skip to main content
research-article

Emerging nanodevice paradigm: Graphene-based electronics for nanoscale computing

Authors Info & Claims
Published:03 February 2009Publication History
Skip Abstract Section

Abstract

The continued miniaturization of silicon-based electronic circuits is fast approaching its physical limitations. It is unlikely that advances in miniaturization, following the so-called Moore's Law, can continue in the foreseeable future. Nanoelectronics has to go beyond silicon technology. New device paradigms based on nanoscale materials, such as molecular electronic devices, spin devices and carbon-based devices, will emerge. In this article, we introduce a nanodevice paradigm: graphene nanoelectronics. Due to its unique quantum effects and electronic properties, researchers predict that graphene-based devices may replace carbon nanotube devices and become major building blocks for future nanoscale computing. To manifest its unique electronic properties, we present some of our recent designs, namely a graphene-based switch, a negative differential resistance (NDR) device and a random access memory array (RAM). Since these basic devices are the building blocks for large-scale circuits, our findings can help researchers construct useful computing systems and study graphene-based circuit performance in the future.

References

  1. Bachtold, A., Hadley, P., Nalcanishi, T., and Dekker, C. 2001. Logic circuits with carbon nanotube transistors. Science 294, 1317--1320.Google ScholarGoogle ScholarCross RefCross Ref
  2. Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C., Mayou, D., Li, T., Hass, J., Marchenkov, A. N., Conrad, E. H., First, P. N., and de Heer, W. A. 2006. Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191--1916.Google ScholarGoogle ScholarCross RefCross Ref
  3. Bhaduri, D. and Shukla, S. K. 2006. Tools and Techniques for Evaluating Reliability Trade-Offs for NANO-Architectures. Kluwer Academic Publishers.Google ScholarGoogle Scholar
  4. Brey, L. and Fertig, H. A. 2006. Electronic states of graphene nanoribbons studied with the dirac equation. Phys. Rev. B 73, 235411--235416.Google ScholarGoogle ScholarCross RefCross Ref
  5. Byon, H. R. and Choi, H. C. 2006. Network single-walled carbon nanotube-field effect transistors (swnt-fets) with increased schottky contact area for highly sensitive. J. Am. Chem. Soc. 128, 2188--2189.Google ScholarGoogle ScholarCross RefCross Ref
  6. Calogeracos, A. 2006. Relativistic quantum mechanicsparadox in a pencil. Nature Phys. 2. 579--580.Google ScholarGoogle Scholar
  7. Ci, L., Xu, Z., Wang, L., Gao, W., Ding, F., Kelly, K. F., Yakobson, B. I., and Ajayan, P. M. 2008. Controlled nanocutting of graphene. Nano Res. 1, pp. 116--122.Google ScholarGoogle ScholarCross RefCross Ref
  8. DeHon, A. and Likharev, K. K. 2005. Hybrid cmos/nanoelectronic digital circuits devices, architectures, and design automation. In proceedings of the IEEE/ACM International Conference on Computer-Aided Design. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Dragoman, D. and Dragoman, M. 2007. Negative differential resistance of electrons in graphene barrier. Appl. Phys. Lett. 90, 143111.Google ScholarGoogle ScholarCross RefCross Ref
  10. Geim, A. and Novoselov, K. 2007a. Graphene calling. Nature Materials 6, 169.Google ScholarGoogle ScholarCross RefCross Ref
  11. Geim, A. K. and Novoselov, K. S. 2007b. The rise of graphene. Nature Materials 6, 183--191.Google ScholarGoogle ScholarCross RefCross Ref
  12. Haldane, F. D. M. 1988. Model for a quantum hall effect without landau levels: Realization of the parity anomaly. Phys. Rev. Lett. 61, 2015--2018.Google ScholarGoogle ScholarCross RefCross Ref
  13. Han, M. Y., Ozyilmaz, B., Zhang, Y., and Kim, P. 2007. Energy band-gap engineering of graphene nanoribbons. Phy. rev. lett. 98, 206905--206908.Google ScholarGoogle Scholar
  14. Heersche, H. B., Jarillo-Herrero, P., Oostinga, J. B., Vandersypen, L. M. K., and Morpurgo, A. F. 2007. Bipolar supercurrent in graphene. Nature 446, 56--59.Google ScholarGoogle ScholarCross RefCross Ref
  15. Katsnelson, M. I. 2007. Graphene: Carbon in two dimensions. Materialstoday 10, 20--27.Google ScholarGoogle Scholar
  16. Katsnelson, M. I., Novoselov, K. S., and Geim, A. K. 2006. Chiral tunnelling and the Klein paradox in graphene. Nature Physics 2, 620--625.Google ScholarGoogle ScholarCross RefCross Ref
  17. Krishnaswamy, S., Viamontes, G. F., Markov, I. L., and Hayes, J. P. 2005. Accurate reliability evaluation and enhancement via probabilistic transfer matrices. In Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE'05). Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Li, X., Wang, X., Zhang, L., Lee, S., and Dai, H. 2008. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229--1232.Google ScholarGoogle ScholarCross RefCross Ref
  19. Meyer, J. C., Geim, A. K., Katsnelson, M. I., Novoselov, K. S., Booth, T. J., and Roth, S. 2007. The structure of suspended graphene sheets. Nature 446, 60--63.Google ScholarGoogle ScholarCross RefCross Ref
  20. Nakada, K., Fujita, M., Dresselhaus, G., and Dresselhaus, M. S. 1996. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 54, 1795--1796.Google ScholarGoogle ScholarCross RefCross Ref
  21. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., Dubonos, S. V., and Firsov, A. A. 2005. Two-dimensional gas of massless dirac fermions in graphene. Nature 438, 197--200.Google ScholarGoogle ScholarCross RefCross Ref
  22. noz Rojas, F. M., Jacob, D., Fernández-Rossier, J., and Palacios, J. J. 2006. Coherent transport in graphene nanoconstrictions. Cond-mat/0608720.Google ScholarGoogle Scholar
  23. Ponomarenko, L. A., Schedin, F., Katsnelson, M. I., Yang, R., Hill, E. W., Novoselov, K. S., and Geim, A. K. 2008. Chaotic Dirac billiard in graphene quantum dots. Science 320, 356.Google ScholarGoogle ScholarCross RefCross Ref
  24. Rao, H., Chen, J., Zhao, V. H., Ang, W. T., Wey, I.-C., and Wu, A.-Y. 2008. An efficient methodology to evaluate nanoscale circuit fault-tolerance performance based on belief propagation. In Proceedings of the IEEE Symposium on Circuits and Systems.Google ScholarGoogle Scholar
  25. Rycerz, A., Tworzydlo, J., and Beenakker, C. J. 2007. Valley filter and valley valve in graphene. Nature Phys. 3, 172--175.Google ScholarGoogle ScholarCross RefCross Ref
  26. Rycerz, A., Tworzydlo, J., and Beenakker, C. W. J. 2006. Valley filter and valley valve in graphene. Cond-mat/0608533.Google ScholarGoogle Scholar
  27. Sancho. M. P. L., Sancho, J. M. L., and Rubio, J. 1985. Highly convergent schemes for the calculation of bulk and surface green functions. J. Phys. F. Metal Phys. 15, 851--858.Google ScholarGoogle ScholarCross RefCross Ref
  28. Schedin, F., Geim, A. K., Morozov, S. V., Hill, E. W., Blake, P., Katsnelson, M. I., and Novoselov, K. S. 2007. Detection of individual gas molecules adsorbed on graphene. Nature Mater. 6, 625--655.Google ScholarGoogle ScholarCross RefCross Ref
  29. Semenoff, G. W. 1984. Condensed-matter simulation of a three-dimensional anomaly. Phys. Rev. Lett. 53, 2449--2452.Google ScholarGoogle ScholarCross RefCross Ref
  30. Shi, Q. W., Wang, Z. F., Chen, J., Zheng, H., Li, Q., Wang, X., Yang, J., and Hou, J. 2006. Graphene switch design: An illustration of the Klein paradox. Cond-mat/0611604.Google ScholarGoogle Scholar
  31. Silvestrov, P. G. and Efetov, K. B. 2007. Quantum dots in graphene. Phys. Rev. Lett. 98, 016802--016805.Google ScholarGoogle ScholarCross RefCross Ref
  32. Son, Y.-W., Cohen, M. L., and Louie, S. G. 2006. Half-metallic graphene nanoribbons. Nature 444, 347--349.Google ScholarGoogle ScholarCross RefCross Ref
  33. Stankovich, S., Dikin1, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., Piner, R. D., Nguyen, S. T., and Ruoff, R. S. 2006. Graphene-based composite materials. Nature 442, 282--289.Google ScholarGoogle ScholarCross RefCross Ref
  34. Wakabayashi, K. 2001. Electronic transport properties of nanographite ribbon junctions. Phys. Rev. B 64, 125428--125443.Google ScholarGoogle ScholarCross RefCross Ref
  35. Wakabayashi, K. and Sigrist, M. 2000. Zero-conductance resonances due to flux states in nanographite ribbon junctions. Phys. Rev. Lett. 10, 3390--3393.Google ScholarGoogle ScholarCross RefCross Ref
  36. Wang, Z. F., Li, Q., Su, H., Wang, X., Shi, Q. W., Chen, J., Yang, J., and Hou, J. G. 2007. Electronic structure of bilayer graphene: A real-space Green's function study. Phys. Rev. B 75, 085424.Google ScholarGoogle ScholarCross RefCross Ref
  37. Wang, Z. F., Xiang, R., Shi, Q. W., Yang, J., Wang, X., Hou, J. G., and Chen, J. 2006. Modeling stm images in graphene using the effective-mass approximation. Phys. Rev. B 74, 125417.Google ScholarGoogle ScholarCross RefCross Ref
  38. Xu, Z., Zheng, Q.-S., and Chen, G. 2007. Elementary building blocks of graphene-nanoribbon-based electronic devices. Appl. Phys. Lett. 90, 223115.Google ScholarGoogle ScholarCross RefCross Ref
  39. Zhang, Y., Tan, Y.-W., Stormer, H. L., and Kim, P. 2005. Experimental observation of the quantum hall effect and berry's phase in graphene. Nature 438, 201--204.Google ScholarGoogle ScholarCross RefCross Ref
  40. Zhou, S. Y., Gweon, G. H., Graf, J., Fedorov, A. V., Spataru, C. D., Diehl, R. D., Kopelevich, Y., Lee, D.-H., Louie, S. G., and Lanzara, A. 2006. First direct observation of dirac fermions in graphite. Nature Phys. 2, 595--599.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Emerging nanodevice paradigm: Graphene-based electronics for nanoscale computing

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Journal on Emerging Technologies in Computing Systems
        ACM Journal on Emerging Technologies in Computing Systems  Volume 5, Issue 1
        January 2009
        83 pages
        ISSN:1550-4832
        EISSN:1550-4840
        DOI:10.1145/1482613
        Issue’s Table of Contents

        Copyright © 2009 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 3 February 2009
        • Accepted: 1 August 2008
        • Revised: 1 June 2008
        • Received: 1 February 2008
        Published in jetc Volume 5, Issue 1

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader