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ABSTRACT
A fundamental principle in social network research is that individ-
uals can benefit from serving as intermediaries between others who
are not directly connected. Through such intermediation, they po-
tentially can broker the flow of information and synthesize ideas
arising in different parts of the network. These principles form the
underpinning for the theory of structural holes, which studies the
ways in which individuals, particularly in organizational settings,
fill the “holes” between people or groups that are not otherwise in-
teracting.

We apply a game-theoretic approach to this notion, studying the
structures that evolve when individuals in a social network have in-
centives to form links that bridge otherwise disconnected parties.
We model payoffs as a trade-off between the benefits of connect-
ing non-neighboring nodes, and the cost, in effort, to maintain links
— including settings where the costs are non-uniform to reflect the
increased difficulty in spanning different parts of a hierarchical or-
ganization.

We find, both through theoretical results and computational ex-
periments, that the equilibrium networks in this model have rich
combinatorial structure, and capture qualitative observations aris-
ing in the study of structural holes. In particular, even in completely
symmetric settings, individuals will differentiate themselves in equi-
librium, occupying different social strata and receiving correspond-
ingly different payoffs.
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1. INTRODUCTION
An important line of work in sociology argues that individuals

benefit when they serve as intermediaries or “bridges” between oth-
ers who are not directly connected [2, 8]. In particular, Burt’s the-
ory of structural holes views organizations not just in terms of the
tight connections within their social structures, but also in terms of
the “holes” where connections have failed to form. Such holes pro-
vide opportunities for socially entrepreneurial individuals to play
bridging roles in the organization, linking to disparate people or
groups who are otherwise not interacting with each other. The argu-
ment is that individuals whose connections bridge such holes tend
to do particularly well professionally, and this argument has been
supported by empirical studies of managers in large corporations,
correlating an individual’s success with this type of bridging activ-
ity [2].

At its heart, then, the theory of structural holes is about the ad-
vantages that accrue to people who occupy such bridging positions,
like the node A in the social network of Figure 1. A number of basic
reasons have been advanced for the success of nodes like A in this
figure. By serving as an intermediary, A gains power by broker-
ing the flow of information between different parts of the network.
Moreover, A’s network position is potentially an amplifier for inno-
vation, since A is well-positioned to synthesize ideas arising from
different groups [3].

Part of the premise of structural holes is that people appreciate
when such advantages are possible, and implicitly seek out oppor-
tunities to realize them. As a result, there is a natural strategic
aspect to the theory, in which the network is shaped by link forma-
tion decisions made by individuals who are trying to create bridging
structures that benefit themselves [5, 7]. However, very little mod-
eling work has been devoted to these strategic questions, despite
their importance to the whole framework: while much work has
focused on the opportunities that arise from bridging holes, there
is relatively little understanding of the kinds of networks that arise
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Figure 1: According to the theory of structural holes, node A’s
bridging role in the social network of an organization gives it
structural advantages relative to node D that sits in the middle
of a tightly-knit group.

when the inhabitants of a social network are all trying to act on
these opportunities.

We address this question here, building a general model of the
payoffs that arise from bridging structural holes in a social net-
work, and then studying the game-theoretic consequences of this
model for social network structure. We find that the networks re-
sulting from strategic behavior have a rich combinatorial structure,
and correspond in interesting ways to some of the more qualitative
observations that have arisen in work on structural holes.

The Model. We assume a setting in which a set V of n distinct
agents create links to one another to form a social network. (Fol-
lowing one of the primary motivations for the theory of structural
holes, we can imagine these agents to be a set of managers within a
large company, or people working within a large organization.) We
model this as a game in the following way. Each agent’s strategy is
a choice of other nodes to whom it will build links. Links are undi-
rected, and hence if u builds a link to v, this link becomes usable
in both directions.

The payoffs to an agent arise as a difference of costs and benefits.
First, there is a specified cost matrix {cuv : u, v ∈ V }: if an
agent u creates a link to an agent v, then u incurs a given cost of
cuv , reflecting the effort required to maintain the link. The benefits
to an agent u are based both on the nodes to whom it is directly
linked, as well as on the ways in which its links allow it to bridge
structural holes between others. We will define the benefits from
direct linkage very simply by saying that a node derives a fixed
benefit of α0 from each of its neighbors in the network.

Bridging benefits are more subtle to define; they arise from ly-
ing on paths between pairs of nodes v and w who are not directly
connected. Qualitatively, it is clear that these benefits should de-
crease with the length of the v-w path and also with the number
of other nodes who are also playing a bridging role with respect to
v and w. Here we formalize bridging benefits as follows. There
is empirical evidence that this type of benefit is realized primar-
ily when a node u forms the middle of a two-step path between
two non-neighboring nodes v and w; there appears to be much less

measurable benefit to u if it is an internal node on a path between
two nodes at graph distance greater than two [2, 4], as such interac-
tions are in general too “long-range” to confer significant benefit on
their intermediaries. Thus, for example, in Figure 1, the argument
is that node A benefits from sitting at the middle of many length-
two paths; but no node benefits significantly from lying on a B-F
path, since all such paths have length at least three. Moreover, the
bridging benefit to u is greatest when it forms the unique length-
2 path between v and w, and it decreases in the number of other
length-2 paths between v and w.

Accordingly, we assume there is a decreasing function β such
that a node u obtains a benefit of β(r) whenever it lies on a length-
2 path between a pair of non-neighboring nodes that, in total, have
r length-2 paths between them. (For example, in Figure 1, node A
receives a benefit of 7β(1) from the seven pairs of nodes for which
it lies on the unique length-2 path, and it receives an additional ben-
efit of β(4) from lying on one of the four length-2 paths between
nodes E and H .) We will refer to β(r) as the intermediary benefit
or middleman benefit received by each of the nodes that serves as
one of the r intermediaries.

In summary, then, the game is as follows.

• Each node u constructs links to a set of nodes L(u).

• Collectively, all constructed links form an undirected graph
G. We let N(u) denote the set of neighbors of u in G; note
that N(u) may be a proper superset of L(u), since it can also
include nodes that have constructed links to u. (Recall that
a constructed link can be used in both directions.) For nodes
v and w, we let rvw = 0 if they are directly connected, and
otherwise we define rvw to be the number of length-2 paths
between them.

• The payoff to u is

α0|N(u)|+
X

v,w∈N(u)

β(rvw)−
X

v∈L(u)

cuv.

Some of our results will apply to the model in its full generality,
while for others we will make assumptions about the forms of c
and β. Primarily, we will focus on cost matrices arising either from

• the uniform metric, in which all costs are equal to 1, or

• hierarchical metrics — again following the organizational
motivation — in which costs arise from shortest paths in a
rooted tree that represents an organizational structure.

For intermediary benefits β, there is a very natural special case
that can be defined as follows. If nodes v and w connect directly,
they each obtain a benefit of α0, for a total shared benefit of 2α0.
One natural assumption is that if v and w are not connected, but
have rvw length-2 paths between them, then this total benefit of
2α0 is shared equally between the rvw middle nodes of these paths:
each gets β(rvw) = 2α0/rvw. (If v and w are at graph distance
greater than three, we assume that the benefit of 2α0 is lost com-
pletely.) We will call this special form for β the harmonic special
case. Some of our results will concern this special case, and it
will also guide certain milder restrictions that one can put on the
form of β: for certain results, we will assume that β is an arbi-
trary decreasing function subject only to conditions that rβ(r) is
either upper-bounded or lower-bounded by a constant as r grows.
(Note that rβ(r) is the total benefit to all r intermediaries between
a pair of nodes, and it is equal to a constant independent of r for
the harmonic function.)



Our Results. We focus on understanding properties of the net-
works that arise as possible equilibria in this model. To begin with,
agents have large combinatorial strategy sets, since they can choose
to link to any subset of other nodes. Despite this, we first show that
there is an efficient algorithm for an agent to determine its best
response in a given graph, via a reduction to network flow compu-
tations. In addition to the establishing a certain tractability of the
model, it also makes it feasible to run computational experiments
in some of the model’s more complicated variants, as we discuss
below.

For the uniform metric, we prove the existence of equilibrium
networks. It is possible for best-response dynamics to cycle indef-
initely in this game, but we show that best-response dynamics will
in fact terminate starting from an empty graph, and we character-
ize the equilibrium networks that are reached this way — complete
multipartite graphs in which each node picks a particular “stratum”
and links to all nodes in higher strata. We also find, via computa-
tional experiments, that there is a wide range of possible equilibria,
some with fairly complex structures; we prove that all equilibria
are dense graphs, in the sense that they have a quadratic number
of edges (for constants depending on the parameters of the payoff
functions).

For hierarchical metrics, when nodes reside in the shortest-path
metric on the leaves of a complete b-ary tree (e.g. an organiza-
tional hierarchy), we find equilibrium networks through computa-
tional experiments that are even more complex, with a small num-
ber of “high-status” nodes connected to almost all others, while
most nodes connect to a small number of neighbors that are nearby
in the hierarchy. We prove that any equilibrium network must in
fact exhibit the properties we observe in the computational exper-
iments: there exist “high-status” nodes of linear degree, while the
average degree is asymptotically much smaller.

The structure of these equilibria, in both kinds of metrics, illus-
trate at a concrete level a number of interesting qualitative obser-
vations that have been made in the literature on structural holes.
In particular, although they are both based on symmetric structures
— metrics which look the same from every node’s perspective —
nodes nevertheless differentiate in equilibrium, with the symmetry-
breaking putting different nodes at different social levels in which
they obtain different payoffs. In the uniform metric, nodes strat-
ify into layers, while in the hierarchical metric, nodes appear to
approximately settle on a “level” of the hierarchy that they will
dominate, with different nodes settling on different levels. And this
provides, in turn, a more qualitative explanation for how non-trivial
bridging behavior can still arise even when all nodes have incentive
to try engaging in it: since the advantages of bridging decreases
rapidly with the number of people doing it, there are “first-mover”
advantages that translate into broken symmetry in equilibrium.

In this way, our focus here is on structural and dynamic ques-
tions surrounding the equilibrium networks in this model. We do
not address questions related to the price of anarchy or the price of
stability here; while it is clearly interesting to understand how equi-
librium networks perform relative to a social optimum, defining the
social optimum carefully would bring in an essentially orthogonal
set of formalisms that seek to capture the quality of an organiza-
tion’s global performance as a function of its network structure (see
e.g. [13]). We would argue that simply adding the payoffs of all
individuals — as usually serves for the social optimum in price-
of-anarchy analyses — would not necessarily be a good model of
global performance in our case; there is no evidence that the ideal
outcome from the overall organization’s perspective is one in which
the total of individuals’ bridging payoffs are as high as possible,
and indeed it is an interesting open question to understand how

this relates to organizational performance. As a result, we leave
the modeling of global performance, and the consequent price-of-
anarchy analysis that would be enabled by it, as a direction for
future work.

Related Work. Our work is related to a growing body of research
on strategic network formation [9]. There is a basic methodologi-
cal choice required when modeling network construction as a game,
arising from the fact that Nash equilibrium studies the possibility
of strategy revision made by a single agent, while edges in an undi-
rected graph have not one but two endpoints. Two approaches to
this difficulty have been pursued in the literature: modifying the
equilibrium concept to pairwise stability or one of its variants (e.g.
[6, 10]), in which agents must jointly agree to edge formation, or
assuming strategies in which agents unilaterally construct edges
that can then be used in either direction (e.g. [1]), as we do here.

As noted above, there has been very little work on strategic net-
work formation that explicitly incorporates the notion of structural
holes. The two other papers we are aware of to pursue this are
Goyal and Vega-Redondo [7] and recent independent work of Buskens
and van de Rijt [5]. Each is motivated by similar concerns to
ours, though they frame the problem differently. Goyal and Vega-
Redondo consider a model in which a node u potentially benefits
from serving as an intermediary between nodes v and w even when
it resides on an arbitrarily long v-w path, and with this formulation
they obtain the star network as essentially the unique most robust
equilibrium over a broad range of model parameters. This makes
it difficult to study more complex kinds of networks and bridging
structures. Buskens and van de Rijt focus, as we do, on benefits
that arise from completing two-step paths, although they consider
a formulation based on Burt’s notion of network constraint, which
does not capture bridging benefits directly but rather the “cost” to
nodes of wasting effort on redundant length-2 paths. They also use
a more complex notion of equilibrium that they call unilateral sta-
bility. Their paper restricts attention only to uniform metrics, and
interestingly, in this context, they also find complete multipartite
graphs as some of the key examples of stable networks.

2. PRELIMINARIES
We begin by considering the behavior of best-response dynam-

ics in our game. As noted earlier, the strategy set of each player
is exponentially large: each node can choose to construct edges to
any subset of the other nodes. Hence, it is not a priori clear how
to run best-response dynamics efficiently, but we show here how
to compute it in polynomial-time via a reduction to a network flow
problem. This efficient algorithm forms the basis for our compu-
tational experiments to determine Nash equilibria that accompany
the theoretical results in the next two sections.

The convergence behavior of best-response dynamics in this game
is a delicate issue. We show in this section that best-response dy-
namics can cycle, so it can not be used in a straightforward way
to prove the existence of an equilibrium. In the next section, how-
ever, we show that with appropriate scheduling and initial condi-
tions, best-response dynamics converges to an equilibrium in the
uniform metric, and we characterize the structure of this equilib-
rium. More generally, we find through computational experiments
that best-response dynamics often converges for choices of initial
conditions and scheduling rules, and this forms the basis for our
computed equilibria.

2.1 Efficient Best-Response Computation
To implement best-response dynamics in our game, consider a

player v, and consider the graph G = (V, E) of edges bought by



other players. As before, N(v) denotes the set of neighbors of v in
G, and we let A be the subset of nodes that v is not connected to,
that is A = V \ (N(v) ∪ {v}). Clearly player v will not want to
buy edges to nodes outside of this set A. We show that v’s best re-
sponse can be found in polynomial time by reducing it the problem
of finding a maximum-weight ideal in a partially ordered set.

DEFINITION 2.1. Given a partially ordered setO, an ideal I ⊂
O is a subset of elements such that for any nodes v � w in the
partially ordered set, w ∈ I implies we must also have v ∈ I . The
maximum-weight ideal problem is the following: given weights wi

on the elements of a partially ordered set O, select an ideal I of
maximum total weight

P
i∈I wi.

The maximum-weight ideal problem can be solved in polyno-
mial time via a reduction to a minimum-cut problem [11].

THEOREM 2.2. The best response of a player v can be com-
puted in polynomial time.

Proof. We reduce the problem to the maximum-weight ideal prob-
lem. For all pairs of nodes (u, v), let ru,v denote the number of
nodes in G that lie on length-2 paths from u to v. (This is the
number of pairs that receive benefits as intermediaries.)

Consider an edge (v, w) for some node w ∈ A. There is a di-
rect benefit of α0 associated with this edge, and a cost of cvw. In
addition to this cost and direct benefit, buying edges also results
in potential benefit as an intermediary. Some of this intermediary
benefit can also be directly associated with buying a single edge
(v, w), assuming the edge (u, v) has been bought by u.

The cost and benefit discussed thus far is directly associated with
buying a single edge, to a node w ∈ A. We will call this the weight
of the node w ∈ A:

weightw = α0 − cvw +
X

u 6∈A,(u,v)∈E,(u,w) 6∈A

β(ru,w + 1).

We also have intermediary benefits associated with pairs of nodes
in A not connected by an edge. To represent these we add addi-
tional elements to the partially ordered set.

O(v) = A ∪ {(u, w) 6∈ E, u, w ∈ A}.

The weight of such a pair of nodes is weightu,w = β(ru,w +1).
In the partially ordered set O(v) we will have the relation that for
every pair of nodes (u, w) ∈ O(v), both nodes u and w must be
included in an ideal that contains (u, w); that is, u, w � (u, w) for
every pair (u, w) ∈ O(v).

Note that the weight of the elements of O derived from node-
pairs is always positive, while elements of O derived from single
nodes may have negative weight. As a result, a maximum-weight
ideal will contain a subset A′ ⊂ A and all the pairs in A′ not
connected by an edge, and the weight of this ideal is exactly v’s
benefit of buying edges to every node in A′. Finding an ideal of
maximum weight therefore determines v’s best response.

2.2 Cycling of Best-Response Dynamics
We now show, via an example that is sketched in Figure 2, that

best-response dynamics in our game can cycle. The example in this
figure uses the uniform metric, with α0 = 0.9 and the harmonic
form of the intermediary benefits β. Figure 2a shows the initial
configuration. If player 1 moves, it must compute which of nodes
2, 4 and 5 to connect to (3 already connects to 1). Player 1’s current
strategy (connecting to 4 and 5) yields a benefit of 1.3. Player 1’s
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Figure 2: An example of best response dynamics cycling. See
Section 2.2 for more details.

unique best response is to buy a link to only 4, which yields a payoff
of 1.4. This results in Figure 2b.

When player 2 moves, it must decide which of nodes 1 and
5 to connect to (3 and 4 both already connect to 2). Connect-
ing to neither yields a benefit of 2.4. Connecting to either one
but not both yields 2.3. Connecting to both yields 2.8, and thus
this is player 2’s best response, yielding the graph shown in Fig-
ure 2c. Observe that if we permute the player labels according to
(1, 2, 3, 4, 5) → (4, 5, 1, 2, 3), we have recreated our initial config-
uration. If we now schedule the best response of players repeatedly
in order, after 10 moves we will be back to the initial configuration:
in other words, best-response dynamics will have cycled.

In is interesting to note that the cycling of best-response dynam-
ics shows that we do not have an ordinal or an exact potential game
[12], a sub-class of games with natural equilibrium existence proofs
that have been heavily studied in recent work on algorithmic game
theory.

3. UNIFORM METRIC
In this section we prove that for the case of the uniform metric

our game always has a pure Nash equilibrium. We will define an
infinite family of multipartite graphs Gn,k and show that for any
choice of parameters, one of the Gn,k is an equilibrium. In addi-
tion, we will also show that best-response dynamics starting from
an empty graph actually converges to such an equilibrium.

3.1 Existence of Equilibria
A key tool in proving the existence of equilibria is the following

lemma. It concerns a graph G with an independent set I , such that
all nodes v 6∈ I are connected to every node in I . The first part
of the lemma describes how much value a node would get from
connecting to all the nodes in I . The second part describes when a
node seeking to maximize its payoff would do so.

LEMMA 3.1. The change in benefit for a node v 6∈ I from delet-
ing all the edges connecting v to I is B(n, k) = k(α0 − 1) +`

k
2

´
β(n − k), where k = |I|. Node v will keep all the edges con-

necting v to I if B(n, k) ≥ 0, and will drop all the edges connect-
ing v to I if B(n, k) ≤ 0.



Proof. The cost of buying an edge to every node in I is k, the direct
benefit from doing so is kα0. Moreover, the middleman benefit
from buying edges to a single pair of nodes in I is β(n− k). Since
all nodes in V \ I are connected to all nodes in I there is no other
middlemen benefit associated with these edges. Thus the total ben-
efit of attaching to all nodes in I is, k(α0 − 1) +

`
k
2

´
β(n − k) as

claimed.
To prove the second part of the statement, we need to consider

the benefit v would obtain if it kept edges to a subset A ⊆ I
of k′ ≤ k nodes. Again, since all edges between I and V \ I
are included in the graph, all benefit for attaching to any nodes
in A comes from direct benefit, and middlemen benefits for pairs
of nodes in A. Connecting only to the k′ nodes in A results in
k′(α0 − 1) from the direct benefit minus costs, and

`
k′

2

´
β(n − k)

from middlemen benefits. For fixed k and n this benefit as a func-
tion of k′ is a convex quadratic function of k′ and hence in the
range 0 ≤ k′ ≤ k its maximized either at k′ = 0 or at k′ = k.
This implies that v either will want to keep all edges to I or none,
which implies the statement.

Now we are ready to prove that an equilibrium graph exists. The
equilibrium graphs will be complete, multipartite graphs in which
there are q = bn

k
c parts each consisting of a k-vertex independent

set, and there is one part consisting of an `-vertex independent set,
where ` = n mod k. Nodes from higher indexed sets buy all the
edges to nodes in lower indexed sets.

DEFINITION 3.2. Let Gn,k denote a directed, multipartite graph
of the following form. Let V = V1∪. . .∪Vq∪Vq+1 where Vi∩Vj =
∅ for i 6= j, |V1| = · · · = |Vq| = k, and |Vq+1| = n mod k. For
each u ∈ Vi, let L(u) = ∪i−1

j=1Vj .

THEOREM 3.3. For an appropriate choice of k the graph Gn,k

is at equilibrium.

Proof. Choose k such that B(n, k) ≥ 0 and B(n, k − 1) ≤ 0 (we
prove that such a k exists below). We claim that for this choice
of k, Gn,k is at equilibrium. Since Gn,k is complete and multi-
partite, there is no middleman benefit to be gained from attaching
to a node in Vi and a node in Vj where i 6= j. There is, how-
ever, middleman benefit to be gained from attaching to nodes in
the same independent set. Thus for any node v ∈ Vi, the costs
and benefits associated with buying edges to different sets Vj are
independent of each other, so node v needs to make independent
decisions about which of the edges to each set Vj it wants to have.
We apply Lemma 3.1 for the independent sets Vj for j 6= i. As
B(n, k) ≥ 0 node v will keep all its connections to every node in
Vj for all j ≤ i. Then we apply Lemma 3.1 for the independent set
Vi − {v}. As B(n, k − 1) ≤ 0 the node v does not want to buy
connections to the other nodes in Vi.

To finish the proof we have to argue that there is a value k with
B(n, k) ≥ 0 and B(n, k− 1) ≤ 0. Consider B(n, 1) = (α0− 1).
If B(n, 1) > 0 than the direct benefit associated with an edge is at
least as large as the cost, and hence the complete graph Gn,1 is an
equilibrium. If B(n, n − 1) ≤ 0 then the empty graph Gn,n is an
equilibrium by Lemma 3.1. If B(n, 1) < 0 and B(n, n − 1) > 0
then there must be a an integer k with B(n, k) ≥ 0 and B(n, k −
1) ≤ 0 and hence Gn,k is an equilibrium graph.

3.2 Convergence to Equilibrium
Having now seen that equilibria exist, we ask whether they are

reachable by a natural sequence of best-response updates. The
example in Section 2, showing that arbitrary sequences of best-
response updates can cycle, indicates some of the difficulty in ad-
dressing this question. However, as we show here, the equilibria

Gn,k are in fact reachable via a very natural sequence of best-
response updates: starting from a graph with no edges, we number
the nodes arbitrarily 1, 2, 3, . . . , n, and have them perform best-
response updates in this order, cycling through the order indefi-
nitely until an equilibrium is reached. (We call this the round-robin
schedule, since nodes simply take turns performing updates accord-
ing to a repeating fixed order.)

In particular, we show that best-response dynamics, executed in
round-robin order starting from empty graph, converges to Gn,k

where k is the largest integer such that B(n, k) ≥ 0 and B(n, k −
1) ≤ 0. The proof requires that we keep track of a number of
inductive invariants as the updates proceed, and to give the main
ideas in a somewhat simpler setting, we first prove a special case
of the result, in Theorem 3.6, for the case in which k ≥ dn

2
e.

Following this, we discuss how to extend the proof to any value of
k; the full details are given as Theorem 6.5 in the Appendix.

The proof of Theorem 3.6 relies on two lemmas. The first lemma
describes the result of the first round of best response dynamics
starting from the empty graph. Intuitively, as each node make its
move it sees an independent set on the nodes who have yet to move.
Thus they buy all of the edges to the nodes yet to move to become
a middleman between all pairs of the independent set. The first
n− k nodes do this resulting a in clique of size n− k where all of
the nodes in it are also attached to an independent set of size k.

LEMMA 3.4. If k is the largest integer such that B(n, k) ≥ 0
and B(n, k − 1) ≤ 0, then at the end of the first round of best
response dynamics, executed in round robin order, node i will have
bought edges to nodes i + 1, . . . , n where i ∈ {n− k}.

Proof. The proof is by downward induction on k. If k = n then
by Lemma 3.1, node 1 will not buy any edges. Next, let’s assume
the claim holds for k = k′ + 1 and show it holds for k = k′. By
the induction hypothesis, B(n, n− 1), . . . , B(n, k′ + 1) ≥ 0, and
thus by Lemma 3.1 nodes 1 through n − k′ − 1 buy edges to all
higher-indexed nodes. Thus when it is the turn of node n− k′, the
only nodes from which node n− k′ could earn middleman benefit
from will be nodes n − k′ + 1, n − k′ + 2, . . . , n, which form
an independent set of size k′. Since B(n, k′) ≥ 0, by Lemma 3.1,
node n−k′ will buy edges to all of the nodes in the independent set.
After this move by node n − k′, the largest independent set in the
graph has size k′ − 1. Since B(n, k′ − 1) ≤ 0 and by Lemma 3.1,
all subsequent nodes to move will not buy any edges.

The next lemma bounds how much a node could earn if it at-
taches to both a clique and an independent set which are disjoint.
Doing so would earn middleman benefit between pairs of the in-
dependent set, and between nodes of the clique and the indepen-
dent set. Intuitively, since a node gets a quadratic increase for each
new node it becomes a middleman for, while only paying a linear
cost, a node will either attach to all of the nodes in clique and the
independent set, or none of them. Here we will use the notation
N(S) = ∪v∈SN(v).

LEMMA 3.5. Let G = (V, E) be a graph with an independent
set I of size i, and a clique C of size c, where I and C are disjoint
and i + c ≤ k, such that |N(C) ∩N(I)| ≥ n− k.

1. If B(n, k) ≥ 0 then the most a node would gain from attach-
ing to I ∪ C would be B(n, k). Furthermore, the maximum
gain would result from attaching to all nodes in I ∪ C.

2. If B(n, k) ≤ 0 then the most a node would gain from attach-
ing to I∪C would be 0 which would result from not attaching
to any nodes in I ∪ C.



Proof. Say a node v attached to i′ ≤ i of the nodes in the inde-
pendent set and c′ ≤ c of the nodes of the clique. This would cost
i′+c′ and earn a direct benefit of α0(i

′+c′). Observe that v would
earn

`
i′

2

´
in middleman benefit from attaching to the nodes in the

independent set, but this would be shared with at least n− k other
nodes, since |N(I)| ≥ n− k. Similarly, v would earn i′c′ in mid-
dleman benefit for attaching the nodes in the clique with nodes in
the independent set. This would also be shared with n − k other
nodes, since |N(C) ∩ N(I)| ≥ n − k. Thus the marginal payoff
of v is:

mpv(i′, c′) ≤ (α0 − 1)(i′ + c′) +

" 
i′

2

!
+ i′c′

#
β(n− k)

Observe that this is a convex quadratic function of i′. Thus mpv(i′, c′)
is maximized either when i′ = 0 or when i′ = i. Next we con-
sider both of these cases. The first case is when i′ = 0, then
mpv(i′, c′) = 0. Furthermore, since there is no middleman ben-
efit to be gained from attaching to nodes in C, c′ = 0. Thus v will
not attach to any nodes in I ∪ C. The second case is when i′ = i,
and since c′ ≤ c and i + c ≤ k we get:

mpv(i′, c′) ≤ (α0 − 1)(k) +

 
k

2

!
β(n− k)

= B(n, k)

Thus if B(n, k) ≤ 0, v will not attach to any nodes in I ∪ C. If
B(n, k) ≥ 0, then v would achieve the maximum gain by attaching
to all nodes in I ∪ C, resulting in a gain of at most B(n, k).

Next we consider the special case when two rounds of best-
response dynamics converges to Gn,k. Lemma 3.4 shows that after
the first round, the graph will look like a clique of size n − k with
each node also attached to an independent set of size k. Then we
will use Lemma 3.5 to show that during round two, the nodes in the
clique drop edges to each other to form another independent set,
yielding a complete bipartite graph overall.

THEOREM 3.6. If k is the largest integer such that B(n, k) ≥
0, B(n, k − 1) ≤ 0 and k ≥ dn

2
e, then best response dynamics,

executed in round robin order, will converge to Gn,k in 2 rounds.

Proof. Lemma 3.4 shows that after the first round of best response
dynamics nodes every j ∈ {1, 2, . . . , n−k}will have bought edges
to all nodes in {j+1, j+2, . . . , n}. Furthermore, only those edges
will have been bought.

To discuss the results of round 2, we first introduce some nota-
tion. Let V2 = {1, 2, . . . , n−k} and let V1 = {n−k+1, . . . , n}.
Since |V1| = k and B(n, k) ≥ 0, Lemma 3.1 implies that every
node in V2 will keep all of their edges to the nodes in V1. This
implies there is no middleman benefit to be gained from buying an
edge to a node in V1 and a node in V2. Thus we can compute ben-
efit of attaching to nodes in V2 independently of attaching to nodes
in V1.

During round 2, node 1 will drop all of its edges to V2 since V2

forms a clique and node 1 earns a benefit of (α0 − 1)|V2| < 0 for
those edges. Inductively assume that the first i nodes of V2 drop
their edges to the other nodes in V2. This means that at the time of
node i+1’s move, there is an independent set of size i, and a clique
of size c where c = |V2| − i − 1. Furthermore, since k ≥ dn

2
e,

and |V2| = n − k, we have that i + c ≤ k − 1. Thus Lemma 3.5
combined with B(n, k − 1) ≤ 0 implies that node i + 1 will drop
all edges to the nodes in V2. After the nodes in V2 do this, the graph
is exactly Gn,k which by Theorem 3.3 is stable.

Figure 3: The density of the equilibria as a function of α0.
The density is computed as |E|/

`
n
2

´
. Gn,k are represented by

crosses. The alternate equilibria, found by simulations, are rep-
resented by circles.

In a relatively straightforward way, one can generalize the above
theorem to a schedule where there exists a time t such that before t
all nodes perform at least one update, and after t all nodes perform
at least one update.

For values bn
2
c ≥ k > 0 the process of the best response dy-

namic of Theorem 3.6 is more complex. The construction of Gn,k

proceeds in rounds, where round i results in the formation of the
ith level in Gn,k, Vi. Lemma 3.4 is again used to show that round
1 results in a clique of n − k nodes attached to an independent set
V1 of the last k nodes. Round i will result in the formation of the
independent set Vi, but surprisingly the set do not come from con-
secutive k nodes in the round-robin order. Despite this fact, we use
Lemma 3.5 to show that in round i a subset of k nodes forms a new
level Vi. Furthermore, we show that once a node forms part of a
new level, it is “frozen” in the sense that it neither buys additional
edges nor drops edges from then on.

3.3 Properties of Equilibria
In the last two sections we considered the multipartite graphs

Gn,k extensively: We showed that for any α0 and any function β
one of these graphs always forms an equilibrium, and we showed
that best-response dynamics starting from the empty graph, and
with round-robin scheduling of players, always converges to one
of these multipartite graphs.

A natural question is now to consider other equilibrium graphs
— asking whether equilibria other than Gn,k exist, to what extent
Gn,k has properties representative of these other equilibria, and
whether it is possible to prove non-trivial properties that hold for
all equilibria. In this direction, we first discuss the results of com-
putational experiments that uncover a range of other equilibrium
graph structures. We then prove that all equilibria in the uniform
metric are dense graphs.

To find other equilibrium graphs, we run best response start-
ing from random initial configurations. We have seen that best-
response dynamics can cycle, but in many runs it terminates with
new equilibria. One of the key properties we observe in our com-
puted equilibria is that they are all dense, with a constant fraction of
all node pairs connected by edges (this property is easily checked
for the multipartite graphs Gn,k for all but very large k). Indeed,
as Figure 3 shows, the other equilibria we find are even more dense



than Gn,k. In our experiments we use the harmonic intermediary
benefit function β(r) = α0/r, so we have only a single parameter
α0. In Figure 3, we see that the other equilibria found are denser
than the multipartite equilibrium corresponding to the given value
of α0.

We now prove that what we are observing computationally in
fact holds for all equilibria: all equilibrium networks are dense, in
that they all have Ω(n2) edges, assuming that rβ(r) ≥ γ for a con-
stant γ > 0. Note that rβ(r) is the total benefit when k interme-
diaries connect a pair of nodes, and so as noted in the Introduction,
we are making the mild assumption — generalizing the harmonic
function — that this benefit is non-vanishing (i.e. it remains lower-
bounded by some constant) as r increases.

To prove the theorem we will need two technical lemmas.

LEMMA 3.7. For a, b, r > 0, the maximum value of
Pr

i=1 x2
i ,

over all choices of nonnegative real numbers (x1, . . . , xr) withP
i xi ≤ a and xi ≤ b for all i, occurs on vectors in which all

but one coordinate is equal either to 0 or b.

Proof. If there an optimal vector (x1, . . . , xr) in which ε ≤ xi ≤
xj ≤ b − ε for some ε > 0, then the objective function would be
increased by replacing them with xi − ε and xj + ε.

LEMMA 3.8. For a, r > 0, the minimum value of
Pr

i=1
1

1+xi
,

over all choices of nonnegative real numbers (x1, . . . , xr) withP
i xi ≤ a, occurs when all xi are equal, in which case it is r2

a+r
.

Proof. First, if
P

i xi is not equal to a, then uniformly scaling up
all xi will only reduce the objective function. Next, suppose that
there are i and j with xi < xj , and let ε = 1

3
(xj − xi). Then we

could decrease the objective function by replacing xi and xj with
xi + ε and xj − ε, since

1

1 + xi + ε
+

1

1 + xj − ε

=
2 + xi + xj

(1 + xi)(1 + xj) + ε(xj − xi)− ε2

<
2 + xi + xj

(1 + xi)(1 + xj)
=

1

1 + xi
+

1

1 + xj
.

Thus the optimum has
P

i xi = a and all xi equal, and so it is
r · 1

1+(a/r)
= r2

a+r
.

THEOREM 3.9. For every choice of α0 > 0 and function β,
subject to β(r) ≥ γ

r
for a constant γ > 0, every equilibrium graph

has at least Ω(n2) edges.

Proof. We will prove that there exists δ > 0 and n0 > 1 such that
any equilibrium graph on at least n0 nodes has at least δn2 edges.
We choose δ < 1

162
min(1, γ), and n0 ≥ δ−1. Now, suppose

there were an equilibrium graph G on at least n0 nodes with strictly
fewer than δn2 edges; we will show this leads to a contradiction.

Let dv denote the degree of node v, and for each pair of nodes
v, w, let rv,w be the number of middlemen (i.e. common neigh-
bors) of v and w. We haveX

v,w

rv,w ≤
X

v

 
dv

2

!
≤
X

v

d2
v.

Since the degree sequence is a vector of numbers that satisfiesP
v dv ≤ 2δn2 and also dv ≤ n for all v, Lemma 3.7 implies

that X
v,w

rv,w ≤ (2δn + 1)n2 ≤ 3δn3.

Figure 4: A 32-node equilibrium network in a hierarchical met-
ric.

Now, consider a node u of minimum degree; let Y be the set of
all nodes that are not neighbors of u, and let Γ be the collection
of two-element subsets of Y consisting of nodes not connected by
edges. Since the number of edges is less than δn2, we have |Y | >
1
2
n. If u creates edges to all nodes in Y , then its middleman benefit

just among the nodes in Y isX
{v,w}∈Γ

β(1 + rv,w) ≥ γ
X

{v,w}∈Γ

1

1 + rv,w
.

Since |Y | > 1
2
n and the graph has only δn2 edges, we have |Γ| ≥

( 1
8
− δ)n2 ≥ 1

9
n2. Thus, by Claim 3.8, the middleman benefit is at

least γr2

a+r
with r = |Γ| ≥ 1

9
n2 and a = 3δn3. Hence it is at least

1
81

γn4

3δn3 + n2
≥

1
81

γn4

4δn3
=

1

324
γδ−1n > n,

where the first inequality follows since δn ≥ 1 for n ≥ n0, and the
final inequality follows since δ < 1

324
γ. Since the cost for u to cre-

ate edges to all nodes of Y is at most n, this represents a profitable
deviation from the current graph, contradicting our assumption that
the graph was in equilibrium.

4. HIERARCHICAL METRICS
We have now seen that equilibria can have rich properties even in

a uniform metric; but the model and the efficiency of best-response
dynamics apply to any metric. Here we look at properties that arise
in another important class of metrics.

For modeling the structure of an organization, metrics based on
hierarchies are very natural [13]: we put n points at the leaves of a
(rooted) tree with edge lengths, and we define the distance between
two points to be the total length of the unique simple path between
them in the tree. Such a structure thus models the organizational
hierarchy of a large company or other organization, with the effort
required for two nodes to connect across different parts of the com-
pany growing in the tree distance between them. In this section,
we will focus for the sake of concreteness on the case in which the
n points are placed at the leaves of an n-node rooted complete bi-



nary tree, and the distance between two points whose least common
ancestor has height h is equal to 2h−1. However, our results can
be extended to metrics derived more generally from exponentially
weighted trees.

In computational experiments, we find that equilibria in this met-
ric have a rich structure that aligns in interesting ways with the mo-
tivation from organizational structure; Figure 4 shows a characteris-
tic example on 32 nodes. As the figure indicates, in these equilibria
there are typically a small number of nodes that form connections
to almost everyone, a few other nodes form connections to every-
one within moderate-sized subtrees, and most nodes build a very
small number of connections to nearby other nodes. Thus, as with
the uniform metric, a type of symmetry-breaking occurs in which
certain nodes stake out central positions, but it is not profitable in
equilibrium for too many to do so — a phenomenon that is closely
consistent with the observation that in real organization, a relatively
small number of people tend to seek out and bridge structural holes.

It remains an open question to prove the existence of equilibria
in this metric for arbitrarily large n (although the computational ex-
periments clearly provide strong evidence). However, we can prove
properties that must hold in any equilibrium; specifically, we show
that two of the basic features we observe in the computational ex-
periments — very-high-degree nodes and lower average degree —
hold in all equilibria. The first result applies to our general model of
payoffs, subject to the assumption that α0 is a constant independent
of n, and β(1) > 4/3.

THEOREM 4.1. Let α0 and β(1) be constants, with β(1) >
4/3. In any equilibrium graph G in the hierarchical metric, there
is a node of degree Ω(n).

Proof. Let γ = max(α0, β(1)); note that γ is a constant indepen-
dent of n. We first observe that if a node v of degree d purchases
an edge of cost c to a node w, then d ≥ c/γ. Indeed, the benefit
v derives from its edge to w is only through its direct connection
to w and through acting as an intermediary between w and other
neighbors of v. So if d < c/γ, then v would lose a benefit of at
most (d − 1)β(1) + α0 ≤ dγ < c by dropping the edge to w.
As this is less than the cost of the edge, dropping this edge would
represent a profitable deviation for v, contradicting the assumption
that G is in equilibrium.

Next, we claim that some node v in G has a purchased edge to
a node w, such that the least common ancestor of v and w is the
root of the tree — in other words, v has a purchased edge of cost
n/2. For suppose not, and let v be any node. If v purchases edges
to all nodes in G, it becomes the unique intermediary between each
node in the left sub-tree of the root and each node in the right sub-
tree of the root. (It is the unique such intermediary since any other
intermediary would have to be a node that purchased an edge of
cost n/2.) This would provide v with a benefit of (n2/4)β(1).
The total cost of all these edges is (n/2)(n/2) + (n/4)(n/4) +
(n/8)(n/8)+· · · < n2/3. Since β(1) > 4/3, purchasing all these
edges would be a profitable deviation, contradicting the assumption
that G is in equilibrium.

Thus, some node purchases an edge of cost n/2; by our earlier
argument, this node must have degree at least n/(2γ) = Ω(n).

We now show that the average degree is asymptotically much
smaller than linear. For this, we clearly need some restriction on
the form of the payoff function in terms of the function β(·), since
it is easy to create payoffs high enough that a clique will form. We
therefore impose a restriction analogous to the ones earlier, gener-
alizing the harmonic payoff, that maxr(rβ(r)) is a constant inde-
pendent of n. (Recall that in the harmonic case, by definition, we
have rβ(r) = 2α0 for all r.)

Figure 5: The fraction of nodes in computed equilibrium net-
works with at least each given saturation level. All equilibria
were computed via best response dynamics executed in round
robin order with n = 512 and α0 = 6.5. The equilibrium
represented by the black bars was computed starting from
the empty graph. The two equilibria represented by the light
and dark gray bars were computed starting from two random
graphs.

THEOREM 4.2. Let α0 and maxr(rβ(r)) be constants. In any
equilibrium graph G in the hierarchical metric, the average node
degree is O(

√
n).

Proof. We write β∗ for maxr rβ(r), and γ = max(α0, β
∗). Since

no node has an incentive to change its purchased edges, each node
in G has the property that the benefit it receives is at least as large
as the cost it incurs. Summing this inequality over all nodes, we
see that the total benefit to all nodes is at least as large as the total
cost paid by all nodes. The total benefit is at most a constant γ per
node pair, and hence the total benefit to all nodes is at most γ

`
n
2

´
.

The total cost incurred by all nodes, which is simply the total cost
of all edges in G, is thus at most γ

`
n
2

´
.

Now suppose that G contains more than m = 2j+1 · n/2 edges,
where we choose j as small as possible so that m ≥ γ1/2n3/2. The
total cost of all edges in G is at least as large as the cost of the m
cheapest node pairs in the metric. There are only (n/2) · (1 + 2 +
· · · + 2j−1) < (n/2) · 2j = m/2 pairs of nodes of cost less than
2j ; hence among these m cheapest pairs, at least half have cost at
least 2j = m/n. Thus the total cost of the m edges is at least
(m/2)(m/n) = m2/(2n) = 1

2
γn2 > γ

`
n
2

´
. This contradicts our

assumption that the total benefit is at least as large as the total cost.

Further structure through computational experiments. These
two theorems suggest some of interesting structure shared by all
equilibrium networks in the hierarchical metric, with nodes occu-
pying different social positions. Through computational experi-
ments with best-response dynamics, we can quantify this notion
of a “social position” more fully, and identify more subtle structure
in the equilibria. In particular, we find through experiments that
most nodes approximately “saturate” some sub-tree that they be-
long to; that is, a node v tends to construct links to most nodes in
some rooted subtree Tv containing v, and almost no links to nodes
outside Tv .



Motivated by this observation, we define the ε-saturation level
of a node v to be the maximum h such that v constructs links to
at least a (1 − ε) fraction of all nodes in the height-h subtree con-
taining it. In Figure 5, we show the fraction of nodes of saturation
level ≥ h for each h, in three different computed equilibrium net-
works on 512 nodes, with the harmonic model of payoffs and a
fixed choice of α0. (Thus, these are hierarchical metrics in which
the maximum subtree height is 9.) We see that many nodes achieve
a saturation level of 3, a smaller number achieve 4 and 5, and a
few achieve a saturation level of 9; this latter group constitutes the
nodes described in Theorem 4.1 that construct links to almost all
other nodes.

As this curve essentially characterizes the relative sizes of differ-
ent “status levels” in the network, a very interesting open question
is to try formally characterizing in more detail how stable the shape
of this curve is across the full set of possible equilibria, and what
its asymptotic shape looks like as n goes to infinity.
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Figure 6: During round i, nodes that have gone down form Vi.
Nodes that have gone up will form subsequent levels. Middle
nodes have yet to make their move during round i. Single ar-
rows represent edges between nodes. The double arrows repre-
sent that each node referred to by the base of the double arrow
is connected to each node that is referred to by the arrowhead.
(Not pictured here, for the sake of clarity, are double arrows
connecting all up, down, and middle nodes to V1, . . . , Vi−1.)

6. APPENDIX: CONVERGENCE OF BEST-
RESPONSE DYNAMICS

In this section, we provide the details of the proof deferred from
Section 3.2, that in the uniform metric, best-response dynamics
with round-robin scheduling starting from the empty graph will
converge to Gn,k. (Recall that in Section 3.2 we proved this in
the special case when convergence was to Gn,k for k ≥ dn

2
e.)

The proof will track several properties of the graph as it evolves
through best-response dynamics, and to formulate this precisely,
we need the following preliminary definitions. The intuition behind
these definitions is as follows (also see Figure 6). During round i, k
nodes form level Vi of the graph. When a node does this, it is said
to “go down” to level Vi. If a node chooses not to join Vi during
round i it is said to “go up”. If a node has not chosen which level
to join, and its turn has not yet come during round i, it is called
a “middle node”. Ti denotes all the nodes that have joined level i
during round i (gone down), all the nodes that are not yet part of a
level and have yet to move during round i (middle nodes), and all
the nodes who have not yet committed to a level and have moved
during round i (gone up). Since the nodes that have already chosen
a level are frozen, Ti is where all the action takes place during
round i.

DEFINITION 6.1. After node u’s turn during round i, u is said
to go down if it retains edges to all v ∈ ∪i−1

j=1Vj and only those
nodes.

DEFINITION 6.2. Ti = V \ (∪i−1
j=1Vj).

DEFINITION 6.3. Node u is said to be a middle node if during
round i, u’s turn has not yet come and u ∈ Ti.

DEFINITION 6.4. After node u’s turn during round i, u is said
to go up if u keeps its edges to all v ∈ ∪i−1

j=1Vj and all middle
nodes, and u buys edges to all nodes that have already gone down
during round i.



With these definitions in hand, we are now ready to prove the the-
orem. The proof is by induction which maintains certain invariants.
Part 1 of the induction hypothesis shows that each node maintains
edges to all nodes below it. Part 3 shows that once a node becomes
part of a level it does not buy any edges for the rest of time. These
two parts of the induction hypothesis combine to show that once a
node becomes part of a level it is essentially “frozen”. Part 2 main-
tains that, during round i, each middle node either forms part of Vi

(goes down) or goes up. Part 4 shows that each level has k nodes in
it, with perhaps the exception of the topmost level. These invariants
are pictorially represented in Figure 6.

THEOREM 6.5. If k is the largest integer such that B(n, k) ≥ 0
and B(n, k − 1) ≤ 0, then starting from the empty graph, best
response dynamics executed in round robin order will converge to
Gn,k in dn

k
e rounds.

Proof. The proof is by induction on k. Lemma 3.4 shows that the
first n − k nodes go up during round 1 and the last k nodes go
down. The induction hypothesis has four parts:

1. After v’s turn during round i,

(a) if v ∈ Vj , where 1 ≤ j < i, v keeps edges to all nodes
in V1, . . . , Vj−1.

(b) if v ∈ Ti, v keeps edges to all nodes in V1, . . . , Vi−1.

2. During round i, nodes in Ti will either go up or down.

3. During round i, if v ∈ Vj where 1 ≤ j < i, then v will not
buy any edges.

4. (a) If |Ti| ≥ k at the beginning of round i, then |Vi| = k,
(b) If |Ti| < k at the beginning of round i, then |Vi| = |Ti|

and i is the last round.

We assume the induction hypothesis is true for rounds 1 through
i − 1 and prove it is true for round i. To prove part 1a of the
inductive step, consider the amount of benefit v ∈ Vj , 1 ≤ j < i,
gets from attaching to all the nodes in Vj′ where 1 ≤ j′ < j. By
part 4 of the induction hypothesis, we have that |Vj′ | = k. Also,
part 2 of the induction hypothesis shows that the nodes that went
down to form level j′ are not connected to each other. There will
be at most n − k nodes attached to the nodes in Vj′ . Thus v will
earn at least B(n, k) from attaching to the nodes in Vj′ . Since
B(n, k) ≥ 0, Lemma 3.1 implies v will maintain its edges to Vj′

during round i. Part 1b of the inductive step follows by a similar
argument.

Inductively assume that during round i, all the nodes in Ti will
either go down or go up. Consider a node v which is a middle node
whose turn has come. Let m denote the number of middles nodes
other than v, and let d denote the number of nodes that have gone
down. The marginal payoff that v would get from connecting to
d′ of the down nodes and m′ of the of the middle nodes (denoted
mp(d

′, m′)) is:

mpv(d′, m′) = (α0−1)(d′+m′)+

" 
d′

2

!
+ d′m′

#
β(n−d−m)

(1)
The first term comes from the fact that there is an α0 direct benefit
to attaching to the middle and down nodes and a cost of d′ + m′

for doing so. By part 1 of the inductive step, and since the nodes
that have gone down are not attached to each other, the second term
describes the middleman benefit from attaching to d′ of the down
nodes, and the middleman benefit from becoming the middleman
between d′ down nodes and m′ middle nodes. By part 2 of the in-
duction hypothesis, and the definition of a node going up, all the

middle nodes are attached to each other and thus there is no mid-
dleman benefit for attaching to two of them.

Equation 1 is quadratic in d′ with a positive coefficient on the
quadratic term where d′ ∈ {0, 1, . . . , d}. Thus it is either maxi-
mized at d′ = 0 or d′ = d. First, assume mpv(d′, m′) is maxi-
mized at d′ = 0. In this case Equation 1 simplifies to,

mpv(0, m′) = m′(α0 − 1) ≤ 0, (2)

since 0 ≤ α0 ≤ 1. Thus, if v chooses not to buy edges to any of
the down nodes, it will also choose not to buy edges to any of the
middle nodes. Next, assume that mpv(d′, m′) is maximized at d′ =
d. In this case mpv must strictly increase when d′ = d + 1 1. Thus
mpv(d′ + 1, 0) > mpv(d′, 0). Next, if we evaluate mpv(d′, m′) at
m′ = 1 we get:

mpv(d′, 1) = (α0 − 1)(d′ + 1) +

 
d′ + 1

2

!
β(n− d−m).

This is also equal to mpv(d′ + 1, 0), and thus we have shown
mpv(d′, 1) = mpv(d′ + 1, 0).

Assume for the sake of contradiction that when d′ = d, mpv

is maximized at m′ = 0. Thus, mpv(d′, 0) ≥ mpv(d′, 1) =
mpv(d′ + 1, 0) which provides a contradiction. Since mpv is a
linear function of m′ where m′ ∈ {0, 1, . . . , d}, it will either be
maximized at m′ = 0 or m′ = m. So we can conclude that when
mpv is maximized at d′ = d, then m′ = m. Thus, v will either
buy edges to all middle and down nodes, or none of them depend-
ing on whether Equation 1 is positive or negative respectively. This
combined with part 1 of the inductive step imply that v will either
go up or down.

Next we prove part 3 of the inductive step. Let v ∈ Vj where
1 ≤ j < i. By parts 1 and 2 of the inductive step, the only nodes
that do not have links either to, or from v are those nodes in Vj .
Thus v would earn at most B(n, k − 1) ≤ 0 by attaching to the
other nodes in Vj . By Lemma 3.1, v would not buy these edges.

Next, we prove part 4a of the inductive step in two parts. First
we show that if at the beginning of round i, |Ti| ≥ k then |Vi| ≤
k. Observe that k nodes going down during round i results in a
k-element independent set Vi. Furthermore, parts 1 and 2 of the
inductive step show that if v ∈ Vi, |N(u)| = n − k. Thus each
middle node yet to move would earn B(n, k) from attaching to all
k of these nodes. Since B(n, k) ≥ 0, by Lemma 3.1, these middle
nodes would all go up.

Now assume for the sake of contradiction that at the beginning
of round i, |Ti| ≥ k, yet |Vi| < k. Let v be the last node to
go up during round i. Let d be the number of nodes that already
went down during round i; they form an independent set of size
d. Let m be the number of middle nodes; they form a clique of
size m. Since |Vi| < k, d + m ≤ k − 1. Part 1 of the inductive
step shows that all down and middle nodes nodes keep their edges
to V1, . . . , Vi−1. Similarly, part 2 of the inductive step shows that
all nodes that went up keep their edges to the middle and down
nodes. Thus, by Lemma 3.5, v would earn at most B(n, k−1) ≤ 0
from going up. Thus v would have have earned at least as high a
marginal payoff it it would have went down, which contradicts the
fact that v is rational and went up. A similar argument to the above
shows that if at the beginning of round i, |Ti| < k, then all middle
nodes would go down, thus |Vi| = |Ti|. Then parts 2 and 3 of
the induction hypothesis show that no edges would be bought or
dropped after round i.
1Here we are analyzing mpv strictly as a function of two variables
and ignoring the fact that in this model the meaningful range of d′

is {0, 1, . . . , d}.


