Check for
Updates

~35-

ARE LR PARSERS TOO POWERFUL?

Philip Machanick
Computer Science Department
University of the Witwatersrand
1 Jan Smuts Avenue
Johannesburg 2001
South Africa

ABSTRACT The general trend in the development of parser theory is
in the direction of exploring implementing methods of increasing power.
In particular, ways of improving the efficiency of LR parsers and the
generation of LR tables have been receiving a lot of attention. The value
of increasingly powerful tools is questioned from the point-of-view of the
need to keep definitions of languages understandable to the programmer.
Consideration is given to Wirth's contention that recursive descent is the
method of choice and alternatives are suggested.

INTRODUCTION

From the point-of-view of exploring theory, LR parsers are the most
interesting of the classes in common use. They are the most powerful -
LALR and LL are proper subsets of LR - and the challenge is to make
it practical to use a full LR parser generator for non-trivial languages.

Some attempts in this direction are briefly surveyed.

The practical implications of the theoretical limitations of LL parsers are

considered next. In particular, instances of non-LL constructs are
examined. From this discussion, the point that LL parsers do not impose
major restrictions on the language designer is made. In fact, it is

contended that the restrictions of LL parsers discourage the adoption of
language constructs difficult for the human reader to comprehend.

This point is compared with that made by Niklaus Wirth in his Turing
Award lecture, concerning the desirability of the recursive descent ap-
proach.

In conclusion, consideration is given to how language specifiers ought
to be constrained by the tools they have at their disposal.

THE DEVELOPMENT OF LR PARSING

Knuth is credited with the formalization of the LR technique [Knuth
1965], though it is based on earlier techniques, such as operator pre-
cedence. In its original form, LR parsing required a very large table
compared with other methods (particularly LL). The first breakthrough
in simplifying LR parsing was the development of the SLR and LALR
methods by DeRemer [Aho and Uliman 1977 p. 243]. Since then, there

STGPLAN Notices, V21 #6, June 1986


http://crossmark.crossref.org/dialog/?doi=10.1145%2F14937.14940&domain=pdf&date_stamp=1986-06-01

-36-

has been a considerable amount of research into improved implementation
of LALR [Kristensen and Madsen 1981, Park et af/. 1985] and implementing
full LR parsers efficiently [Spector 1981 ; Soisalon-Soininen 1982].

THE LIMITATIONS OF LL PARSERS

LL(k) parsers need to be able to determine which alternative production
to select according to the next k characters in the input. In practice,
k is usually 1, since any situation which cannot be handled with a
lookahead of 1 usually cannot be handled with a larger (fixed-length)
 lookahead. This is not a theoretical property, but a practical result

of the tendency for programming languages to be specified as infinite sets
(e.g., identifiers are described as consisting of any number of charac-
ters, even though a programmer is unlikely to need one longer than a
line on a terminal).

This restriction manifests itself in several classes of constructs which
are not LL. The three major classes are illustrated with examples.

The first of these is the dangling else. That such a construct could be
a problem was realised by the Algol 60 designers: an if was not allowed
in the then part of another if [Naur 1963 §4.5]. To summarise the
problem: some convention must be made to decide which then an else
matches in a construct of the form:

1 if <boolean expression>
then if <boolean expression>
then <statement>
else <statement>;

With a more powerful class of grammar (such as LALR), the ambiguity
can be removed by rewriting the grammar [Aho and Ullman 1977 p. 139].
However, the resulting grammar is unwieldy, containing repetitions of
the parts of the original simpler grammar. The preferred approach is
to use an ambiguous grammar, and some variation on the standard table
generation algorithm which allows ambiguity in such cases to be resolved
in a natural way. Unfortunately, LL does not lend itself to this ap-
proach, while LR does [ibid. pp. 225-229].

A related problem is left-factoring. Alternates which can derive a common
prefix are not LL, since it is not possible to decide which alternate to
choose (unless the lookahead is extended and the common prefix is of a
fixed length). In the case of the dangling else, left factoring would
not have been any help because it does not remove the ambiguity.

In a simple case, such as:

2 <statement> * <procedure call> | <assignment>
<procedure call> =+ <identifier> <parameter list>
<assignment> > <identifier> := <expression>

left-factoring -is straightforward. Still, the preferred approach is to
use semantic routines to choose the appropriate alternate, since a se-



-37

mantic routine is needed at this point in any case for looking up the
identifier in the symbol table.

Another non-LL construct (non-LL(k) for any k) is left recursion. Im-

mediate left recursion only specifies repetition, not nesting, and is easy
to eliminate [ibid. p. 177]:

3 <idlist> + <idlist> , <identifier> | <identifier>
becomes
4 <idlist> + <jdentifier> <idlist>'

<idlist>' + , <identifier> <idlist>' | <empty>

With the use of { } to enclose an alternate to indicate transitive closure
(zero or more repetitions) [Ada 1983 pp. 1-7], repetition can be speci-
fied without left recursion. A grammar of the form

5 <idlist> + { <identifier> , } <identifier>
can easily be translated into the grammar 4 [Owen and Reyneke 1982].

Indirect left recursion is more of a problem, however. While an algorithm
to eliminate it does exist [Aho and Ullman 1977 p. 179], the problem can
no longer be avoided by using transitive closure to write the grammar.
Which means readability must be compromised.

DISCUSSION

Are the limitations of LL parsers sufficient to be cause for concern?
Why not use LR parsers anyway, since they are more powerful (i.e.,
LL(k) languages are a proper subset of LR(k) languages for a given k
[Nijholt 1982])7

Let us consider the statement made by Niklaus Wirth in his Turing Award
Lecture [Wirth 1985 p. 164]:

a tool should be as simple as possible, but no simpler. A
tool is counterproductive when a large part of the entire project
is taken up with mastering the tool.

What are we really buying by using LR rather than LL? In the first
example we considered, the dangling else problem can be solved more
easily using an LR parser generator than an LL one. But do we want
a language with a construct that is potentially confusing to the reader?

Consider the alternative indentations of the same program fragment:

if bl if bl
then then
if b2 if b2
then s then s

else s else s



~38-

What of the second problem we isolated - the need to left-factor a grammar
to make it LL? Where the common prefix is obvious, there is no great
problem. But if the common prefix is derived after several (non-obvious)
steps, the grammar may generate strings which are difficult for the
human reader to parse. Even if this is not so, compiler writers using
LL parsers and recursive descent (which has similar theoretical limita-
tions) have been able to deal with this sort of problem.

Left recursion is not a major problem if we are prepared to go to the
effort of rewriting the grammar. Although this can, in principle, be
automated, the drawback of any rewriting preprocessor is that it makes
debugging difficult. Be that as it may, using transitive closure instead
of recursion to specify repetition has much to recommend it. Not only
does it eliminate the problem of immediate left recursion, but it results
in a flatter parse tree. Recursion is useful for nested constructs, and
for describing precedence in arithmetic expressions. In both these cases,
the depth of the parse tree has significance. It describes the structure
of the nested construct or shows the order in which parts of the ex-
pression are to be evaluated. Where repetition is the only reason for
using recursion, adding extra depth to the parse tree is unnecessary.
The effect is one of making it more difficult for the reader to spot the
parts of the grammar where recursion is really necessary.

Aside from these issues, is it desirable to have left recursion in a
grammar? Surely, a person reading a grammar wants to be able to see
as easily as possible what terminal strings can be derived. If the
grammar is left recursive, it may not be obvious what the first nonter-
minal is.

Since left recursion can always be eliminated, there are no classes of
language construct which cannot be described if left recursion is disal-
lowed.

Taking all these points into account, LL parsers place restrictions on
the class of language which can be defined which are desirable from the
point-of-view of making the grammar comprehensible. If transitive clo-
sure is added as an extension to the BNF notation (not as an extension
to its power), the potential for writing readable grammars is increased.
Furthermore, the possibility of more efficient parsing involving less
recursion is introduced.

What of Wirth's contention that recursive descent is good enough [Wirth
198517

The theoretical capabilities of recursive descent are similar to those of
LL. The big difference comes in the fact that an LL parser generator
transforms the grammar into a table, whereas the recursive descent
parser is constructed by hand-translating the productions into a pro-
gram.

Although the recursive descent parser has the advantage that it can be
read by the programmer, and tricks which overcome the limitations of
the underlying top-down deterministic model can be hand-coded, it has
a significant drawback. The LL parser can be generated directly from
the grammar (possibly with some transliteration, which can be achieved
with suitable tools). As long as the parser generator and the driver
routine interpreting the table are correct, the language parsed will be



~39.-

that defined by the grammar. Furthermore, the driver routine can be
efficiently written (in assembly language, if necessary) once and for
all, whereas the speed of the recursive descent parser will be determined
by the quality of the implementation of the language it is written in.
No matter how well that language is implemented, the recursive proce-
dures making up the parser will incur more overhead than a specialised
driver routine accessing a parse table and stack specially designed for
this purpose.

RECOMMENDATIONS

Compiler writers obviously remain free to use whatever tools they have
at their disposal. However, if language designers follow Wirth's advice
and use implementation as part of the design process [ibid.], they must
not only choose tooils which are appropriate to the task in hand, but
they must also consider the needs of other implementers.

If LL parsers are sufficiently powerful for most purposes, and constructs
which are not LL have the potential to make the grammar unclear, there
is a case for designers to avoid using more powerful models.

After all, there are very few LL constructs which are not LALR [Beatty
1982] and none at all which are not LR. So other other implementers
would still be free to use their favourite tools.

REFERENCES

Ada 1983.
Ada Programming Language, Military Standard ANSI/MIL-STD-1815A.

Aho, Alfred V. and Ullman, Jeffrey D. 1977.
Principles of Compiler Design, Addison-Wesley, Reading,
Massachusetts.

Beatty, John C. 1982.
"On the Relationship Between LL(1) and LR(1) Grammars", Journal
of the ACM, 29(4) October 1982 (1007-1022).

Knuth, Donald E. 1965.
"On the Translation of Languages from Left to Right", /nformation and
Control 8 (607-639).

Kristensen, Bent Bruun and Madsen, Ole Lehrman. 1981.
"Methods for Computing LALR(k) Lookahead", Transactions on Pro-
gramming Languages and Systems 3(1) January 1981 (60-82).

Naur, Peter. 1963 (editor).
"Revised Report on the Algorithmic Language Algol 60", Communications
of the ACM 6(1) January 1963 (1-20).

Nijholt, Anton. 1982.
"On the Relationship Between the LL(1) and LR(1} Grammars", /Infor-
mation Processing Letters 15(3) October 1982 (97-101).

Owen, Robert and Reyneke, Chris. 1982.
The Wits Ada Syntax Checker, Honours Project, Computer Science
Department, University of the Witwatersrand, Johannesburg, January

1982.



A

Park, Joseph C., Choe, K. M. and Chang, C. H. 1985,
"A New Analysis of LALR Formalisms", Transactions on Programming
Languages and Systems 7(1) January 1985 (159-175).

Soisalon-Soininen, Eljas. 1982, ‘
"Inessential Error Entries and Their Use in LR Parser Optimization",
Transactions on Programming Languages and Systems 4(2) April 1985
(172-195).

Spector, David. 1981.
"Full LR(1) Parser Generation", S/GPLAN Notices 16(8) August 1981
(58-66) .

Wirth, Niklaus. 1885,
"From Programming Language Design to Computer Construction",
Turing Award Lecture, Communications of the ACM 28(2) February

1985 (160-164).



