ✿ ♥❛t✮
✭❛❧❧♦❝ ❞❡❛❧❧♦❝✿♥❛t✮ ④str✉❝t ❡⑥

✿ ✭ ✭♥❛t ✲❃ ❧✐st ✐♥str✉❝t✐♦♥ ✯ ♥❛t ✯ ♥❛t✮
✯ ❧✐st ✐♥str✉❝t✐♦♥ ✯ ♥❛t✮ ✿❂ ✳✳✳

Here ❛✉①❴❝♦❞❡ is a list of already-generated auxiliary instructions,
❛✉①❴♥❡①t is the code address from which further auxiliary instruc-
tions should be produced, and ❛❧❧♦❝ and ❞❡❛❧❧♦❝ are the en-
try points of the allocation and deallocation routines with which
the compiled code will eventually be linked. The second and third
components of the return value are the extended auxiliary code and
and updated ❛✉①❴♥❡①t. The first component of the return value
is a function that takes as input a start address for the main code
and produces a triple comprising the instructions of the main code,
the amount of stack space required by those instructions and the
(slightly unnecessary) next free main code address. The generation
of the main code is delayed in this way because we do not initially
know how large the auxiliary code will be, and hence where we
may produce the main code.

When compiled code is running, the memory is broadly divided
into a number of regions:

• The low-numbered locations 0-9, used in a register like fashion
for passing arguments and returning results by compiled func-
tions and by the allocator routines, as workspace and as special
registers (stack pointer etc.).

• The private storage of the memory allocator, comprising free
memory and whatever private datastructures the allocator mod-
ule uses to keep track of what is free.

• The language heap, storing allocated pairs, closures and envi-
ronments. We sometimes call this the ‘cloud’.

• A linked list of allocation records comprising the call stack,
each of which includes a local stack for expression evaluation.

The important pseudo-registers are

• ❛r❣ and r❡t, which are used in the call/return convention of the
memory allocator.

[V ar]
Γ, x : A ⊢ x : A

[Bool]
b ∈ P

Γ ⊢ b : Bool P
[Nat]

n ∈ P

Γ ⊢ n : Nat P

[Abs]
Γ, x : A ⊢M : B

Γ ⊢ λx.M : A→ B
[App]

Γ ⊢M : A→ B Γ ⊢ N : A

Γ ⊢MN : B

[Fix]
Γ, f : A→ B, x : A ⊢M : B

Γ ⊢ Fix f x = M : A→ B
[If]

Γ ⊢M : Bool P Pt⇒ Γ ⊢M1 : A Pf⇒ Γ ⊢M2 : A

Γ ⊢ if M then M1 else M2 : A

[Op]
Γ ⊢M : Nat P1 Γ ⊢ N : Nat P2

Γ ⊢M ⋆ N : Nat(P1 b⋆ P2)
[Gt]

Γ ⊢M : Nat P1 Γ ⊢ N : Nat P2

Γ ⊢M > N : Bool(P1
b> P2)

[Pair]
Γ ⊢Mi : Ai (i = 1, 2)

Γ ⊢ 〈M1, M2〉 : A1 ×A2

[Proj]
Γ ⊢M : A1 ×A2

Γ ⊢ πi(M) : Ai (i = 1, 2)
[Coerce]

Γ ⊢M : A A <: B

Γ ⊢M : B

Figure 1. Typing rules for PCFv

• s♣, pointing to the top of the current evaluation stack (a con-
tiguous block of memory whose maximum depth is statically
determinable, even for untyped code).

• ❡♥✈, pointing to the current environment, which is represented
as a linked list of cons cells in the language heap.

• ✇❦, used as temporary workspace and to pass the block to be
freed to the deallocator.

We now describe the code generated for some of the high-
level constructs in our language and explain the conventions and
representations it uses. As an aid to understanding these descrip-
tions, Figure 2 roughly illustrates part of a ‘typical’ memory lay-
out, showing the four main regions. The dark blue gradient-filled
cons cells are the ones that are part of environments; as we shall
explain, these are initially allocated along with frames, but should
be thought of as belonging to the language heap.

We should state explicitly at this point that there is no garbage
collector, so compiled code will leak memory in the heap. We do,
however, deallocate activation records when functions return.

Integer constants. To compile code for the integer constant n, we
first increment the stack pointer and then store the value n on the
new top of the stack:

❬s♣❪ ← ❬s♣❪✰✶
❬❬s♣❪❪ ← ♥

In the figure, the integer 42 has been pushed and then another value
(a closure) has been pushed on top of it.

Variables. Our source language represents variables by de Bruijn
indices. So the code for a reference to variable n has to look up
the n-th element of the environment and push it onto the top of
the stack. The loop stepping through the linked list representing the
environment is unrolled in place, like this:

❬s♣❪ ← ❬s♣❪✰✶
❬✇❦❪ ← ❬❡♥✈❪
❬✇❦❪ ← ❬❬✇❦❪✰✶❪
✳✳✳ ♥ t✐♠❡s ✳✳✳
❬✇❦❪ ← ❬❬✇❦❪✰✶❪

❬❬s♣❪❪ ← ❬❬✇❦❪❪

In the figure, the zeroth environment entry (the argument to the
current function call) is a heap-allocated pair, the entry at position
one is a recursive closure and that at position two is the same pair
as at position zero.

Pairs. To construct a pair, we assume that elements of the pair
have already been constructed on the top of the stack (in the
‘wrong’ order). We then need to call the allocator. We load the
register arg with the size of the required block (here 2) put the
return address ❧❛❜✰✹ into ret and jump to the allocation routine at
address ❛❧❧♦❝. On return to ❧❛❜✰✹, ret will point to a fresh block
of two cells. We then (in a slightly optimized way) pop the top two
elements from the stack, store them in the new block and push the
address of that block:

❧❛❜✿ ❬s♣❪ ← ❬s♣❪✲✶
❬❛r❣❪ ← ✷
❬r❡t❪ ← ❧❛❜✰✹
❥♠♣ ❛❧❧♦❝

❧❛❜✰✹✿ ❬❬r❡t❪❪ ← ❬❬s♣❪❪ ✴✴ st♦r❡ s♥❞
❬❬r❡t❪✰✶❪ ← ❬❬s♣❪✰✶❪ ✴✴ st♦r❡ ❢st
❬❬s♣❪❪ ← ❬r❡t❪ ✴✴ ♣✉s❤ ♣❛✐r

In the figure, the argument to the current function is the pair
✭✭tr✉❡✱✸✮✱❢❛❧s❡✮.

Closures To compile a lambda abstraction λx.M we compile,
in the auxiliary code, the code for the body M , preceded by a
header that allocates space for a new activation record and does
bits of callee-saving, and followed by an epilogue that restores
caller context and returns a value. Then in the main code, we build
and push a closure value that pairs the current environment with a
pointer to the wrapped body code.

The function header expects an argument and a pointer to the
closure being called to be on the top of the caller’s stack. It allocates
st❛❝❦❴s✐③❡✰✺ words for the new activation record, grabs the
stored environment from the closure object and stores it at offset
1 in the new activation record. The argument is then popped from
the caller’s stack and stored at offset zero in the new activation
record. The caller’s environment is stored at offset 2, and his stack
pointer at offset 3. We then set the environment pointer up for the
body of the function by setting it to the base of the new activation
record and set the stack pointer to offset 4 within the record. Note
how the first element of the new environment list (the argument
and the pointer to the rest of the environment) is contiguous with
the remainder of the activation record. Here is the code:

❧❛❜✿ ❬❛r❣❪ ← st❛❝❦❴s✐③❡ ✰ ✺ ❛❧❧♦❝❛t❡ ❢r❛♠❡
❬r❡t❪ ← ❧❛❜ ✰ ✸
❥♠♣ ❛❧❧♦❝

❧❛❜✰✸✿ ❬✇❦❪ ← ❬❬s♣❪❪ t❛❦❡ ❝❧♦s✉r❡ ♣tr

- 42 - --

Allocator’s
heap

Heap

stack_size

current frame

parent frame

[arg]<-2

[ret]<- l+3

jmp alloc

[[ret]+1]<-[env]

[env]<-ret

…

Program

2

a
r
g

r
e
t

w
k

e
n
v

s
p

-

call

stack
…

3 t

f

Figure 2. Memory layout at runtime

❬❬r❡t❪✰✶❪ ← ❬❬✇❦❪✰✶❪ st♦r❡ ❡♥✈ ♣tr
❬s♣❪ ← ❬s♣❪✲✶ ❢♦❝✉s ♦♥ ❛r❣✉♠❡♥t
❬❬r❡t❪❪ ← ❬❬s♣❪❪ st♦r❡ ❛r❣✉♠❡♥t ✐♥ ❡♥✈
❬❬r❡t❪✰✷❪ ← ❬❡♥✈❪ st♦r❡ ❝❛❧❧✐♥❣ ❡♥✈
❬❬r❡t❪✰✸❪ ← ❬s♣❪ st♦r❡ ❝❛❧❧✐♥❣ s♣
❬❡♥✈❪ ← ❬r❡t❪ s✇✐t❝❤ t♦ ♥❡✇ ❡♥✈
❬s♣❪ ← ❬r❡t❪ ✰ ✹ s✇✐t❝❤ t♦ ♥❡✇ st❛❝❦

The saved environment and stack pointer can be seen in the figure
as the two left-pointing arrows from the current frame to the parent
frame. The head cell of the current environment is the darker pair
of cells at the base of the current frame.

The function epilogue has the job of restoring the caller’s en-
vironment and stack pointer, putting the value computed by the
function on the caller’s stack, deallocating the callee’s frame and
returning to the caller’s code. The interesting points here are that
we do not deallocate the first two elements of the frame that we
originally allocated, as they are part of the environment and may
by now be shared by other closures, and that the return address is
stored at offset 4 in the caller’s frame:

❧❛❜✿ ❬✇❦❪ ← ❬❬s♣❪❪ s❛✈❡ r❡t✉r♥ ✈❛❧✉❡
❬s♣❪ ← ❬❬❡♥✈❪✰✸❪ r❡st♦r❡ ♦❧❞ s♣

❬❬s♣❪❪ ← ❬✇❦❪ ♣✉s❤ r❡t✉r♥ ✈❛❧✉❡
❬✇❦❪ ← ❬❡♥✈❪ ✰✷ ❜❛s❡ t♦ ❢r❡❡

❬❡♥✈❪ ← ❬❬❡♥✈❪✰✷❪ r❡st♦r❡ ♦❧❞ ❢r❛♠❡
❬❛r❣❪ ← st❛❝❦❴s✐③❡✰✸ s✐③❡ t♦ ❢r❡❡
❬r❡t❪ ← ❧❛❜ ✰ ✽
❥♠♣ ❞❡❛❧❧♦❝

❧❛❜✰✽✿ ❥♠♣ ❬❬❡♥✈❪✰✹❪ r❡t✉r♥ t♦ ❝❛❧❧❡r

In the figure, one can see the return address to which we will jump
when returning from the current call at offset 4 in the parent frame,
pointing into the program.

The code to actually build a closure allocates a new pair, fills
in the first field with the code pointer to the appropriate function
header and the second with the current environment, and pushes
the address of the pair onto the stack.

Application. The code produced for an application assumes that
there is an argument and a pointer to a closure on the stack. It stores
a return address in the current frame and then branches to the code
pointer part of the closure:

❧❛❜✿ ❬❬❡♥✈❪✰✹❪ ← ❧❛❜✰✸
❬✇❦❪ ← ❬❬s♣❪❪
❥♠♣ ❬✇❦❪

❧❛❜✰✸✿ ✳✳✳

Recursive closures. The compilation scheme for recursive func-
tion Fixfx = M relies on that non-recursive functions. We first

extend the environment with an unfilled hole using the following
code:

❧❛❜✿ ❬❛r❣❪ ← ✷
❬r❡t❪ ← ❧❛❜✰✸
❥♠♣ ❛❧❧♦❝

❧❛❜✰✸✿ ❬❬r❡t❪✰✶❪ ← ❬❡♥✈❪
❬❡♥✈❪ ← ❬r❡t❪

We then compile code to build the closure for λx.M in this en-
vironment, just as above. After that, we tie the recursive knot by
overwriting the hole with the address of the constructed closure
and finally restore the original environment:

❬❬❡♥✈❪❪ ← ❬❬s♣❪❪ ✴✴ ❦♥♦t
❬❡♥✈❪ ← ❬❬❡♥✈❪✰✶❪ ✴✴ r❡st♦r❡

In the figure, the value on the top of the stack (and at position 1 in
the environment) is a recursive closure. Observe that the environ-
ment part of the closure, the second component, points to the two
element environment drawn within the cloud, and that the zeroth
value in that environment is the closure itself.

4. Low-level Relations

As we said in the introduction, we specify low-level code in terms
of binary relations, rather than the unary predicates that are more
common in Hoare-style program logics. There are three main types
of relation with which we work: over states, over natural numbers
and over programs.

In defining relations over states, we will make much use of a
form of separating conjunction, ⊗. Previously we worked with re-
lations equipped with accessibility maps (Benton and Leperchey
2005), specifying the (state-varying) part of the state about which
a particular relation cares (its support), and used disjointness of
supports to define the separating conjunction. However, supported
relations do not admit general notions of disjunction or existential
quantification, which made some definitions in our previous work
rather complex: we had to define combinators for special shapes of
existentially quantified formula in which the satisfying witness was
always uniquely determined. Furthermore, every inductive relation
required separate inductive definitions for the relation and for its
support and an inductive proof that the one supported the other,
which was rather painful. In the current work, we have moved from
supported relations over total states to working with relations over
partial states (which is just the way everybody else working in sep-
aration logic does things). Our original motivation for eschewing
partial states was that we did not wish to introduce any fictional no-
tion of ‘going wrong’ into the operational semantics. We still man-
age to achieve that, however, by defining the operational semantics
over total states (a special case of partial ones) and restricting at-
tention to relations that are preserved by extension of partial states.

There is also an additive conjunction of relations, ×, which
plays a larger role in giving the semantics to our functional lan-
guage than was the case for an imperative one, because there are
more potentially shared immutable runtime datastructures in the
functional case.

We use various different relations over natural numbers, but the
most interesting construction is the ‘perp’ operation (·)⊤, which
takes a binary relation on states, R, and produces a relation over
natural numbers R⊤. This is the way we specify code pointers: R⊤

relates two natural numbers l and l′ if for any states s and s′ re-
lated by R, executing from l in initial state s and from l′ in state
s′ yields equitermination: either both executions halt or both exe-
cutions diverge. Equitermination is our basic notion of equivalence
of observable behaviour, and all our program specifications will be
in terms of equitermination when placed in related contexts.

Of course, we can only talk about whether or not jumping to a
particular address in a particular state halts or not if we specify the
program as well. For this reason, all our state relations and natural
number relations are also parameterized by a pair of programs.
Finally, to deal with recursion, we also index all our relations by
natural number step-indices (Appel and McAllester 2001). The
intuition here is that if a relation represents a particular notion of
equivalence, then its k-th approximant is ‘indistinguishable within
k steps’. Rather than manipulate natural numbers everywhere (as
we did in our previous work), we now use a modal operator (Appel
et al. 2007) to tweak step-indices just where they matter. A further
advantage of making this change is that we no longer build step
manipulation into the definition of (·)⊤, which means that there is
now a well-behaved Galois connection between relations on states
and relations on natural numbers.

We now sketch the more formal definitions of the relations and
relation constructors with which we use.

4.1 Relations on states and naturals

DEFINITION 1 (State relation). A relation in stateRel is a pred-
icate over two partial states, two programs and a step index, sat-
isfying a monotonicity condition with respect to decreasing indices
and extension of partial states:

❘❡❝♦r❞ st❛t❡❘❡❧ ✿ ❚②♣❡ := ♠❦❙t❛t❡❘❡❧ ④
R ✿❃ ♣st❛t❡ → ♣st❛t❡ → ♣r♦❣r❛♠ → ♣r♦❣r❛♠

→ ♥❛t → Pr♦♣❀
st❛t❡❘❡❧❴❝♦♥❞ ✿ ∀ s1 s2 s′1 s′2 p1 p2 k1 k2✱
✭R s1 s2 p1 p2 k1 ∧ s1 ⊂ s′1 ∧ s2 ⊂ s′2
∧ k2 ≤ k1) → R s′1 s′2 p1 p2 k2

⑥✳

where ♣st❛t❡ denotes partial functions from ♥❛t to ♥❛t and s ⊂
s′ means inclusion of partial functions. stateRels are ordered by:

❉❡❢✐♥✐t✐♦♥ st❛t❡❘❡❧▲❡q ✭R R′ ✿ st❛t❡❘❡❧✮ :=
∀ s s′ p p′ k, R s s′ p p′ k → R′ s s′ p p′ k✳

and we will write � for this order.

Disjointness of partial states allows us to define a multiplicative
tensor product, or separating conjunction, of relations (Reynolds
2002; Yang 2007), which we here give in mathematical notation:

DEFINITION 2 (Separating conjunction). The separating conjunc-
tion R⊗R′ of two relations in stateRel is the stateRel defined
by

(R⊗R
′) s s

′
p p

′
k

def
⇐⇒

∃s1 s2 s′1 s′2, s = s1#s2 ∧ s′ = s′1#s′2
∧R s1 s′1 p p′ k ∧R′ s2 s′2 p p′ k

where s = s1#s2 means that the domains of s1 and s2 are disjoint
and that the union of s1 and s2 is equal to s.

DEFINITION 3. An element of natRel is a relation between two
natural numbers, two programs and a step index, satisfying a
monotonicity condition:

❘❡❝♦r❞ ♥❛t❘❡❧ ✿ ❚②♣❡ := ♠❦◆❛t❘❡❧ ④
R ✿❃ ♥❛t → ♥❛t → ♣r♦❣r❛♠ → ♣r♦❣r❛♠

→ ♥❛t → Pr♦♣❀
♥❛t❘❡❧❴❝♦♥❞ ✿ ∀ l l′ p p′ k1 k2,

(R l l′ p p′ k1 ∧ k2 ≤ k1)
→ R l l′ p p′ k2

⑥✳

and again there is a natural order:

❉❡❢✐♥✐t✐♦♥ ♥❛t❘❡❧▲❡q ✭r r′ ✿ ♥❛t❘❡❧✮ :=
∀ l l′ p p′ k, r l l′ p p′ k → r′ l l′ p p′ k✳

We overload ❚♦♣ to mean the constantly total relation on both
states and naturals. The following is a (non-exhaustive) list of
some of the primitive stateRels we will combine with ⊗ to build
specifications:

({n1, n2} 7→ r) s s′ p p′ k
def
⇐⇒ ∃l, l′ s(n1) = l ∧ s′(n2) = l′ ∧ r l l′ p p′ k (r ∈ natRel)

({n1, n2} 7→ {m1, m2}) s s′ p p′ k
def
⇐⇒ s(n1) = m1 ∧ s′(n2) = m2

n 7→ {m1, m2}
def
= {n1, n2} 7→ {m1, m2}

(liftP) s s′ p p′ k
def
⇐⇒ P (P : Pr♦♣)

{n1, n2} 7→ −
def
= {n1, n2} 7→ Top

❇❧♦❝❦ m n
def
=

N

0≤i≤n−1
(m + i 7→ −)

(❚♦♣❢r♦♠ m m′) s s′ p p′ k
def
⇐⇒ ∀n n′, n ≥ m⇒ n′ ≥ m′ ⇒ ({n, n′} 7→ −)

The separating conjunction is crucial when we wish to make an
update to the store whilst guaranteeing that certain other parts of the
relation are not invalidated. However, we will also need to reason
about the relatedness of closures, pairs and environments stored in
the heap of our functional language, which are all allowed to share
in unpredictable ways. To combine these specifications, we need a
non-separating (Cartesian, additive) form of conjunction:

DEFINITION 4 (Additive conjunction). The conjunction R×R′ of
two relations in stateRel is the relation defined by

(R×R
′) s s

′
p p

′
k

def
⇐⇒ R s s

′
p p

′
k ∧R

′
s s

′
p p

′
k.

PROPOSITION 1. Viewing stateRel with the order � as a cate-
gory, ⊗ gives a symmetric monoidal structure and × a cartesian
product. These are related by the distributive law:

(R× S)⊗ T � (R⊗ T)× (S ⊗ T).

4.2 An adjunction with natRel

We relate relations on states and relations on code pointers via an
adjunction between stateRel and natRel.

DEFINITION 5 (adjunction Perp ⊣ Perpnat). The two functors
(order-reversing functions) Perp and Perpnat defined by

❉❡❢✐♥✐t✐♦♥ P❡r♣ ✭❙✿st❛t❡❘❡❧✮ :=
❢✉♥ ♣ ♣✬ ❧ ❧✬ ❦ ⇒ ∀ s s✬ ❥✱
✭❥ ≤ ❦ ∧ ❙ s s✬ ♣ ♣✬ ❥✮ →
✭✭❦st❡♣t❡r♠ ❥ ♣ s ❧ → t❡r♠✐♥❛t❡s ♣✬ s✬ ❧✬✮ ∧
✭❦st❡♣t❡r♠ ❥ ♣✬ s✬ ❧✬ → t❡r♠✐♥❛t❡s ♣ s ❧✮✮✳

❉❡❢✐♥✐t✐♦♥ P❡r♣❴♥❛t ✭▲✿♥❛t❘❡❧✮ :=
❢✉♥ s s✬ ♣ ♣✬ ❦ ⇒ ∀ ❧ ❧✬ ❥✱
✭❥ ≤ ❦ ∧ ▲ ♣ ♣✬ ❧ ❧✬ ❥✮ →
✭✭❦st❡♣t❡r♠ ❥ ♣ s ❧ → t❡r♠✐♥❛t❡s ♣✬ s✬ ❧✬✮ ∧
✭❦st❡♣t❡r♠ ❥ ♣✬ s✬ ❧✬ → t❡r♠✐♥❛t❡s ♣ s ❧✮✮✳

yield an adjunction (Galois connection):

stateRel

Perp

$$
⊥ natRelop

Perpnat

ee

In mathematical notation, we’ll write R⊤ for the image of the
relation R by Perp. In our previous work, we defined P❡r♣ with
a strict less than (<) relation on the step indices, which gave an
operator without an adjoint, a point to which we will return later.

DEFINITION 6 (judgement). We say two programs p and p′ are
equidivergent, or equiterminate under the relation R ∈ stateRel

at points l and l′ if they are in the relation R⊤ for all indices:

|= p, p
′
� l, l

′ : R
⊤ def

= ∀k, R
⊤

l l
′
p p

′
k.

The above form of judgement is the one that we will use in specify-
ing the relatedness of program fragments. Instead of saying that two
programs are related if they map states satisfying a prerelation into
states satisfying a postrelation, we specify and reason backwards, in
a ‘continuation-passing style’, saying that two programs are related
when if the exit points are equidivergent under the postrelation then
the entry points are equidivergent under the prerelation.

EXAMPLE 1. For any two programs p and p′ containing the fol-
lowing two instructions

❬✺❪ ← ❬✺❪ ✰ ✶
❬❬✺❪❪ ← ❬✵❪

at respective addresses l, l + 1 and l′, l′ + 1, and for any R ∈
stateRel, if

|= p, p′
� l + 2, l′ + 2 :

((0 7→ {28, 15})⊗ (5 7→ 13)⊗ (13 7→ −)⊗R)⊤

then

|= p, p′
� l, l′ :

((0 7→ {28, 15})⊗ (5 7→ 13)⊗ (13 7→ {28, 15})⊗R)⊤

This is just the ‘doubling up’ of a very simple unary property, but
it serves to illustrate a simple use of perping and the way in which
we use quantification over separated relations to make frames ex-
plicit: we do not have a ‘frame rule’ like that of separation logic, but
achieve much the same effect using second-order quantification.
Later, we’ll see more interesting relational judgements involving
non-trivial behavioural relationships between data and code point-
ers in the stores on the two sides. Note that specifications like this
are ‘partial’, in that they are also satisfied by a pair of programs
which always diverge (or indeed always halt) when started at the re-
spective entry points. Relational reasoning is stronger regarding ter-
mination than traditional partial correctness in unary logics, since
termination can be captured via equitermination with something
that terminates, but the diagonal part of this kind of specification
on code (i.e. which program fragments are related to themselves)
does not rule out divergence.

4.3 Internalised quantification

We define stateRels quantified both universally and existentially
over arbitrary Coq types in a straightforward higher-order style.

DEFINITION 7 (quantifiers). If X is a type and h : X →
stateRel, define

(Ex h) s s′ p p′ k
def
⇐⇒ ∃x, hx s s′ p p′ k

(All h) s s′ p p′ k
def
⇐⇒ ∀x, hx s s′ p p′ k

4.4 The modality and the Löb rule

So far, most of our constructions have essentially just passed step
indices around. The reason they are there is to enable inductive
reasoning about looping and recursion. Previously, we did this by
making the index j strictly smaller than k in the definition of P❡r♣
and did explicit induction over indices to prove loops and recursion.
Following the work of Appel et al. (2007), we now abstract and

encapsulate some of this reasoning in a modality 3, which satisfies
a form of the ‘Löb rule’ (sometimes also called the Gödel-Löb
axiom). This modal rule is given by

3α ⊢ α

⊢ α

understood as “if α is valid assuming that α is valid in the future,
then α is always valid”. Reading ‘in the future’ as ‘after the ma-
chine has taken at least one step’, this yields an induction scheme
that we can use to reason about recursion.

DEFINITION 8 (3 modality). The modality 3 (‘later’) is defined
on elements r of natRel by

3r l l
′
p p

′
k

def
⇐⇒ ∃j < k, r l l

′
p p

′
j

The modality 3 satisfies a lemma that is the essence of a
continuation-passing version of the Löb rule:

LEMMA 1 (Löb rule). For all programs p and p′, all locations
ptr, ptr′, all program points l and l′, and all stateRels R, the
following rule is sound:

|= p, p′
� l, l′ : ((ptr, ptr′ 7→ 3((ptr, ptr′ 7→ l, l′)⊗R)

⊤
)⊗R)

⊤

|= p, p′ � l, l′ : ((ptr, ptr′ 7→ l, l′)⊗R)⊤

5. Specifications and Verifications

In this section we explain the specifications for compiled code and
for the memory allocation module on which compiled code relies.

5.1 Allocator specification

Code produced by the compiler expects to be linked with a memory
allocation module, which it uses to allocate and deallocate activa-
tion records and to allocate data structures in the heap. The rea-
soning is properly modular: we have an independent specification
of the allocator to which the specification of compiled code refers,
and we independently verify the output of the compiler and partic-
ular allocator implementations. The specification of the allocator is
essentially the same as in our previous work, but with a slight twist
relating to termination.

We have said that we generally use specifications that do not
rule out divergence. This works for interpreting types of our high-
level language, since those all include divergent programs. How-
ever, were we to try to prove that two different low-level program
fragments (e.g. the compilation of two different source expressions)
were in the relation associated with a type, relying only on an al-
locator specification that allows divergence, there would be a prob-
lem: if the two fragments make different calls to the allocator, then
we would not be able to prove that the programs equiterminate. So
we have slightly modified the allocator specification of our earlier
work to ensure totality.

DEFINITION 9 (total judgment). We define when two programs p
and p’ satisfy t♦t❛❧❴❥✉❞❣♠❡♥tRpre Rpost p p′ l0 l′0 for program
points l0 and l′0, Rpre : ♥❛t → ♥❛t → stateRel and Rpost :
stateRel thus

t♦t❛❧❴❥✉❞❣♠❡♥tRpre Rpost p p′ l0 l′0
def
⇐⇒ ∀l1 l′1 k s0 s′0, (Rprel1l

′
1) s0 s′0 p p′ k ⇒

∃j1 j′1 s1 s′1, ❦st❡♣r❡❞✉❝❡ j1 p s0 s1 l0 l1
∧ ❦st❡♣r❡❞✉❝❡ j′1 p′ s′0 s′1 l′0 l′1
∧ Rpost s1 s′1 p p′ k

where ❦st❡♣r❡❞✉❝❡ j1 p s0 s1 l0 l1 means that the program p
takes j1 steps from the configuration 〈s0, p, l0〉 to the configuration
〈s1, p, l1〉.

Note that total judgements are more like those of traditional Hoare
logics, and that this is less behavioural (i.e. more intensional) than
our other form of specification: the relation Rpre is explicitly pa-
rameterized by the return addresses, so we are asserting that partic-
ular program counters will be reached.

We now define the prerelations and postrelations used in the
specs of the three entry points of the allocator, initialization, al-
location and deallocation. Each of these is parameterized by a re-
lation Ra which will be a private invariant relating two different,
equivalent, allocators. Ra will be existentially quantified (i.e. made
abstract) on the outside of the whole module. Each of the other pa-
rameters will be universally quantified over the total judgement for
that particular entry point.1

The parameterized relations ❘Pr❡❴✐♥✐t and ❘P♦st❴✐♥✐t for
the initialization routine of the allocator are given by

❉❡❢✐♥✐t✐♦♥ ❘Pr❡❴✐♥✐t ✭Ra✿st❛t❡❘❡❧✮ ✭n5 n′
5 n6 n′

6

❧ ❧✬ ✿ ♥❛t✮ :=
✭r❡t 7→ ❧✱❧✬✮ ⊗ ✭s♣ 7→ n5✱n

′
5✮ ⊗ ✭❡♥✈ 7→ n6✱n

′
6✮

⊗ ❚♦♣❢r♦♠ ✶✵ ✶✵✳

❉❡❢✐♥✐t✐♦♥ ❘P♦st❴✐♥✐t ✭Ra✿st❛t❡❘❡❧✮ ✭n5 n′
5 n6 n′

6

✿ ♥❛t✮ := Ra ⊗ ✭r❡t 7→ −✮ ⊗ ✭s♣ 7→ n5, n′
5✮

⊗ ✭❡♥✈ 7→ n6, n′
6✮✳

❉❡❢✐♥✐t✐♦♥ t♦t❛❧❴✐♥✐t ❘❛ ♣ ♣✬ ✐♥✐t ✐♥✐t✬ ✿❂
❢♦r❛❧❧ ♥✺ ♥✬✺ ♥✻ ♥✬✻✱ t♦t❛❧❴❥✉❞❣♠❡♥t

✭❘Pr❡❴✐♥✐t ❘❛ ♥✺ ♥✬✺ ♥✻ ♥✬✻✮
✭❘P♦st❴✐♥✐t ❘❛ ♥✺ ♥✬✺ ♥✻ ♥✬✻✮ ♣ ♣✬ ✐♥✐t ✐♥✐t✬✳

The intuition here is that if one calls the initialization routines of
two related allocators, passing return addresses l and l′, and with
the values n5 and n′

5 in the pseudo-register sp on the two sides, and
n6 and n′

6 in env, then the two sides will each take some number
of steps to reach l and l′ in two states in which the invariant Ra

has been established, the original values in sp and env have been
preserved and nothing is guaranteed about the contents of ret.

The parameterized relations ❘Pr❡❴❛❧❧♦❝ and ❘P♦st❴❛❧❧♦❝
for the allocation routine are given by

❉❡❢✐♥✐t✐♦♥ ❘Pr❡❴❛❧❧♦❝ ✭Ra Rc✿st❛t❡❘❡❧✮ ✭♥ ♥✬ n5 n′
5

n6 n′
6 ❧ ❧✬✿ ♥❛t✮ :=

✭r❡t 7→ ❧✱❧✬✮ ⊗ Ra ⊗ Rc ⊗ ✭❛r❣ 7→ ♥✱♥✬✮
⊗ ✭s♣ 7→ n5, n

′
5✮ ⊗ ✭❡♥✈ 7→ n6, n

′
6✮✳

❉❡❢✐♥✐t✐♦♥ ❘P♦st❴❛❧❧♦❝ ✭Ra Rc✿st❛t❡❘❡❧✮ ✭♥ ♥✬ n5 n′
5

n6 n′
6✿ ♥❛t✮ :=

✭❊① ❢❜✱❊① ❢❜✬✱✭✭r❡t 7→ ❢❜✱❢❜✬✮ ⊗
✭❇❧♦❝❦ ❢❜ ❢❜✬ ♥ ♥✬✮✮✮

⊗ Ra ⊗ Rc ⊗ ✭❛r❣ 7→ −✮
⊗ ✭s♣ 7→ n5, n

′
5✮ ⊗ ✭❡♥✈ 7→ n6, n

′
6✮✳

❉❡❢✐♥✐t✐♦♥ t♦t❛❧❴❛❧❧♦❝ ❘❛ ♣ ♣✬ ❛❧❧♦❝ ❛❧❧♦❝✬ ✿❂
❢♦r❛❧❧ ❘❝ ♥ ♥✬ ♥✺ ♥✬✺ ♥✻ ♥✬✻✱

t♦t❛❧❴❥✉❞❣♠❡♥t
✭❘Pr❡❴❛❧❧♦❝ ❘❛ ❘❝ ♥ ♥✬ ♥✺ ♥✬✺ ♥✻ ♥✬✻✮
✭❘P♦st❴❛❧❧♦❝ ❘❛ ❘❝ ♥ ♥✬ ♥✺ ♥✬✺ ♥✻ ♥✬✻✮
♣ ♣✬ ❛❧❧♦❝ ❛❧❧♦❝✬✳

These say that if one calls related allocators in states in which
the private invariant Ra holds (so the two allocators have been
initialized), some separate invariant relation Rc holds on other parts
of the stores, passing argument values n and n′, then the executions
will end up at the return addresses with Ra and Rc still holding and

1 We have slightly simplified these specifications in this presentation by
leaving out parts that just mention unused pseudo-registers.

r❡t pointing to disjoint blocks of memory of sizes n and n′ on the
respective sides.

The relations ❘Pr❡❴❞❡❛❧❧♦❝ and ❘P♦st❴❞❡❛❧❧♦❝ used to
specify the deallocator are given by

❉❡❢✐♥✐t✐♦♥ ❘Pr❡❴❞❡❛❧❧♦❝ ✭Ra Rc✿st❛t❡❘❡❧✮ ✭❢❜ ❢❜✬
♥ ♥✬ n5 n′

5 n6 n′
6 ❧ ❧✬✿ ♥❛t✮ :=

✭r❡t 7→ ❧✱❧✬✮ ⊗ ✭❛r❣ 7→ ♥✱♥✬✮ ⊗ ✭✇❦ 7→ ❢❜✱❢❜✬✮
⊗ ❇❧♦❝❦ ❢❜ ❢❜✬ ♥ ♥✬ ⊗ Ra ⊗ Rc

⊗ ✭s♣ 7→ n5, n
′
5✮ ⊗ ✭❡♥✈ 7→ n6, n

′
6✮✳

❉❡❢✐♥✐t✐♦♥ ❘P♦st❴❞❡❛❧❧♦❝ ✭Ra Rc✿st❛t❡❘❡❧✮ ✭n5 n′
5

n6 n′
6✿ ♥❛t✮ :=

✭r❡t 7→ −✮ ⊗ ✭❛r❣ 7→ −✮ ⊗ ✭✇❦ 7→ −✮ ⊗
Ra ⊗ Rc ⊗ ✭s♣ 7→ n5, n

′
5✮ ⊗ ✭❡♥✈ 7→ n6, n

′
6✮✳

❉❡❢✐♥✐t✐♦♥ t♦t❛❧❴❞❡❛❧❧♦❝ ❘❛ ♣ ♣✬ ❞❡❛❧❧♦❝ ❞❡❛❧❧♦❝✬✿❂
❢♦r❛❧❧ ❘❝ ❢❜ ❢❜✬ ♥ ♥✬ ♥✺ ♥✬✺ ♥✻ ♥✬✻✱
t♦t❛❧❴❥✉❞❣♠❡♥t

✭❘Pr❡❴❞❡❛❧❧♦❝ ❘❛ ❘❝ ❢❜ ❢❜✬ ♥ ♥✬ ♥✺ ♥✬✺ ♥✻ ♥✬✻✮
✭❘P♦st❴❞❡❛❧❧♦❝ ❘❛ ❘❝ ♥✺ ♥✬✺ ♥✻ ♥✬✻✮
♣ ♣✬ ❞❡❛❧❧♦❝ ❞❡❛❧❧♦❝✬✳

Here the precondition is that there are blocks of memory of the
appropriate sizes and disjoint from Ra, Rc and the registers on the
two sides. The postcondition just says that Ra, Rc still hold and
that the values in sp and env are preserved.

The relation between programs p and p′ that says that they have
allocator modules related by Ra with entry points ✐♥✐t, ❛❧❧♦❝ and
❞❡❛❧❧♦❝ and ✐♥✐t✬, ❛❧❧♦❝✬ and ❞❡❛❧❧♦❝✬ is then just

❉❡❢✐♥✐t✐♦♥ ❆❧❧♦❝❙♣❡❝ ♣ ♣✬ ❘❛ ✐♥✐t ✐♥✐t✬ ❛❧❧♦❝
❛❧❧♦❝✬ ❞❡❛❧❧♦❝ ❞❡❛❧❧♦❝✬ ✿❂

✭t♦t❛❧❴✐♥✐t ❘❛ ♣ ♣✬ ✐♥✐t ✐♥✐t✬✮
∧ ✭t♦t❛❧❴❛❧❧♦❝ ❘❛ ♣ ♣✬ ❛❧❧♦❝ ❛❧❧♦❝✬✮
∧ ✭t♦t❛❧❴❞❡❛❧❧♦❝ ❘❛ ♣ ♣✬ ❞❡❛❧❧♦❝ ❞❡❛❧❧♦❝✬✮✳

5.2 Semantics of types

We can now define the low-level specifications corresponding to
our high-level types. The basic idea is that for each source type A,
we define JAK : nat → nat → stateRel such that JAK l l′ re-
lates pairs of states in which l and l′ can be interpreted as pointing
to equivalent values of type A. Since our values include closures,
the dependency of stateRels on the programs really gets used,
as we will need to say that the values in the heap involve code
pointers with certain behaviours. Using this notion of equivalent
values in the state, we define when states contain equivalent en-
vironments and evaluation stacks of particular types. Finally, we
specify compiled code fragments in terms of equitermination when
started in sufficiently equivalent states, and linked with sufficiently
equivalence-respecting continuations.

The inductive definition of s❡♠❛♥t✐❝s❴♦❢❴t②♣❡s is shown in
Figure 3. Although this looks complex, it really amounts to a fairly
familiar logical relational interpretation of types, but recast in a
lower-level setting that naturally introduces more details.

The first clause says that two values ptr and ptr′ are equal when
considered at type ■♥t P when they are equal natural numbers and
also satisfy the predicate P , just as one would expect. The second
clause says that they are equal at ❇♦♦❧ P when they both represent
the same boolean value according to our chosen representation of
booleans (♥✷❜ maps zero to false and successors to true), and that
boolean satisfies the predicate P .

The third clause says ptr and ptr′ represent equivalent values of
type A×B in respective stores s and s′ just when ptr is the address
of two consecutive cells in s with contents value and value2, ptr′

is the address of a pair of cells holding value′ and value′2 in the
state s′, value and value′ are equivalent values of type B, and

value2 and value′2 are equivalent values of type A. So values are
related at a product type if they are both pairs and their components
are related pointwise.

The real work is in the fourth clause, which says what it means
for values to be related at a function type. A functional value will
contain some code, to which we will jump when we apply the
function. So relatedness of functional values is a constraint on the
behaviour of that code in certain contexts. The first thing to observe
is that part of that contract will be that the code is allowed to assume
that the allocator has been initialized, and must promise to maintain
the allocator’s private invariant - that explains why the definition of
the semantics of types is parameterized by the allocator’s private
invariant Ra. The second thing to note is that all the functional
values that are constructed by code produced by our compiler
will be closures: pairs of a code pointer and an environment. But
recall that we are trying to come up with maximally permissive
extensional specifications, that will be satisfied by any code that
behaves like a function when we apply it. So we certainly do not
want to require that functions have environments containing values
of some (even hidden) source language types. In fact, our calling
convention does not even require that there is an environment at
all – the function code gets passed a pointer to the function object
itself, from which it can recover an environment if it has one, but
the caller does not know anything about environments. So from an
external point of view, the specification of what it means for ptr
and ptr′ to be related elements of A → B is just that there exists
some private invariant relation Rprivate such that ptr and ptr′

point to code pointers that behave in a certain way and Rprivate
actually holds now (so the functions are set up and ready to call).
In the case of code produced by the compiler, that private invariant
will get instantiated with assertions about the environment part of
closures. Note that we have used the additive conjunction, so the
private invariant is allowed to overlap/involve the memory locations
ptr and ptr′ themselves; this will actually happen when there is
(direct or indirect) recursion.

So what are the details of the ‘certain way’ in which code
of equivalent functions must behave? Firstly, this is where we
use the ‘later’ modality discussed earlier, on which we rely when
showing that the code produced for recursive functions satisfies
the specification. The operational intuition is that for functions to
be indistinguishable for k steps, it suffices for their bodies to be
indistinguishable for k − 1 steps, as testing them (i.e. applying
them) involves jumping to them, which takes a step. Underneath the
modality, the specification is a perp, a requirement that the two code
pointers will equiterminate whenever they are jumped to in states
related by the precondition Pr❡❴❛rr♦✇, which is parameterized
by the private invariant, the two function values themselves, the
invariant of the allocator and the semantics of the types A and B.
At the risk of labouring the point, note that we pass in the semantic
objects here, not the syntactic types, so the arrow construction
works over arbitrary (appropriately parameterized) relations.

The precondition Pr❡❴❛rr♦✇ says under what conditions the
entry points of the two functions have to promise to behave equiv-
alently for them to be regarded as representing equal functions. We
are essentially translating a CPS transformed version of the stan-
dard logical relations definition, that functions are related when
they take related arguments to related results. So Pr❡❴❛rr♦✇ re-
lates two states just when they represent calls to the two functions
with JAK-related arguments and JBK⊤-related continuations. The
tops of the two stacks are expected to point to the original func-
tion objects (from which they can get to any local state, usually an
environment, they might need). Below that on the stacks are two ar-
guments, ptr_arg and ptr_arg′ which are themselves equivalent
according to JAK. The allocator invariant Ra is assumed to hold,
disjoint from everything else. The environment registers point to

❋✐①♣♦✐♥t s❡♠❛♥t✐❝s❴♦❢❴t②♣❡s ✭t✿❊①♣❚②♣❡✮ ✭❘❛✿st❛t❡❘❡❧✮ ♣tr ♣tr✬ str✉❝t t ✿❂
♠❛t❝❤ t ✇✐t❤
⑤ ■♥t P ⇒ ❧✐❢t ✭P ♣tr ∧ ✭♣tr ❂ ♣tr✬✮✮
⑤ ❇♦♦❧ P ⇒ ❧✐❢t ✭P ✭♥✷❜ ♣tr✮ ∧ ✭♥✷❜ ♣tr ❂ ♥✷❜ ♣tr✬✮✮
⑤ ❛ ∗ ❜ ⇒ ❊① ✈❛❧✉❡✱ ❊① ✈❛❧✉❡✷✱ ❊① ✈❛❧✉❡✬✱ ❊① ✈❛❧✉❡✷✬✱ ✭♣tr✱♣tr✬ 7→✈❛❧✉❡✱✈❛❧✉❡✬✮ ×

✭♣tr✰✶✱♣tr✬✰✶ 7→✈❛❧✉❡✷✱✈❛❧✉❡✷✬✮ × J❜K ❘❛ ✈❛❧✉❡ ✈❛❧✉❡✬ × J❛K ❘❛ ✈❛❧✉❡✷ ✈❛❧✉❡✷✬✮
⑤ ❛ −→ ❜ ⇒ ❊① ❘♣r✐✈❛t❡✱

✭♣tr✱♣tr✬ 7→ ▲❛t❡r ✭ P❡r♣ ✭Pr❡❴❛rr♦✇ ❘♣r✐✈❛t❡ ♣tr ♣tr✬ ❘❛ ✭J❛K✮ ✭J❜K✮✮✮ × ❘♣r✐✈❛t❡✮
❡♥❞
✇❤❡r❡ ✧✬J✬ t ✬K✬✧ ✿❂ ✭s❡♠❛♥t✐❝s❴♦❢❴t②♣❡s t ✮✳

❉❡❢✐♥✐t✐♦♥ P♦st❴❛rr♦✇ ❜ ✭❘❛ ❘❝✿ st❛t❡❘❡❧✮ ❘❝❴❝❧♦✉❞ ✭♥ ♥✬ st❛❝❦❴♣tr st❛❝❦❴♣tr✬✿ ♥❛t✮✿❂
❊① ♣tr❴r❡s✉❧t✱ ❊① ♣tr❴r❡s✉❧t✬✱

✭st❛❝❦❴♣tr✱st❛❝❦❴♣tr✬ 7→ ♣tr❴r❡s✉❧t✱♣tr❴r❡s✉❧t✬✮ ⊗ ✭st❛❝❦❴♣tr✰✶✱st❛❝❦❴♣tr✬✰✶ 7→✲✮ ⊗
✭✭❜ ❘❛ ♣tr❴r❡s✉❧t ♣tr❴r❡s✉❧t✬✮ × ❘❝❴❝❧♦✉❞✮ ⊗ ✭✇♦r❦r❡❣ 7→ ✲✮ ⊗ ✭❛r❣r❡❣ 7→ ✲✮ ⊗ ✭r❡tr❡❣ 7→ ✲✮ ⊗
❘❛ ⊗ ❘❝ ⊗ ✭✸ 7→✲✮ ⊗ ✭✹ 7→✲✮ ⊗ ✭s♣r❡❣ 7→ st❛❝❦❴♣tr✱st❛❝❦❴♣tr✬✮ ⊗ ✭❡♥✈r❡❣ 7→ ♥✱♥✬✮ ⊗ ✉♥✉s❡❞❴s♣❛❝❡✳

❉❡❢✐♥✐t✐♦♥ Pr❡❴❛rr♦✇ ❘❴♣r✐✈❛t❡ ♣tr❴❢✉♥❝t✐♦♥ ♣tr❴❢✉♥❝t✐♦♥✬ ❘❛ ❛ ❜✿❂
❊① ❘❝✱ ❊① ❘❝❴❝❧♦✉❞✱ ❊① ♥✱ ❊① ♥✬✱ ❊① ♣tr❴❛r❣✱ ❊① ♣tr❴❛r❣✬✱ ❊① st❛❝❦❴♣tr✱ ❊① st❛❝❦❴♣tr✬✱

✭st❛❝❦❴♣tr✱st❛❝❦❴♣tr✬ 7→ ♣tr❴❛r❣✱♣tr❴❛r❣✬✮ ⊗ ✭st❛❝❦❴♣tr✰✶✱st❛❝❦❴♣tr✬✰✶ 7→ ♣tr❴❢✉♥❝t✐♦♥✱♣tr❴❢✉♥❝t✐♦♥✬✮
⊗ ✭❘❴♣r✐✈❛t❡ × ❛ ❘❛ ♣tr❴❛r❣ ♣tr❴❛r❣✬ × ❘❝❴❝❧♦✉❞✮ ⊗
✭✭♥✰✹✱♥✬✰✹ 7→ ▲❛t❡r ✭P❡r♣ ✭P♦st❴❛rr♦✇ ❜ ❘❛ ❘❝ ❘❝❴❝❧♦✉❞ ♥ ♥✬ st❛❝❦❴♣tr st❛❝❦❴♣tr✬✮✮✮ × ❘❝✮ ⊗
✭✇♦r❦r❡❣ 7→ ✲✮ ⊗ ✭❛r❣r❡❣ 7→ ✲✮ ⊗ ✭r❡tr❡❣ 7→ ✲✮ ⊗ ❘❛ ⊗ ✭✸ 7→ ✲✮ ⊗ ✭✹ 7→ ✲✮ ⊗
✭s♣r❡❣ 7→ st❛❝❦❴♣tr✰✶✱st❛❝❦❴♣tr✬✰✶✮ ⊗ ✭❡♥✈r❡❣ 7→ ♥✱♥✬✮ ⊗ ✉♥✉s❡❞❴s♣❛❝❡✳

Figure 3. Relational semantics of types

the callers’ stack frames, each of which contains a return address
at offset 4. The entry point can also assume that the private in-
variant Rprivate, relating the two functions’ private storage, holds
at entry. In general, this invariant will be over the language heap,
which contains immutable values with unspecified sharing between
them, including the representation of the argument value if that is of
non-primitive type. These assumptions about the language heap are
captured by an additive, non separating, conjunction of Rprivate,
the JAK-relatedness of the argument and some unknown further as-
sumptions Rc_cloud on which the continuation may be depend-
ing. There is also an unknown invariant Rc that holds over state
disjoint from the language heap, the allocators state and the pseudo
registers, but which may share with the return address slot of the
callers’ frames. This Rc will typically be instantiated with assump-
tions about the linked list of activation records comprising the call
stack – note again that we do not explicitly model such a list-like
structure at all, as each individual function call can just treat it as
abstract.

The specifications for the two related return addresses, stored
in the callers’ frames, are once again modalized perped formulae,
asking that those two return addresses behave equivalently when-
ever they are returned to with states that are appropriately related
according to conditions that are made precise in the definition of
P♦st❴❛rr♦✇. The return addresses can assume that the stack point-
ers point to equivalent returned values according to JBK and that the
local frame invariant Rc_cloud from the precondition has been pre-
served, sharing storage with the return value. They can also assume
that the allocators’ private invariant has been maintained and that
the frame condition on the rest of the state, Rc, has been preserved.
The environments will have been put back to what they were before
the call (the preservation of n and n′) and the stack pointer will be
one less than it was before the call (because we have popped the
argument and the function object and pushed a return value).

The above specification of type-dependent relatedness of values
in the heap of the machine is a stepping stone on our way to
writing specifications for computations. The actual programs that
manipulate and generate values are the things we ultimately want

to verify. Given a context Γ and a type A, we need to define a
specification for low-level programs that corresponds to producing
equal results of type A when started in equal contexts of type
Γ. The definition of equal contexts of type Γ is the stateRel

that says there are two linked lists (starting at particular locations)
with elements that are pairwise related by the interpretation of the
corresponding type in Γ. This is a fairly straightforward induction
over Γ, using the semantics of types defined above:

❋✐①♣♦✐♥t s❡♠❛♥t✐❝s❴♦❢❴❡♥✈ ✭❡♥✈✿❊♥✈❚②♣❡✮ ❘❛
❝✉rr❡♥t ❝✉rr❡♥t✬ str✉❝t ❡♥✈ ✿❂
♠❛t❝❤ ❡♥✈ ✇✐t❤
⑤ ♥✐❧ ⇒ ❚♦♣
⑤ ❤ ✿✿ t ⇒ ❊① ♣tr✱ ❊① ♣tr✬✱

❊① ♥❡①t✱ ❊① ♥❡①t✬✱
✭✭❝✉rr❡♥t✱❝✉rr❡♥t✬ 7→ ♣tr✱♣tr✬✮ ×
✭❝✉rr❡♥t✰✶✱❝✉rr❡♥t✬✰✶ 7→ ♥❡①t✱♥❡①t✬✮
× J❤K ❘❛ ♣tr ♣tr✬ × JtK ❘❛ ♥❡①t ♥❡①t✬✮

❡♥❞
✇❤❡r❡ ✧✬J✬ ❡♥✈ ✬K✬✧ ✿❂ ✭s❡♠❛♥t✐❝s❴♦❢❴❡♥✈ ❡♥✈✮✳

Note that we have used the additive conjunction again here, so ele-
ments of the environment can share heap storage with one another.
Environments do not have to be terminated and are even allowed to
be cyclic (directly through the link structure, or indirectly through
closure values).

Compiled expressions also make use of a local evaluation stack
(not to be confused with the call stack of activation records). This is
separate from the language heap (cloud) and gets read and written
as values are pushed and popped. The values on the stack, however,
will generally be related by relations that involve the cloud and
can overlap. To specify relatedness of stacks we therefore define
a ‘fold’ operation that relates states in which there are particular
sequences of values in consecutive memory locations and disjoint

regions of memory in which an additive conjunction of relations,
indexed by the values in the sequences, holds.2

❉❡❢✐♥✐t✐♦♥ ❧st❛❝❦❴t②♣❡ ✿❂
❧✐st ✭✭♥❛t → ♥❛t → st❛t❡❘❡❧✮ ✯ ✭♥❛t ✯ ♥❛t✮✮✳

❋✐①♣♦✐♥t st❛❝❦❴❞❡s❝r✐♣t✐♦♥ ✭st❛❝❦❴❧✐st✿❧st❛❝❦❴t②♣❡✮
♣tr ♣tr✬ ❝❧♦✉❞r❡❧ str✉❝t st❛❝❦❴❧✐st ✿❂
♠❛t❝❤ st❛❝❦❴❧✐st ✇✐t❤
⑤ ♥✐❧ ⇒ ❝❧♦✉❞r❡❧
⑤ ♣❛✐r ❤ ✭♣❛✐r ♣tr❴❤ ♣tr❴❤✬✮ ✿✿ t ⇒

✭♣tr✱♣tr✬ 7→ ♣tr❴❤✱♣tr❴❤✬✮ ⊗
st❛❝❦❴❞❡s❝r✐♣t✐♦♥ t ✭♣tr✲✶✮ ✭♣tr✬✲✶✮

✭✭❤ ♣tr❴❤ ♣tr❴❤✬✮ × ❝❧♦✉❞r❡❧✮
❡♥❞✳

We then package up a description of entire related memory config-
urations like this:

❉❡❢✐♥✐t✐♦♥ ♠❡♠♦r②❴s♣❡❝✐❢✐❝❛t✐♦♥ ❘❛ ❘❝ ❘❝❴❝❧♦✉❞ ❡♥✈
st❛❝❦❴❧✐st st❛❝❦❴❢r❡❡ st❛❝❦❴❢r❡❡✬ st❛❝❦❴♣tr
st❛❝❦❴♣tr✬ ♥ ♥✷ ♥✸ ♥✬ ♥✷✬ ♥✸✬✿❂

✭s♣r❡❣ 7→st❛❝❦❴♣tr✱st❛❝❦❴♣tr✬✮ ⊗
❇❧♦❝❦ ✭st❛❝❦❴♣tr✰✶✮ ✭st❛❝❦❴♣tr✬✰✶✮
st❛❝❦❴❢r❡❡ st❛❝❦❴❢r❡❡✬ ⊗ ✭❡♥✈r❡❣ 7→ ♥✱♥✬✮ ⊗
st♦r✐♥❣❴s♣❛❝❡ ♥ ♥✷ ♥✸ ♥✬ ♥✷✬ ♥✸✬ ⊗
st❛❝❦❴❞❡s❝r✐♣t✐♦♥ st❛❝❦❴❧✐st st❛❝❦❴♣tr st❛❝❦❴♣tr✬
✭J❡♥✈K ❘❛ ♥ ♥✬ × ❘❝❴❝❧♦✉❞✮ ⊗ ✭✇♦r❦r❡❣ 7→ ✲✮
⊗ ✭❛r❣r❡❣ 7→ ✲✮ ⊗ ✭r❡tr❡❣ 7→ ✲✮ ⊗ ❘❛ ⊗ ❘❝ ⊗
✭✸ 7→✲✮ ⊗ ✭✹ 7→✲✮ ⊗ ✉♥✉s❡❞❴s♣❛❝❡✳

which relates two states when the ‘active’ parts of the stack are re-
lated according to st❛❝❦❴❧✐st, there is a Block of unused stack
slots above that, the environments on the two sides are related ac-
cording to the interpretation of the type environment ❡♥✈ (with ap-
propriate sharing), the allocator invariant Ra holds and an invariant
Rc holds on the rest of the state. The relation st♦r✐♥❣❴s♣❛❝❡ de-
scribes the contents of the callee-saves slots in the current activation
record, we also specify that the various registers point to arbitrary
values.

5.3 Type Soundness

We are finally in a position to state our main result, that the com-
piler produces code that respects our relational interpretation of
types. The theorem as stated in Coq is given in Figure 4. Al-
though the statement looks rather complex, what it really says is
not too hard to understand. The functions we have not defined, such
as ❡①tr❛❝t❴❝♦❞❡❴❢r♦♠❴❣❧♦❜❛❧❝♦❞❡, just project components
from the result of compilation. We start with a source level expres-
sion ❡ which has type ❛ in source-level type environment ❡♥✈. We
compile ❡ twice, once starting from the location st❛rt and linking
against allocation and deallocation routines at addresses ❛❧❧♦❝ and
❞❡❛❧❧♦❝, and once starting at st❛rt✬ linking against ❛❧❧♦❝✬ and
❞❡❛❧❧♦❝✬.

Then for any complete program ♣ that extends the main and
auxiliary code produced by the first compilation, and for any ♣✬
that extends the code produced by the second compilation, if ♣ and
♣✬ have ❘❛-related memory allocation routines at the entry points
we used in the respective compilations, then we get the result about
the relatedness of the behaviour of the two bits of compiled code.

The judgement about the compiled code says that executing
from program counter st❛rt in program ♣ and from program
counter st❛rt✬ in program ♣✬ yields equitermination provided
that (a) the two initial states are related by a memory specification

2 This is essentially the same as the pexconj construction of Benton and
Zarfaty (2007).

corresponding to the type environment ❡♥✈, together with some
arbitrary other bits, and (b) the labels after the code compiled from
❡ on the two sides always equiterminate when they are started in
states that are related by the same memory specification that we
assumed at the entry points, modified to add JAK-related values on
top of the evaluation stack (with appropriate modifications to both
the stack pointers and the size of the unused stack locations).

So what does that tell us? One consequence is about the be-
haviour of closed programs of ground type, such as ■♥t P. The the-
orem says that if you compile such a program and link it against a
well-behaved allocator then it will either always diverge or produce
the same ground value, which will moreover satisfy the predicate
refinement P. The observable behaviour will not change according
to what locations are returned by the allocator, what the initial con-
tents of any bits of memory are, where we initially put the stack,
or anything else it should not depend upon. Moreover, the com-
putation will not write to any areas of memory that it should not
(because of the preservation of an arbitrary ❘❝).

More importantly, the specification is entirely modular and se-
mantic. The proof obligations for writing non-standard implemen-
tations of higher-order functions that are extensionally indistin-
guishable from (and so can interoperate with) those produced by
our compiler, yet might be implemented quite differently, are made
explicit and could be verified without the compiler source.

6. Remarks on the Coq formalization

Our Coq formalization covers everything discussed here: the low
level machine, high level language, the compiler, two allocator
modules, the general relational reasoning framework, the specifi-
cations and the proof of semantic type preservation. (The famous
Knuth quote “Beware of bugs in the above code; I have only proved
it correct, not tried it.” almost applies, though we have compiled
and executed just a few simple programs within Coq and obtained
the right answers.)

The entire development is around 14000 lines and relies heavily
on our previous work, though few things have been left completely
unchanged. The code for the memory allocators is the same, but
moving to relations over partial states instead of using accessibility
maps and changing the treatment of step indices have meant small
changes throughout. In general, the proof assistant helps rather than
hinders such evolution – one can change basic definitions and then
update the scripts so that proofs of basic properties still go through
surprisingly quickly and sometimes almost automatically.

We make heavy use of Setoid rewriting modulo the preorder �,
but have replace our earlier handcrafted reflective tactics for reor-
ganising long sequences of ⊗-ed stateRels modulo associativity
and commutativity with uses of the library-provided r✐♥❣ tactic.
This removes the two-level (syntactic and semantic) structure of
our explicitly reflective approach which we were never sufficiently
disciplined to use cleanly before.

The proofs also make rather more use of specialized tactics than
our earlier ones, and we have overall managed to keep the size of
this formulation about the same as that of our previous one, for
a simple imperative language with no procedures, despite the fact
that the specifications and proofs here are much more complex and
the compiler is considerably larger.

The general pattern of reasoning is, as in our earlier work, for-
ward Hoare style proving, using rules for entailments on stateRels
and judgements to set the goal up in the right form to apply
instruction-specific lemmas such as the following, for an uncon-
ditional indirect branch:

LEMMA 2 (Branch). For all p, p′, l, l′, m and R, if

p(l) = ❥♠♣ ❬♠❪, p
′(l′) = ❥♠♣ ❬♠❪

❚❤❡♦r❡♠ ❝♦♠♣✐❧❡r❴s♦✉♥❞ ✿
❢♦r❛❧❧ ❜❛s❡ ❜❛s❡✬ ❘❛ ✐♥✐t ✐♥✐t✬ ❛❧❧♦❝ ❛❧❧♦❝✬ ❞❡❛❧❧♦❝ ❞❡❛❧❧♦❝✬ Γ ❛ ❡ ✭t✿Γ ⊢ ❡ ✿ ❛✮

❘❝ ❘❝❴❝❧♦✉❞ st❛rt st❛rt✬ st❛❝❦❴♣tr st❛❝❦❴♣tr✬ ♥ ♥✷ ♥✸ ♥✬ ♥✷✬ ♥✸✬ ♣ ♣✬ st❛❝❦❴❧✐st✱
❧❡t ❣❧♦❜❛❧❴❝♦❞❡ ✿❂ ❝♦♠♣✐❧❡ ❡ ♥✐❧ ❜❛s❡ ❛❧❧♦❝ ❞❡❛❧❧♦❝ ✐♥
❧❡t ❝♦❞❡ ✿❂ ❡①tr❛❝t❴❝♦❞❡❴❢r♦♠❴❣❧♦❜❛❧❝♦❞❡ ❣❧♦❜❛❧❴❝♦❞❡ st❛rt ✐♥
❧❡t st❛❝❦❴❢r❡❡ ✿❂ ❡①tr❛❝t❴st❛❝❦s✐③❡❴❢r♦♠❴❝♦❞❡ ❝♦❞❡ ✐♥
❧❡t ❣❧♦❜❛❧❴❝♦❞❡✬ ✿❂ ❝♦♠♣✐❧❡ ❡ ♥✐❧ ❜❛s❡✬ ❛❧❧♦❝✬ ❞❡❛❧❧♦❝✬ ✐♥
❧❡t ❝♦❞❡✬ ✿❂ ❡①tr❛❝t❴❝♦❞❡❴❢r♦♠❴❣❧♦❜❛❧❝♦❞❡ ❣❧♦❜❛❧❴❝♦❞❡✬ st❛rt✬ ✐♥
❧❡t st❛❝❦❴❢r❡❡✬ ✿❂ ❡①tr❛❝t❴st❛❝❦s✐③❡❴❢r♦♠❴❝♦❞❡ ❝♦❞❡✬ ✐♥

♣r♦❣❴❡①t❡♥❞s❴❛✉①❝♦❞❡ ❣❧♦❜❛❧❴❝♦❞❡ ♣ ❜❛s❡ →
♣r♦❣❴❡①t❡♥❞s❴❝♦❞❡ ❣❧♦❜❛❧❴❝♦❞❡ ♣ st❛rt →
♣r♦❣❴❡①t❡♥❞s❴❛✉①❝♦❞❡ ❣❧♦❜❛❧❴❝♦❞❡✬ ♣✬ ❜❛s❡✬ →
♣r♦❣❴❡①t❡♥❞s❴❝♦❞❡ ❣❧♦❜❛❧❴❝♦❞❡✬ ♣✬ st❛rt✬ →
❆❧❧♦❝❙♣❡❝ ♣ ♣✬ ❘❛ ✐♥✐t ✐♥✐t✬ ❛❧❧♦❝ ❛❧❧♦❝✬ ❞❡❛❧❧♦❝ ❞❡❛❧❧♦❝✬ →
✭❢♦r❛❧❧ ♣tr ♣tr✬✱ |= ♣ ♣✬ � ✭st❛rt✰❧❡♥❣t❤ ✭✐♥str✉❝t❴♦❢ ❝♦❞❡✮✮ ✭st❛rt✬✰❧❡♥❣t❤ ✭✐♥str✉❝t❴♦❢ ❝♦❞❡✬✮✮ ✿

✭♠❡♠♦r②❴s♣❡❝✐❢✐❝❛t✐♦♥ ❘❛ ❘❝ ❘❝❴❝❧♦✉❞ Γ ✭✭JaK ❘❛✱✭♣tr✱♣tr✬✮✮ ✿✿ st❛❝❦❴❧✐st✮

✭st❛❝❦❴❢r❡❡✲✶✮ ✭st❛❝❦❴❢r❡❡✬✲✶✮ ✭st❛❝❦❴♣tr✰✶✮ ✭st❛❝❦❴♣tr✬✰✶✮ ♥ ♥✷ ♥✸ ♥✬ ♥✷✬ ♥✸✬✮⊤✮ →
|= ♣ ♣✬ � st❛rt st❛rt✬ ✿ ✭♠❡♠♦r②❴s♣❡❝✐❢✐❝❛t✐♦♥ ❘❛ ❘❝ ❘❝❴❝❧♦✉❞ Γ st❛❝❦❴❧✐st st❛❝❦❴❢r❡❡ st❛❝❦❴❢r❡❡✬

st❛❝❦❴♣tr st❛❝❦❴♣tr✬ ♥ ♥✷ ♥✸ ♥✬ ♥✷✬ ♥✸✬✮⊤✳

Figure 4. Semantic Type Soundness

and

R � (m 7→ 3R
⊤)

then

|= p, p
′
� l, l

′ : R
⊤

which says that we get equitermination by executing the jump
instructions at l and l′ in states satisfying R if R entails that the
location m through which we jump points to code pointers that
later yield equitermination when jumped to in states satisfying R.

The crucial lemma for proving the recursive functions is the
following, proved by appeal to the Löb rule we gave earlier:

▲❡♠♠❛ r❡❝✉rs✐♦♥❴❝♦♥t✐♥✉❛t✐♦♥ ✿
❢♦r❛❧❧ ♣tr ♣tr✬ ❢❝♦❞❡ ❢❝♦❞❡✬ ❘❛ ❛ ❜ ❘ ♣ ♣✬✱
❥✉❞❣♠❡♥t ✭Pr❡❴❛rr♦✇ ✭✭J❛−→❜K✮ ❘❛ ♣tr ♣tr✬ × ❘✮

♣tr ♣tr✬ ❘❛ ✭J❛K✮ ✭J❜K✮✮ ♣ ♣✬ ❢❝♦❞❡ ❢❝♦❞❡✬
→
❥✉❞❣♠❡♥t ✭Pr❡❴❛rr♦✇✭✭♣tr✱♣tr✬ 7→ ❢❝♦❞❡✱ ❢❝♦❞❡✬✮×❘✮

♣tr ♣tr✬ ❘❛ ✭J❛K✮ ✭J❜K✮✮ ♣ ♣✬ ❢❝♦❞❡ ❢❝♦❞❡✬✳

The antecedent is what we initially prove about the code pointers
❢❝♦❞❡ and ❢❝♦❞❡✬: that they will equiterminate appropriately pro-
vided that ♣tr and ♣tr✬ (which will be the heads of the two clo-
sure environments) point to equivalent functions. The consequent
is what want to conclude about the result of tying the knot: that we
then get equitermination when ♣tr and ♣tr✬ point, respectively, to
❢❝♦❞❡ and ❢❝♦❞❡✬ themselves.

7. Discussion

We have shown how to specify and verify a low-level relational in-
terpretation of functional types. The construction involves a num-
ber of familiar ideas: the logical interpretation of types as relations,
separation logic, orthogonality, step-indexing and so on, but putting
them all together in the right way is far from trivial, and we cer-
tainly would not claim to have completely solved the problem.

The existentially-quantified private invariant Rprivate at the
top level of our interpretation of function types is a semantic gener-
alization of the well-known use of existentially quantified types to
abstract the type of environments in typed closure conversion (Mi-
namide et al. 1996; Glew 1999; Ahmed and Blume 2008). Our gen-
eral use of second order existential quantification over stateRels
to express private invariants generalizes the standard treatment of
type abstraction via existential types (Mitchell and Plotkin 1988).

The use of ‘orthogonality’ or ‘perping’ in realizability was pio-
neered by Pitts and Stark (1998) and by Krivine, and has received
much attention, notably by Vouillon and Melliès (2004). A general
theory of such ‘tensorial negations’ is investigated in more detail
in the thesis of the second author (Tabareau 2008), but there are
still open questions about their use in low-level settings. One such
question is whether, now we have an adjunction and hence a (·)⊤⊤

closure operator on stateRels, we really need explicit step indices
too; in higher-level models, biorthogonal closed relations are auto-
matically admissible. Another very important question is how one
would adapt the kinds of specification used here to real machines
with finite memory; it is not obvious what the ‘corresponding’ the-
orems should be.

Note that our interpretation of function types and general com-
putations in context constrains them to be rather pure – the extent to
which they can read or write the state is severely constrained. Our
hope is to be able to do equational reasoning at the level of low-
level code, proving that different bits of machine code are in the
relation associated with a particular type. However, we have not
yet managed to make this work, despite our move to total correct-
ness specifications of the allocator. The CPS treatment of prerela-
tions and postrelations seems to give us an equational theory which
is roughly that of call-by-value CPS-transformed high-level func-
tions. Whilst this is a strong constraint on the behaviour of machine
code programs, it is still too weak to prove something as trivial as
the high-level commutativity of addition, as the CPS transforms of

❧❡t ① ❂ ▼ ✐♥ ❧❡t ② ❂ ◆ ✐♥ ①✰②

and

❧❡t ② ❂ ◆ ✐♥ ❧❡t ① ❂ ▼ ✐♥ ①✰②

are not generally observationally equivalent. A related annoyance
is that our CPS interpretation does not seem to validate the well-
known rule for conjunctive types

(A→ B1) ∧ (A→ B2) <:(A→ B1 ∧B2)

or the morally equivalent rule for introducing universal quantifica-
tion over logical variables used in our refinement types:

[∀I]
Γ ⊢M : A(i) i 6∈ Γ

Γ ⊢M : ∀i.A(i)

It is well known that these rules can be unsound in the presence of
effects (Davies and Pfenning 2000), but our language is sufficiently

pure that we should not require a value restriction here: we just have
not quite captured that purity in our specifications.

Yet another wart on our otherwise beautiful theory is the way the
treatment of total correctness makes explicit reference to particular
code pointers. This is just about bearable for simple first-order pro-
cedures like the allocator, but would be untenable and insufficiently
modular if we were to, say, try to interpret types of a normalizing
lambda calculus. We are currently investigating some ideas about
parametricity in the notion of ‘observation’ (here it was always eq-
uitermination) with respect to which one takes perps, which may
help here.

One of our initial goals was that our interpretations of types be
expressed in a logic that was essentially independent of the source.
This seems desirable in multilanguage PCC settings, but certainly
introduces some complexity. An alternative approach would be to
define a ‘represents’ logical relation between a high-level seman-
tics for the source language and the low-level compiled code (this
would then induce a partial equivalence relation on low-level pro-
grams). Chlipala (2007) has already done this for a simple total
functional language, which can be given a straightforward type-
theoretic denotational semantics; we plan to do something similar
using a formalized domain-theoretic semantics for our partial lan-
guage. Our hope is that this will help us better understand the short-
comings of the low-level relations.

Finally, of course, we want to look at various forms of compiler
correctness for high-level languages with effects. We and others
have successfully applied essentially the same mathematical ma-
chinery to reasoning about higher-order functions with encapsu-
lated local state (Ahmed 2004; Benton and Leperchey 2005; Pitts
and Stark 1998; Ahmed et al. 2009), so moving those ideas down
to the low level looks very doable.

There is a great deal of related work on program logics, com-
piler correctness and the semantics of types, much of which we
have plundered here. Formal verification of compilers goes back
over four decades (McCarthy and Painter 1967; Dave 2003) and
has recently received increased attention, with notable automated
efforts including Leroy’s verification of an optimizing compiler for
a C-like language (Leroy 2006). Appel’s Foundational Proof Carry-
ing Code project (Appel 2001) at Princeton has very similar goals
to this work, and many of the techniques we use were introduced
by Appel and his coauthors. We mention in particular the use of
step-indexing (Appel and McAllester 2001; Tan et al. 2004) and its
modal refinement (Appel et al. 2007). Shao’s group at Yale have
also done impressive work on formalizing and verifying specifi-
cations for low-level code in Coq, including memory managers,
garbage collectors and other challenging pieces of systems code
(Ni and Shao 2006; Yu et al. 2004). It will be interesting to see if
we can do similar things in our relational style.

Acknowledgments

Many thanks to Ivana Mijajlovic, who wrote the ‘non-trivial’ mem-
ory allocator module and did the initial correctness proof for it, and
to Uri Zarfaty, who wrote the compiler itself.

References

A. Ahmed. Semantics of types for mutable state. PhD thesis, Princeton
University, Princeton, NJ, USA, 2004.

A. Ahmed and M. Blume. Typed closure conversion preserves observational
equivalence. In Proc. 13th ACM International Conference on Functional

Programming (ICFP ’08). ACM, 2008.

A. Ahmed, D. Dreyer, and A. Rossberg. State-dependent representation in-
dependence. In Proc. 36th ACM Symposium on Principles of Program-

ming Languages (POPL ’09), 2009.

A. Appel. Foundational proof-carrying code. In Proc. 16th IEEE Sympo-

sium on Logic in Computer Science (LICS), 2001.

A. Appel and D. McAllester. An indexed model of recursive types for
foundational proof-carrying code. ACM Transactions on Programming

Languages and Systems (TOPLAS), 23(5), 2001.

A.W. Appel, P.-A. Melliès, C.D. Richards, and J. Vouillon. A very modal
model of a modern, major, general type system. Proc. 34th ACM Sym-

posium on Principles of Programming Languages (POPL ’07), pages
109–122, 2007.

N. Benton. Abstracting allocation: The new new thing. In CSL ’06, volume
4207 of LNCS. Springer-Verlag, September 2006.

N. Benton and B. Leperchey. Relational reasoning in a nominal semantics
for storage. In Proc. 7th International Conference on Typed Lambda

Calculi and Applications (TLCA), volume 3461 of Lecture Notes in

Computer Science, 2005.

N. Benton and U. Zarfaty. Formalizing and verifying semantic type sound-
ness of a simple compiler. In Proc. 9th ACM International Conference on

Principles and Practice of Declarative Programming (PPDP ’07), pages
1–12, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-769-8. doi:
http://doi.acm.org/10.1145/1273920.1273922.

A. Chlipala. A certified type-preserving compiler from lambda calculus to
assembly language. In Proc. 2007 ACM Conference on Programming

Language Design and Implementation (PLDI ’07), 2007.

M. Dave. Compiler verification: a bibliography. ACM SIGSOFT Software

Engineering Notes, 28(6), 2003.

R. Davies and F. Pfenning. Intersection types and computational effects. In
Proc. 5th ACM International Conference on Functional Programming

(ICFP ’00), 2000.

N. Glew. Object closure conversion. In 3rd International Workshop on

Higher Order Operational Techniques in Semantics, 1999.

X. Leroy. Formal certification of a compiler back-end, or: programming
a compiler with a proof assistant. In Proc. 33rd ACM Symposium on

Principles of Programming Languages (POPL ’06), 2006.

J. McCarthy and J. Painter. Correctness of a Compiler for Arithmetic
Expressions. Proceedings Symposium in Applied Mathematics, 19:33–
41, 1967.

Y. Minamide, G. Morrisett, and R. Harper. Typed closure conversion. In
Proc. 23rd ACM Symposium on Principles of Programming Languages

(POPL ’96), pages 271–283, New York, NY, USA, 1996. ACM. ISBN
0-89791-769-3. doi: http://doi.acm.org/10.1145/237721.237791.

J. C. Mitchell and G. D. Plotkin. Abstract types have existential type. ACM

Trans. Program. Lang. Syst., 10(3), 1988.

Z. Ni and Z. Shao. Certified assembly programming with embedded code
pointers. In Proc. 33rd ACM Symposium on Principles of Programming

Languages (POPL), 2006.

A. M. Pitts and I. D. B. Stark. Operational reasoning for functions with
local state. In Higher Order Operational Techniques in Semantics. CUP,
1998.

J.C. Reynolds. Separation logic: A logic for shared mutable data structures.
17th Annual IEEE Symposium on Logic in Computer Science (LICS’02),
pages 55–74, 2002.

N. Tabareau. Modalités de Ressource et Contrôle en Logique Tensorielle.
PhD thesis, Université Paris Diderot (Paris 7), 2008.

G. Tan, A. Appel, K. Swadi, and D. Wu. Construction of a semantic model
for a typed assembly language. In Proc. 5th Conference on Verification,

Model Checking, and Abstract Interpretation (VMCAI ’04), 2004.

J. Vouillon and P.-A. Melliès. Semantic types: A fresh look at the ideal
model for types. In Proc. 31st ACM Symposium on Principles of Pro-

gramming Languages (POPL), 2004.

H. Yang. Relational separation logic. Theoretical Computer Science, 375
(1-3), 2007.

D. Yu, N. A. Hamid, and Z. Shao. Building certified libraries for PCC:
Dynamic storage allocation. Science of Computer Programming, 50,
2004.

