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Abstract

Recent advances in multilevel LU factorizations and novel preprocessing techniques
have led to an extremely large number of possibilities for preconditioning sparse,
unsymmetric linear systems for solving with iterative methods. However, not all
combinations work well for all systems, so making the right choices is essential for
obtaining an efficient solver. The numerical results for 256 matrices presented in this
article give an indication of which approaches are suitable for which matrices (based
on different criteria, such as total computation time or fill-in) and of the differences
between the methods.

Key words: preconditioning, incomplete LU factorization, iterative methods, sparse linear sys-
tems.
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1 Introduction

Recently, significant advances have been made in preconditioning iterative methods for
solving large, sparse, unsymmetric linear systems using incomplete LU factorizations.
Most notably, the multilevel approach (see e.g. [1], [2], [4], [24]), new factorizations (see
e.g. [5], [16], [18]), new dropping rules to preserve sparsity (see e.g. [4], [5], [19]) as well
as new preprocessing techniques to make the coefficient matrix more suitable for incom-
plete factorization (see e.g. [9], [10], [14], [21], [17], [24]) have resulted in the greatest
improvements. Although the main drawback of preconditioned iterative methods, namely
of choosing an appropriate preconditioner and of choosing good parameters in particu-
lar, continues to exist, iterative methods can be as good and often are better than direct
methods for a large number of problems.

Most of the articles mentioned provide numerical examples indicating that the new meth-
ods presented result in improvements over older methods for a number of problems. Hence,
these methods are certainly promising and many have been used successfully in practice,
but often it is not clear which methods and parameters work best for a particular prob-
lem. Needless to say, many researchers working in this field have considerable experience
in making appropriate choices, but nevertheless, these results or even a comparative study
of the methods do not appear to have been published or made available. The last system-
atic investigation in this direction appears to have been [6], but these results do not take
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more recent developments into account and only consider problems that are small by to-
day’s standards. Additionally, the homepages of the software packages ILUPACK [3] and
ILU++ [20] contain extensive numerical results for individual matrices. However, these
results do not necessarily encompass some of the most recent advances and do not include
an extensive analysis based on application area. Hence this article attempts to close this
gap by performing extensive tests on 256 matrices made available by the University of
Florida Sparse Matrix Collection [7] using modern ILU preconditioned iterative solvers.

An extremely large number of possibilities exist for forming incomplete LU factorization
preconditioners, so we must restrict our attention to a few strategies. First of all, we
only consider those based on Crout’s implementation of Gaussian elimination, because
other factorizations do not admit some of the newer dropping and pivoting strategies.
Furthermore, we use only default configurations as made available by ILUPACK [3] and
ILU++ [20], as these are the approaches most likely to be used in practice. For many
of the problems tested, using direct methods is an alternative. Usually, direct methods
do not require the user to select parameters carefully, so these are particularly attractive
whenever suitable parameters for a preconditioner are not known. Hence, we also include
a single direct solver, PARDISO [27] in our results. We selected PARDISO because it is
a state-of-the-art solver and at least for symmetric problems, it appears to be among the
best methods currently available, see [12].

We begin by providing a summary on ILU-type preconditioners. This includes the neces-
sary details needed to understand the choices that a user of these methods needs to make.
In particular, we provide some of the details of the factorizations themselves, including piv-
oting and dropping rules, and on the multilevel framework, including different approaches
for selecting levels. We continue by introducing some of the preprocessing techniques that
are used to make a matrix more suitable for incomplete factorization. Next, we provide
some information on the software available and tested. We continue with a description of
the numerical tests we performed. Furthermore, we provide numerical results based on to-
tal computation time and fill-in and analyze the sensitivity of total solve time to variations
of the threshold parameter. These results indicate that much can be gained by selecting
the method and/or preconditioner appropriately and it seems that the application area
and matrix density can be useful criteria. We conclude with some specific recommenda-
tions for choosing a solver for a sparse linear system. Needless to say, these may be seen
as a starting point, if the user has no better starting point for selecting a method and/or
preconditioner, but as little more. These suggestions cannot replace experience.

2 A Description of Preprocessing and ILU-type Precondi-

tioners

The preconditioners considered in the tests discussed here are preprocessed multilevel ILU
factorizations as introduced in [4] and [24]. They are based on Crout’s implementation
of Gaussian elimination. The two main differences between the various preconditioners
considered will consist of differences in the incomplete factorizations on one hand and of the
different choices of preprocessing techniques on the other hand. Furthermore, the choice
of preprocessing results in different strategies for forming levels, i.e. for selecting the block
structure of the coefficient matrices. The different block structures in turn entail further
differences between the various preconditioners. On the other hand, differences between
the various ILU factorizations result from choosing different approaches for permuting rows
and columns and from choosing different dropping rules. Before going into the details of

2



the various approaches, we begin be summarizing the ideas behind multilevel factorizations
as presented in [4] and [24], which form the common framework for all preconditioners.

For simplicity, we will only describe a complete multilevel LDU factorization. We split a
given square matrix A1 = A of dimension n into a block matrix

A =

(

B F

E C

)

such that the diagonal blocks B and C are square matrices of dimension nB and nC =
n − nB respectively. Next, we calculate an LDU factorization B = LBDBUB of B and
obtain

(

B F

E C

)

=

(

LB 0
EB I

)(

DB 0
0 S

)(

UB FB

0 I

)

.

Thus, LB is a unit lower triangular, UB is a unit upper triangular and DB is a diagonal
matrix. The matrices EB and FB are formally given by EB = EU−1

B D−1

B and FB =
D−1

B L−1

B F , respectively, and S = C −EBDBFB denotes the Schur complement. However,
in practice, these matrices are calculated by Gaussian elimination and not by the formulas
above. If we let A2 = S, we can proceed recursively as described above by using A2

for A. After a certain number of steps (or levels), we finish by completely factoring
the final Schur complement. Note that in practice, this block structure need not be
determined in advance. It is possible to begin factorization, to terminate whenever this
seems to be a good idea and to proceed in calculating the Schur complement. In other
words, the block structure is determined during the course of factorization and not in
advance. We will address strategies for this approach in the sequel. Finally, it is possible
to combine this factorization with row and column permutations during factorization as
well as different preprocessing techniques between levels. As the modifications in the
equations are obvious and not particularly enlightening in this context, we will not go
into further details here. For the sake of completeness, we mention that for an incomplete
multilevel ILU factorization, we simply apply a dropping rule to keep all matrices sparse.

Next, we will go into the details of the factorization, preprocessing and level termination
techniques as much as necessary to understand the various options available. These options
are summarized in Table 1 which includes the abbreviations used in the sequel.

2.1 Incomplete LDU Factorizations

All factorizations are based on Crout’s implementation of Gaussian elimination as de-
scribed in [5]. In its original form, no rows or columns are permuted during factorization.
However, it is possible to use diagonal pivoting, i.e. to permute rows and columns with
the same permutation so that the diagonal is kept intact during factorization and to avoid
small pivots, see [4] and the references there. Alternatively, it is possible to use “dual
pivoting”, i.e. to permute rows and columns independently. In this case, columns are
interchanged to avoid small pivots and rows are reordered to reduce fill-in, see [16], [18].
Optionally, all of these approaches can be implemented with a pivoting tolerance so that
pivoting is only performed if this increases the absolute value of the pivot by at least a
prescribed factor, see [23]. Note that diagonal pivoting requires little additional mem-
ory for calculations, whereas dual pivoting requires all matrices to be stored twice during
factorization.

Various dropping rules are available to preserve sparsity. All are based on the dual thresh-
old approach as introduced in [22]. Let x be a column of L or a row of U calculated in
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the kth step of elimination. For a given threshold τ ≥ 0, all elements xi of x are set to
zero satisfying

w · |xi| < τ,

where w is an appropriate weight. Next, if for a given threshold p > 0, more than p non-
zero elements remain in x, we retain the p largest by absolute value and set the remainder
to zero. Several different possibilities for choosing the weight w have been considered:

• w = 1

||x|| is the standard dual threshold strategy, see [22].

• w may be chosen to heuristically minimize the “inverse errors” in L−1 and U−1, see
[1], [5].

• w may be chosen to heuristically minimize the propagation of errors in L and U

during factorization, see [19].

Note that in addition to the options for the weight w as mentioned above, it is possible to
multiply the weight w by the number of non-zero elements nnz(x) of x. This approach is
called “aggressive dropping” when combined with a heuristic to reduce the inverse errors,
see [3]. However, we do not consider this in the sequel. Finally, rather than working with
τ as above, we use t = − log10 τ . This is slightly more natural as now small values of
t indicate inexpensive, sparse preconditioners and larger values indicate more expensive,
denser preconditioners which are hopefully of higher quality.

2.2 Preprocessing Techniques

Preprocessing refers to permuting rows and/or columns as well as scaling rows and/or
columns prior to (incomplete) factorizations in order to reduce fill-in and/or avoid small
pivots. Note that symmetric positive definite problems, symmetric indefinite problems
and unsymmetric problems generally require different approaches for effective preprocess-
ing. For symmetric positive definite problems, preserving symmetry is a primary concern.
Hence, the permutations for rows and columns are usually the same. Furthermore, re-
ducing fill-in is generally the primary goal of preprocessing and not avoiding small pivots,
which are unlikely because the matrix is positive definite. Hence, permutations obtained
by reverse Cuthill-McKee, approximate minimum degree or (multilevel) nested dissection
algorithms are often suitable for these problems. For symmetric indefinite problems the
aim of preprocessing is to preserve symmetry, reduce fill-in and avoid small pivots. How-
ever finding a single permutation for both rows and columns (which is needed to preserve
symmetry) while addressing the often conflicting goals of reducing fill-in and avoiding small
pivots makes the preprocessing of these matrices quite challenging. Not surprisingly, work
in this area has just begun, see [11], [13], [26]. For unsymmetric problems, the situation
is perhaps somewhat simpler as it is possible to use different permutations for rows and
columns. Generally, these permutations aim both at reducing fill-in and avoiding small
pivots. As the preconditioners which we will use require permutations for unsymmetric
problems, we will restrict our attention to these. Often the same preprocessing routine is
applied to each level and this is what we will consider primarily. However, some of the
standard configurations of ILUPACK [3] switch preprocessing used between levels.
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2.2.1 PQ-type Reorderings

PQ-type reorderings are a class of algorithms to improve sparsity and diagonal dominance
in an initial block of the matrix. These are discussed extensively in [24]. The basic (greedy)
algorithm (Algorithm 3.2 in [24]) is as follows: We assign a weight

wi =
1

nnz(ai)
·
||ai||∞
||ai||1

to each row ai of the matrix A. Here, nnz(ai) denotes the number of non-zero elements
of ai. Large values of wi result if one element of the row ai (the element whose absolute
value equals ||ai||∞) dominates the others and/or if the ai contains only a few non-zero
elements. Hence, large values of wi indicate good properties for elimination, so that the
rows of A are reordered in order of decreasing values of wi. Columns are permuted in
such a manner that the dominant element is moved onto the diagonal. Whenever the
dominant element of different rows lies in the same column, moving both elements onto
the diagonal is not possible. In this case, the row with the smaller weight is moved to a
high index arbitrarily. These rows constitute the block for which it was not possible to
improve diagonal dominance and they are a natural candidate for the Schur complement
in the multilevel factorization. As we will only use this algorithm in the tests, we will not
discuss the others, but do wish to point out that there are a number of variations that
actually do guarantee some sort of diagonal dominance for some blocks. In particular, it
is also possible to use a threshold to guarantee that the diagonal element dominates the
others by at least a prescribed factor. Usually, these permutations should be preceded by
scaling. Of the large number of possibilities, we only considered first scaling the columns
of A to have norm 1, then scaling the rows to have norm 1 and finally calculating the
PQ-reordering.

2.2.2 I-Matrix Preprocessing

Unlike PQ-type reordering, I-matrix preprocessing attempts to improve the diagonal dom-
inance of the entire matrix. Recall that an I-matrix is a matrix having elements of absolute
value 1 on the diagonal and of at most absolute value 1 elsewhere. Any non-singular ma-
trix A can be transformed into an I-matrix by row permutation and by scaling rows and
columns. Heuristically, it is clear that an I-matrix is more suitable for incomplete LU
factorizations than general matrices. See [21] for the theoretical background and imple-
mentation details for dense matrices and [9], [10] for implementation details for sparse
matrices.

Note that the row permutation needed to make an I-matrix is the permutation maximizing
the absolute value of the product of the elements on the diagonal. The basic idea for
calculating the permutation is to translate this multiplicative maximization problem into
an additive minimization problem by applying the negative logarithm to the absolute
value of the matrix coefficients. The resulting problem can be interpreted as the problem
of finding a minimal weighted matching in a bipartite graph for which efficient algorithms
exist. Furthermore, the minimization problem can also be interpreted as a linear program.
The corresponding dual variables are in fact needed to calculate the scaling factors, see
[21] for details.

2.2.3 Further Preprocessing for I-Matrices

After obtaining an I-matrix, it is possible to apply a symmetric permutation (i.e. the
same permutation to rows and columns) in order to further improve the properties of the
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Preprocessing Techniques

N normalize columns and subsequently normalize rows
PQ PQ reordering
I I-matrix preprocessing
sf “sparse first” reordering for columns (to be used prior to I)
dd symmetric permutation for a diagonally dominant initial block (after I)
M multilevel nested dissection

Pivoting

n no pivoting
d diagonal pivoting
D dual pivoting

Dropping Rules

s standard dual threshold dropping
i inverse-based dropping
e propagation of error-based dropping

Level Termination

P based on absolute value of pivot
PQ based on PQ reordering
F based on fill-in

Table 1: Summary of the options for making a multilevel ILU preconditioner and abbre-
viations

matrix. It is clear that symmetric permutations preserve I-matrices. A number of different
possibilities for this approach are discussed in [17]. The most reliable approach overall is
Algorithm 3, which produces a diagonally dominant initial block, so we will only consider
this method for the numerical results. Furthermore, in this situation it is also possible
to apply any of the reordering techniques designed for symmetric matrices mentioned
previously, e.g. reverse Cuthill-McKee, approximate minimum degree or multilevel nested
dissection, see [14].

Alternatively, it is possible to permute columns prior to making an I-matrix. From a
theoretical point of view, this is equivalent to applying a symmetric permutation to an
I-matrix. However, from a practical point of view, we have different options if we permute
first. Here, we only consider the very cheap option of reordering columns by increasing
number of elements. As I-matrix preprocessing preserves the number of non-zero elements
in the columns, we expect to obtain a sparser initial block by this approach than by apply-
ing I-matrix preprocessing without prior reordering of the columns. A sparser initial block
may have better diagonal dominance, hopefully resulting in a more accurate incomplete
factorization and larger pivots.

2.3 Level Termination

A major difference between the various preconditioners also stems from the criteria for level
termination. In other words, there are several options for deciding when a factorization
should be terminated and the Schur complement should be calculated. First of all, the
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option which is always available is to terminate a level based on the absolute value of
the pivot. A level is terminated whenever this value falls below some threshold. If PQ-
preprocessing is used, the preprocessed matrix has a block structure with an initial block
having fairly good diagonal dominance, so this provides a point for level termination.
Finally, if dual pivoting is used, the factorization keeps track of the fill-in which is likely
to be produced by continuing with the factorization. So it is possible to terminate a level
whenever fill-in is likely to exceed a certain threshold. See [16] for details.

2.4 Other Options for Making Multilevel ILU Preconditioners

For the sake of completeness, we also mention a few other options which are available
and which have been implemented in various software packages, but which we do not
consider in the sequel. First of all, the approximate Schur complement can be calculated
by just using the incomplete factors L and U , which is the easiest approach. Alternatively,
it is possible to obtain a more accurate approximate “Tismenetsky” Schur complement
which takes the elements which were dropped into account, see [29]. Obviously, it is also
possible to combine both methods. Furthermore, other options for implementing dual
pivoting are possible based not only on the number of elements in the factors but also on
the magnitude. This approach attempts to minimize the magnitude of the fill-in rather
than the number of fill-in elements. Also, a large number of preprocessing techniques
is available. The choice presented here is necessarily highly selective. Finally, it would
be theoretically possible to use a different incomplete factorization not based on Crout’s
implementation of Gaussian elimination. For example, the delayed update implementation
gives rise to the ILUT factorization, see [22], for which pivoting (which results in ILUTP)
can be implemented more easily, see [23]. However, many of the other options discussed
here, in particular some of the dropping rules and dual pivoting, cannot be combined with
the delayed update version. Hence, the drawbacks of ILUT and ILUTP generally outweigh
the advantages and we do not consider these in the sequel.

3 The Preconditioners and the Software

3.1 The Preconditioners

Clearly, the building blocks discussed in the previous section can be combined in a large
number of ways to make many different preconditioners. Consequently, it is impossible
to test all of these extensively, especially as a number of these (e.g. pivoting, PQ, level
termination) also depend on a parameter. Furthermore, not all combinations appear to
have been implemented in the available software and thus cannot be tested easily. Instead,
we will select several of the most promising configurations made available by ILUPACK [3]
and ILU++ [20]. This seems to be a reasonable approach for several reasons: First of all,
these configurations appear to have been tested and seem to work well for a broad range
of problems. This is not only true for the combination of preprocessing and factorization,
but even more so for the choice of any parameters, Secondly, any user of these software
packages is likely to use one of these configurations, so a comparative study of these will
probably be of greatest interest to the general audience.

Generally, it seems that the choice of preprocessing and pivoting strategy has the largest
effect on the resulting preconditioner. This is not surprising as both involve reordering
rows and columns, which is, heuristically speaking, a highly discontinuous process, where
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Preproc. Pivoting Dropping Level Term. Software

N+PQ n e P ILU++
I n e P ILU++

I+dd n e P ILU++
sf+I n e P ILU++

PQ d i P ILUPACK
I+M d i P ILUPACK

N D e F ILU++
I D e F ILU++

direct solver PARDISO PARDISO

Table 2: Combinations of preprocessing and factorization tested

interchanging just two rows or columns can result in fundamentally different factoriza-
tions. Although dropping elements is also discontinuous (a particular element is either
kept or dropped), changing the drop tolerance slightly or weighting elements differently is
unlikely to result in differences between the factorizations comparable to those obtained
by permuting rows or columns. Consequently, we will focus on comparing preprocess-
ing and pivoting techniques and use the default dropping rule for each software package.
Hence, we selected four preprocessing techniques which were likely to require no further
pivoting during factorization and tested these without pivoting. Additionally, we chose
two preconditioners using diagonal pivoting and selected preprocessing which seemed to
be appropriate to be used with this factorization. Two preconditioners using dual pivoting
were selected similarly. This selection may seem somewhat arbitrary, but in fact, these are
the combinations which have worked quite well based on other tests, see [16], [17] and the
numerical results in [3]. The actual configurations used for testing can be found in Table
2. In addition to the preconditioners tested, the linear systems were also solved using the
direct solver PARDISO, see [25], [27], [28].

3.2 The Software Packages

Although it would be attractive to test all preconditioners under similar conditions, not
all preconditioners are implemented in one software package and different software pack-
ages differ significantly in the implementation details. These differences will be discussed
shortly. As these difference are present and cannot be eliminated easily, the precondi-
tioners will be tested as they are implemented. In a certain sense, this is an appropriate
comparison because this is also the form in which the software packages will be used in
practice. On the downside, it will not be entirely clear if differences in performance will
be due to the preconditioners used or to the implementation.

For ILUPACK, the default solver is GMRES(30) and the only alternative offered for
unsymmetric systems is FGMRES. ILU++ offers GMRES, CGS and BiCGstab. It imple-
ments BiCGstab as the default method because it seems that the sparsest preconditioners
sometimes result in successful solves for BiCGstab but not for the other iterative meth-
ods. The stopping criteria are also different. ILU++ terminates the iteration if for the
preconditioned system both the final residual and the relative final residual (final residual
divided by the initial residual) are less than a parameter ε. The default value is ε = 10−8.
ILUPACK, on the other hand, appears to terminate if the relative residual of the original
system is less than ε, the default value being ε = 10−12.
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A major difference between the software packages also stems from the memory manage-
ment. ILUPACK requires the user to provide an “elbow room” parameter which deter-
mines how much memory will be allocated in a single array to store the preconditioner. If
the parameter is too large and the memory requested cannot be allocated or if the param-
eter is too small and the array overflows during the course of the computation, ILUPACK
breaks down. Although this is usually not a problem when memory is plentiful, finding
a suitable parameter can be difficult if memory is scarce. The memory management of
ILU++ is more involved. Unless the user wishes to change the default configuration, no
memory parameter is required. ILU++ allocates for each matrix composing the precondi-
tioner (the matrices L and U for each level) a multiple of the memory required to store the
coefficient matrix (default is 3.0). If the memory is insufficient for a particular matrix then
ILU++ allocates memory for another, larger array, copies the data already calculated and
frees the original memory. On the other hand, if after completing the computation of a
particular matrix, some memory is unused, then it is freed. As all the arrays involved are
fairly small, the additional memory for making intermediate copies is usually available.
As a consequence, setup times are slightly longer than necessary, but this approach allows
memory to be used quite efficiently allowing for somewhat larger problems to be solved.
Furthermore, this approach is almost a necessity when using dual pivoting because dual
pivoting requires a significant amount of memory for intermediate calculations.

Another difference between the software packages is the programming language used. The
core of ILUPACK is programmed in Fortran and it appears that most of the computation is
done by Fortran routines. However, these routines are wrapped in C code which is how the
user interfaces. ILU++ is programmed entirely in C++. At least some differences in the
the performance for the various preconditioners is likely due to the different programming
languages and the fact that ILU++ makes extensive use of the object-oriented features
that C++ provides.

Finally, we would like to mention that ILU++ uses its own routine to make an I-matrix,
whereas ILUPACK offers a number of interfaces to other software packages to use these
routines. We chose to use the routine implemented in PARDISO. Furthermore, the mul-
tilevel nested dissection used by ILUPACK comes from the software package METIS [15].

4 Numerical Results

4.1 Overview

In this section, we present extensive numerical results for 256 square, unsymmetric matri-
ces from the University of Florida Sparse Matrix Collection [7] based on matrix density
(defined as the number of nonzero elements of the matrix divided by its dimension) and
application area. Perhaps the single most important criterion for judging the usefulness of
a method is the number of successful solves. Implicitly, a successful solve implies that the
solution was not unreasonably inaccurate and that the memory needed for computation
was sufficient. Unfortunately, the latter is platform dependent. However, as a large num-
ber of matrices were tested of varying dimensions, any method requiring significantly more
memory than another will likely result in more failures on any platform. Consequently, the
absolute number of successful solves will vary on different platforms, but the differences
between the various methods are likely to remain. Hence, using the number of successful
solves as the first criterion for judging a method is reasonable. Assuming a successful
solve, the second most important criterion is the total computation time required to solve
a problem. Hence, we present results for the best total computation time that can be
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Number Min. Max. Min. Max.
Application Area

Matrices Dim. Dim. nnz nnz

Chemical Process Simulation 25 2 398 70 304 56 934 1 916 152
Circuit Simulation 40 2 904 682 862 21 199 3 871 773
Driven Cavity Problems 24 4 241 17 281 131 556 553 956
Economic Problems (scaled) 24 2 880 64 089 19 635 837 936
Economic Problems (unscaled) 24 2 880 64 089 19 635 837 936
Electromagnetics 11 1 700 33 861 10 114 1 350 309
Fluid Dynamics 40 1 409 85 623 19 996 3 833 077
Material Problems 9 7 500 157 464 28 462 3 866 688
Model Reduction 5 2 025 20 082 67 391 281 150
Semiconductor Devices 27 2 903 155 924 19 093 5 416 358
Thermal Problems 10 1 794 147 900 7 764 3 489 300
Misc. Problems with Geometry 17 2 339 259 156 25 220 8 516 500

Table 3: Application areas and information on matrices tested

obtained by varying the threshold parameter t. Here, we also present results on the fill-in
required to obtain these optimal times. Although most of the test problems considered
here are so small that neither fill-in nor memory is a real concern on a modern platform,
in practice, memory will often be scarce. Hence, including results on fill-in is important.

Clearly, the minimal computation times can only be achieved in practice, if this value of t

is known, but this is almost never the case. Next, we examine the sensitivity of the optimal
time with regard to the threshold parameter. Finally, we will examine the variance of the
optimal value of t for a particular preconditioner within each application area. If the
variance is not too high, then the mean optimal t may give an indication for a good choice
of t for similar problems.

We used the following procedure to test the various methods for a particular matrix. First,
we created an artificial right hand side such that the exact solution was a vector of all
ones, unless the collection provided a right hand side, in which case, it was used. For all
preconditioners tested, we varied t using stepsize 0.2 in an interval appropriate for the
matrix being tested. Recall that t = − log10 τ , τ being the drop parameter. No additional
elements were dropped based on the second parameter p. Recall that in the general case,
at most p elements were kept per column of L or row of U . The exact interval for t was
determined on a case by case basis, but t always satisfied t ∈ [−2, 12]. Next, we used
the various software packages in their default settings for solving the linear system and
allowed a maximum of 500 iterations. If the solver reported a successful solve and if the
absolute error of the solution in the maximum norm did not exceed 0.1, then we recorded
a successful solve and denoted a failure otherwise. Even though an error of 0.1 is often
still unacceptably large, we chose not to use a more restrictive criterion as it seems likely
that further more iterations or iterative refinement would further reduce the error. This
was, however, not tested. On the other hand, it would seem very inappropriate to report
a successful solve if the solution has an even larger error. It seems that solutions with
larger error are somewhat more prevalent in ILUPACK (and also PARDISO) rather than
ILU++. This is likely due to the fact that a different stopping criterion is used for the
iterative method.

The matrices tested all stem from the University of Florida Sparse Matrix Collection, [7].
Essentially, the goal was to test all real, unsymmetric matrices found in the collection by
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Preprocessing N+PQ I I+dd sf+I PQ I+M N I
Pivoting n n n n d d D D

PARD.

Low Density 57 74 76 71 80 80 61 81 62
Medium Density 55 64 75 65 72 72 52 69 54
High Density 67 61 80 79 67 67 71 81 71

Chemical Proc. Sim. 15 17 23 19 24 17 17 21 11
Circuit Simulation 38 34 37 38 40 40 36 37 38
Driven Cavity Probl. 21 24 23 24 24 24 24 24 24
Econ. Probl. (sc.) 14 23 22 17 24 24 14 24 6
Econ. Probl. (unsc.) 1 18 23 13 18 21 1 23 12
Electromagnetics 8 6 8 6 8 7 8 7 8
Fluid Dynamics 33 32 32 34 34 35 35 33 33
Material Probl. 8 5 8 8 8 9 7 7 8
Model Reduction 5 4 5 5 5 5 5 5 5
Semicond. Devices 11 11 24 25 11 11 11 24 19
Thermal Probl. 10 10 10 10 10 10 10 10 10
Misc. Probl. w/ Geom. 15 15 16 16 13 16 16 16 13

Total 179 199 231 215 219 219 184 231 187

Table 4: Number of successful solves out of 256 matrices for each method as listed in Table
2 based on matrix density and application area as listed in Table 3.

application. However, we excluded the smaller matrices, because the results for these are
not particularly relevant nowadays. Furthermore, a large number of these smaller matrices
would have required solve times which were so short that these could not have been mea-
sured accurately, making meaningful results impossible. Hence, the smaller matrices were
excluded on a case by case basis, so that the total calculation time for each remaining ma-
trix was at least 0.1 seconds. In terms of dimension, matrices of approximately dimension
2 000 and less were rejected. However, some denser matrices of smaller dimension were
included because the total solve time for these was often longer. Additionally, a few of the
largest matrices of the collection were not considered as it was clear that no method could
be successful for these matrices due to memory restrictions on the platform used. Finally,
as the intention was to test the matrices based on applications, all matrices were rejected
coming from applications for which the collection contained only very few matrices. More
detailed information of the 256 matrices tested can be found in Table 3.

For the classification based on matrix density, we divided the set of all matrices into three
subsets such that these were approximately the same size. Hence, a matrix was classified
of having low density if its density was less than 7, as having medium density if its density
was between 7 and 27 and as having high density otherwise. Thus, 84 matrices constitute
the low density set, 82 the medium density set and 90 the high density set.

4.2 Successful Solves

Before going into further details, we will first take a look at the total number of successful
solves for each method. This is perhaps the most important indicator of a method’s
reliability. These results can be found in Table 4.
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Table 5: Performance profiles for minimal total computation time and corresponding fill-in
based on matrix density.
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Table 6: Performance profiles for minimal total computation time and corresponding fill-
in, part 1.
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Table 7: Performance profiles for minimal total computation time and corresponding fill-
in, part 2.
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Table 8: Performance profiles for minimal total computation time and corresponding fill-
in, part 3.
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Table 9: Performance profiles for minimal total computation time and corresponding fill-
in, part 4.
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4.3 Performance Profiles

Performance profiles have become somewhat of a standard for comparing the results of
different numerical methods for a particular number of test problems. They are introduced
and studied extensively in [8] and have been used for comparing direct methods in [12].
We summarize briefly the approach along the same lines as in [16].

For a set T of problems (in our case linear systems with the matrices investigated) and
a set of solvers S (in our case the preconditioners combined with the iterative solver as
well as the direct method), we obtain a statistic sij > 0 for each i ∈ S and j ∈ T . In our
case, the statistic will be the minimal total computation time of a particular method and
the corresponding fill-in. Generally, the statistic should be chosen in such a manner that
small values indicate good properties. For each j ∈ T , we determine

s∗j = min{sij | i ∈ S}

which indicates the best possible performance for the problem j amongst all the solvers.
For a particular i ∈ S, the list of quotients

sij

s∗
j
, j ∈ T indicates how much worse solver i

is than the best possible solver. Using these data, we can define the performance profile
pi(α), α ≥ 1 for every i ∈ S so that pi(α) indicates the fraction of problems for which solver
i was within a factor of α of the best solver (according to the statistic chosen). For a more
formal treatment, consult the references mentioned above. Also note that limα→∞ pi(α)
is the fraction of problems for which solver i was successful. The performance profiles for
the minimal total computation time (i.e. using the value of t for which total computation
time was minimal) and the corresponding fill-in based on matrix density can be found
in Table 5. The same results based on application area are in Tables 6, 7, 8 and 9.
Although we will comment these results in greater detail later, it is already apparent that
the different methods perform quite differently for different matrix densities and different
problem types.

4.4 Sensitivity with Respect to the Threshold Parameter

On order to obtain good computation times for an iterative method in practice, not only
do we need to choose the preconditioner wisely, but also the threshold parameter t. As the
optimal value of t is generally not known, preconditioners which achieve good computation
times for a larger range of t have a significant advantage over those that do not. As before,
we define s∗j to be the the best possible performance for the problem j ∈ T amongst all
the solvers. For each solver i ∈ S and for each problem j ∈ T , we define Tij(α) to be
the set of all threshold parameters t such that the corresponding total computation times
for t are within a factor of α of s∗j and we let wij(α) be the width of the largest interval
contained in Tij(α). If Tij(α) is empty, we set wij(α) = −1. For PARDISO (or any
method not depending on a threshold), we set wij(α) = ∞ if the method was successful
and −1 otherwise. Hence, wij(α) will be large if total computation times needed for a
preconditioner are within a factor of α to the best possible result s∗j for a large interval of
t. In this case, choosing a good value of t should be easier. Hence, the total computation
times need not only be fairly constant in order for wij(α) to be large, but they need to be
sufficiently close to the optimal computation time as well. Let

Wi(α) = (wij(α))j∈T

be the list of all interval lengths for a particular solver i ∈ S sorted decreasingly and
define Wi(α, n) as the nth element of this list. The plots of Wi(α, n) for different values
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of α, which we will call the sensitivity profile, illustrates the sensitivity of a particular
method with respect to the parameter t. The results for α = 4 can be found in Tables
10 and 11. We did not plot negative values of Wi(α, n) so that the graph of Wi(α, n)
terminates as soon as n is larger than the number of matrices for which successful solves
were possible in computation time required. Note that choosing a smaller value α would
not necessarily lead to more meaningful plots. In this case, a larger number of solvers
would not have computed the solution in the required (more restrictive) total time for a
larger number of problems, meaning that the plots of Wi(α, n) not have provided much
information. Fortunately, solvers performing well based on α = 4 usually performed well
for smaller values as well. Hence, choosing α = 4 for presenting results is a reasonable
compromise between obtaining information on the solver and not being too permissive for
the total solve time.

4.5 Variance in the Optimal Threshold Parameter

Often it is difficult to choose the dropping parameter t wisely. A common strategy is to
determine a good value for t for a particular problem and to use this as the standard.
In other words, the same value for t is used for similar problems and slightly smaller or
slightly larger values are used for problems considered to be easier or harder, respectively.
Such an approach makes sense if the problems being solved are sufficiently similar. The
test problems in each of the application areas considered here are probably not similar
enough for such an approach to work. Nevertheless, we record the mean values for the
treshold parameter t and its standard deviation in each problem set in Table 12. Smaller
standard deviations for one method than another should be interpreted to indicate that
the strategy described for selecting t is more likely to work one method than the other,
maybe not on the entire set constituting one problem area, but perhaps on a subset of
more similar problems. However, we do not investigate this approach for choosing t in
greater detail.

4.6 Interpretation of the Numerical Results

Even quick glance at the numerical results presented so far is sufficient to see that the per-
formance of a particular method is highly dependent upon both the matrix density and the
application area. Not surprisingly, the biggest difference lies between the preconditioned
iterative methods and the direct solver PARDISO. Whenever no high quality incomplete
factorization exists which is significantly sparser than the exact PARDISO factorization,
then PARDISO is the best method. In this situation, the additional work that needs
to be done to implement the iterative method and dropping during factorization seems
to exceed the additional work that needs to be done to compute the exact factorization.
This situation occurs in particular for most applications arising from partial differential
equations where PARDISO is able to compute relatively sparse exact factorizations. For
the other applications, such as the chemical process simulation problems, the economic
problems, the semiconductor device problems and to a slightly lesser degree the circuit
simulation problems, the iterative methods perform better.

This result is remarkable in the following sense: Until recently, iterative methods were
used primarily for problems arising from partial differential equations because good pre-
conditioners could be constructed for these problems and direct methods often required
much fill-in. Consequently, iterative methods were often quite competitive when compared
with direct solvers, both in terms of fill-in and total compution times. For other problems,
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Table 10: Sensitivity profiles for α = 4 for minimal total computation time with respect
to the threshold parameter, part 1.
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Table 11: Sensitivity profiles for α = 4 for minimal total computation time with respect
to the threshold parameter, part 2.
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Mean of the optimal values of the threshold parameter t

Preprocessing N+PQ I I+dd sf+I PQ I+M N I
Pivoting n n n n d d D D

Low Density 4.5 2.3 2.8 2.9 3.5 2.5 4.2 3.1
Medium Density 3.4 2.2 2.3 2.5 2.9 1.6 3.5 2.2
High Density 2.6 1.7 2.6 2.4 2.4 1.8 2.3 2.2

Chemical Proc. Sim. 6.3 2.1 4.2 2.6 4.2 3.8 6.3 3.5
Circuit Simulation 5.5 2.9 4.1 4.1 5.0 4.7 5.5 5.3
Driven Cavity Probl. 1.1 1.4 0.9 1.4 1.6 1.0 0.7 0.4
Econ. Probl. (sc.) 3.7 2.2 1.6 1.8 1.8 0.0 3.7 1.3
Econ. Probl. (unsc.) 4.0 1.8 1.7 1.8 4.5 0.4 4.0 1.4
Electromagnetics 1.8 1.4 1.4 1.0 1.9 0.8 1.8 1.7
Fluid Dynamics 2.4 2.1 1.7 2.2 2.3 2.1 2.2 1.6
Material Probl. 4.5 2.2 2.6 2.8 2.8 1.8 4.4 2.7
Model Reduction 2.4 2.5 2.2 2.3 2.4 1.6 2.4 2.2
Semicond. Devices 4.1 1.5 3.9 4.0 1.2 0.6 3.6 3.8
Thermal Probl. 2.3 2.4 2.1 2.1 1.8 2.3 2.1 2.5
Misc. Probl. w/ Geom. 2.2 1.6 1.8 2.0 2.3 1.1 1.9 1.6

Standard deviation of the optimal values of the threshold parameter t

Preprocessing N+PQ I I+dd sf+I PQ I+M N I
Pivoting n n n n d d D D

Low Density 2.6 1.9 1.9 2.2 2.7 3.2 2.5 2.7
Medium Density 2.6 1.7 1.7 2.1 1.9 2.6 3.0 2.0
High Density 2.5 1.0 2.4 2.0 1.4 1.9 2.6 2.3

Chemical Proc. Sim. 3.0 0.6 3.0 1.6 1.6 3.2 3.2 2.5
Circuit Simulation 2.6 2.6 2.3 2.5 2.8 3.4 2.4 2.9
Driven Cavity Probl. 0.5 0.5 0.5 0.5 0.3 1.0 0.2 0.1
Econ. Probl. (sc.) 0.2 0.8 0.3 0.7 0.3 0.2 0.2 0.3
Econ. Probl. (unsc.) 0.0 0.5 0.6 0.7 1.2 1.0 0.0 0.4
Electromagnetics 0.3 0.5 0.3 0.2 0.9 1.3 0.8 0.7
Fluid Dynamics 2.6 2.4 1.7 2.4 2.2 2.6 3.0 2.0
Material Probl. 1.0 0.3 0.6 0.5 0.5 0.8 1.0 0.6
Model Reduction 1.3 1.0 1.0 1.1 1.5 1.7 1.7 1.5
Semicond. Devices 2.8 0.8 2.0 2.4 0.7 0.8 3.1 2.3
Thermal Probl. 1.5 1.5 1.1 1.8 1.3 2.2 1.5 1.4
Misc. Probl. w/ Geom. 1.0 0.4 0.8 1.0 0.8 1.7 1.0 0.8

Table 12: Mean and standard deviation of the optimal choice of threshold parameter t.
Slightly lighter numbers indicate that the method solved between 50% and 80% of the
number of problems which the best method was able to solve. Very light numbers indicate
that less than 50% of these problems were solved successfully, see Table 4.
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reasonable reasonable memory
t known t unknown restrictive

Low Density PQ+d no recomm. I+D
Medium Density I+M+d no recomm. I+dd+n, I+D
High Density PARD. PARD. I+D

Chemical Proc. Sim. PQ+d PQ+d I+dd+n
Circuit Simulation PQ+d PARD. I+D, I+dd+n
Driven Cavity Probl. PARD. PARD. N+D
Econ. Probl. (sc.) PQ+d PQ+d PQ+d
Econ. Probl. (unsc.) I+M+d I+D, I+M+d I+D
Electromagnetics PARD. PARD. I+dd+n
Fluid Dynamics PARD. PARD. I+D
Material Probl. I+M+d, PARD. PARD. I+M+d
Model Reduction PQ+d, I+M+d PARD. I+dd+n
Semicond. Devices sf+I+n, I+D I+dd+n, I+D sf+I+n, I+D
Thermal Probl. I+n I+n sf+I+n, I+n
Misc. Probl. w/ Geom. N+D, I+M+d I+M+d I+D, N+D

Table 13: Recommendation for choosing a solver for a particular problem.

iterative methods were not considered suitable as it was difficult if not impossible to find
suitable preconditioners. However, advances in both direct methods and preconditioning
seems to have reversed the situation somewhat. The direct solver PARDISO is able to
produce exact factorizations which are quite sparse for the problems arising from partial
differential equations, so that PARDISO is the method of choice for these problems. On
the other hand, many of the preconditioners employing recent developments tested here
seem to perform quite well for the other application areas. They seem to produce accurate,
sparse factorizations which result in quick convergence of the iterative methods, whereas
PARDISO often requires significantly more fill-in leading to higher total solve times.

Commenting in greater detail on the numerical results for each and every method and
application area is probably not necessary, as the various graphs speak for themselves,
but a few comments do seem to be appropriate. The best preconditioners overall are
the two ILUPACK preconditioners and the preconditioners I+dd+n and I+D as imple-
mented in ILU++. In terms of reliability, there are no significant differences between
all of them, except for the semiconductor problems, where the ILUPACK preconditioners
fail significantly more often than the ILU++ preconditioners. These failures result from
large errors in the solution. In terms of total solve times, the ILUPACK precondition-
ers are slightly better than the ILU++ preconditioners, a notable exception being again
the semiconductor problems. A part of this advantage is likely due to the differences in
implementations, in particularly the choice of programming language and memory man-
agement. The fill-in needed to obtain optimal computation time is best for the ILU++
preconditioners. Hence, the overall memory requirements are least for I+dd+n, because
this preconditioner requires virtually no additional memory beyond what is needed to store
the preconditioner itself. Although I+D requires additional memory during the course of
the calculations, it seems that this need has not resulted in more failures. This is probably
due to the lower fill-in and the efficient memory management of ILU++. Furthermore, the
additional memory is needed only for each level and can be freed after that level has been
calculated, so that the memory requirements for I+D may not be that formidable after all.
the Tables 10 and 11 indicate that I+M+d is generally least sensitive to variations of the
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optimal choice of t. However, the results in Table 12 indicate that the variance in the value
for the optimal t is least for I+dd+n. Hence, if PARDISO is not fastest, then generally
one of the ILUPACK preconditioners will be, except for semiconductor problems. On the
other hand, the ILU++ preconditioners, particularly I+dd+n, are likely the better choice,
whenever memory is scarce.

These observations allow for some concrete recommendations for solving large, sparse
linear systems with one of the methods discussed in this article. It is clear that there
is no universal best method, not even within a particular application area. Having the
shortest possible solution times will often determine which method is optimal. However,
in certain situations, memory restrictions may require a solver with very modest memory
requirements, making sparsity the criterion for optimality. Similarly, if no reasonable
estimate for a good value of t is available for a particular preconditioner, which would be
expected to perform well, then it may be wise to use a direct solver, even if the computation
time is likely to be longer than the computation time of an optimally preconditioned
iterative solver. Taking these considerations into account, Table 13 makes a few specific
recommendations. These are rules of thumb at best, or perhaps a good starting point for
solving a linear system, if no better starting point is known, but they are certainly not
golden rules. Certainly, they cannot replace expertise, but they may be a small aid to the
novice.

5 Conclusion

The results presented in this article indicate that iterative methods preconditioned with
incomplete multilevel LU factorizations have reached a degree of maturity to be able to
complete with state-of-the-art direct methods for almost all unsymmetric problems. The
underlying assumption is, however, that the “right” factorization and optimal parameter
is chosen. In this case, the optimal preconditioner is more reliable and often faster than
PARDISO (without iterative refinement). Although this was not tested, using iterative
refinement with PARDISO is likely to improve its reliability, but not its speed. Conse-
quently, for a significant number of problems, iterative methods are faster than PARDISO
and usually require significantly less memory.

Achieving these optimal results in practice, however, may be quite difficult as the optimal
choices for both the preconditioner and threshold parameter are not known. Furthermore,
going to the effort of finding the appropriate choices may only be worthwhile if a significant
number of similar problems needs to be solved. Nevertheless, whenever solvers using as
little memory as possible are needed, often no alternative to iterative solvers exist and
results of this article provide a reasonably good starting point for selecting an appropriate
preconditioner.

Nevertheless, the recommendations presented here can only be a starting point. Ideally,
the preconditioners would not depend on a dropping parameter t or at least it would be
adjusted during factorization, so that a poor choice will not lead to failure or extreme
deterioration of solve times. The ILUPACK preconditioners go somewhat in this direction
as they attempt to keep the error of the inverse factors small. Indeed, these preconditioners
seem to be somewhat less sensitive to variations in t than the ILU++ preconditioners, but
they still require the user to provide parameters, which when chosen poorly will result
in failure. As the preconditioners themselves seem to perform quite well, subsequent
developments in this area will hopefully focus on strategies for selecting the threshold
parameter t.
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[26] Olaf Schenk and Klaus Gärtner. On fast factorization pivoting methods for sparse
symmetric indefinite systems. Elec. Trans. Numer. Anal., 23:158–179, 2006.
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