
-35-

ARE LR PARSERS TOO POWERFUL?

Philip Machanick
Computer Science Department

University of the Witwatersrand
I Jan Smuts Avenue
Johannesburg 2001

South Africa

ABSTRACT The general t rend in the development of parser theory is
in the direct ion of explor ing implementing methods of increasing power.
In par t icu lar , ways of improving the eff ic iency of LR parsers and the
generation of LR tables have been receiving a lot of attention. The value
of increasingiy powerful tools is questioned from the point -of -v iew of the
need to keep definit ions of languages understandable to the programmer.
Consideration is given to Wirth's contention that recursive descent is the
method of choice and alternatives are suggested.

INTRODUCTION

From the point -of -v iew of explor ing theory, LR parsers are the most
interest ing of the classes in common use. They are the most powerful
LALR and LL are proper subsets of LR - and the challenge is to make
it practical to use a ful l LR parser generator fo r non- t r iv ia l languages.

Some attempts in this direction are br ie f ly surveyed.

The practical implications of the theoretical limitations of LL parsers are
considered next. In part icular , instances of non-LL constructs are
examined. From this discussion, the point that LL parsers do not impose
major restr ict ions on the language designer is made. In fact, it is
contended that the restr ict ions of LL parsers discourage the adoption of
language constructs d i f f icu l t for the human reader to comprehend.

This point is compared with that made by Niklaus Wirth in his Tur ing
Award lecture, concerning the desirabi l i ty of the recursive descent ap-
proach.

In conclusion, consideration is given to how language specif iers ought
to be constrained by the tools they have at the i r disposal.

THE DEVELOPMENT OF LR PARSING

Knuth is credited with the formalization of the LR technique [Knuth
1965], though it is based on earl ier techniques, such as operator pre-
cedence. In its original form, LR parsing required a very large table
compared with other methods (par t icu lar ly LL). The f i r s t breakthrough
in s impl i fy ing LR parsing was the development of the SLR and LALR
methods by DeRemer [Aho and UIIman 1977 p. 243]. Since then, there

SIGPLAN Notices, V21 #6, June 1986

http://crossmark.crossref.org/dialog/?doi=10.1145%2F14937.14940&domain=pdf&date_stamp=1986-06-01

-36-

has been a considerable amount of research into improved implementation
of LALR [Kristensen and Madsen 1981, Park et al. 1985] and implementin 9
ful l LR parsers ef f ic ient ly [Spector 1981 ; Soisalon-Soininen 1982].

THE LIMITATIONS OF LL PARSERS

LL(k) parsers need to be able to determine which al ternat ive production
to select according to the next k characters in the input, in pract ice,
k is usually 1, since any situation which cannot be handled with a
Iookahead of 1 usually cannot be handled with a larger (f ixed- length)
Iookahead. This is not a theoretical proper ty , but a practical result
of the tendency for programming languages to be specified as inf ini te sets
(e .g . , ident i f iers are described as consisting of any number of charac-
ters, even though a programmer is unl ikely to need one longer than a
line on a terminal).

This restr ict ion manifests itself in several classes of constructs which
are not LL. The three major classes are i l lustrated with examples.

The f i rs t of these is the dangling else. That such a construct could be
a problem was realised by the Algol 60 designers: an if was not allowed
in the then part of another if [Naur 1963 §4.5] . To summarise the
problem: some convention must be made to decide which then an else
matches in a construct of the form:

if <boolean expression>
then if <boolean expression>
then <statement>
else <statement>;

With a more powerful class of grammar (such as LALR), the ambiguity
can be removed by rewr i t ing the grammar [Aho and UIIman 1977 p. 139].
However, the result ing grammar is unwieldy, containing repetit ions of
the parts of the original simpler grammar. The preferred approach is
to use an ambiguous grammar, and some variation on the standard table
generation algorithm which allows ambiguity in such cases to be resolved
in a natural way. Unfor tunate ly , LL does not lend itself to this ap-
proach, while LR does [ib id . pp. 225-229].

A related problem is le f t - factor ing. Alternates which can derive a common
pref ix are not LL, since it is not possible to decide which alternate to
choose (unless the Iookahead is extended and the common pref ix is of a
f ixed length) . In the case of the dangling else, left factor ing would
not have been any help because it does not remove the ambiguity.

In a simple case, such as:

<statement> -* <procedure call> I <assignment>
<procedure call> -* <identif ier> <parameter list>
<assignment> -* <identif ier> := <expression>

lef t - factor ing i s s t ra ight forward. Sti l l , the preferred approach is to
use semantic routines to choose the appropriate alternate, since a se-

-37-

mantic rout ine is needed at this point in any case for looking up the
ident i f ie r in the symbol table.

Another non-LL const ruct (non -LL (k) for any k) is left recurs ion. Im-
mediate left recursion only specifies repet i t ion, not nest ing, and is easy
to eliminate [ibid. p. 177]:

3 <idl ist> -~ <idlist> , < ident i f ier> I <ident i f ier>

becomes

4 <idl ist>
<idl ist>'

<ident i f ier> <idl ist>'
-~ , <ident i f ier> <idl ist>' I <empty>

With the use of { } to enclose an al ternate to indicate t rans i t i ve closure
(zero or more repet i t ions) [Ada 1983 pp. 1 -7] , repet i t ion can be speci-
f ied w i thout left recursion. A grammar of the form

5 <idl ist> -~ { <ident i f ier> , } < ident i f ier>

can easily be t rans lated into the grammar 4 [Owen and Reyneke 1982].

Ind i rec t lef t recursion is more of a problem, however. While an algor i thm
to eliminate i t does exist [Aho and UIIman 1977 p. 179], the problem can
no longer be avoided by using t rans i t i ve closure to wr i te the grammar.
Which means readabi l i ty must be compromised.

DISCUSSION

Are the l imitations of LL parsers suf f ic ient to be cause for concern?
Why not use LR parsers anyway, since they are more powerful (i . e . ,
LL(k) languages are a proper subset of LR(k) languages for a given k
[Ni jho l t 1982])?

Let us consider the statement made by Niklaus Wirth in his Tu r ing Award
Lecture [Wirth 1985 p. 164]:

. . . a tool should be as simple as possible, but no simpler. A
tool is counterproduc t ive when a large par t of the ent i re project
is taken up with mastering the tool.

What are we real ly buy ing by us ing LR ra ther t h a n LL? In the f i r s t
example we considered, the dangl ing else problem can be solved more
easily using an LR parser generator than an LL one. But do we want
a language with a cons t ruc t that is potent ia l ly confusing to the reader?

Consider the a l ternat ive indentat ions of the same program fragment:

if bl i f b l
t h e n then

if b2 if b2
then s then s

else s else s

-38-

What of the second problem we isolated - the need to le f t - factor a grammar
to make it LL? Where the common pref ix is obvious, there is no great
problem. But if the common pref ix is derived after several (non-obvious)
steps, the grammar may generate str ings which are d i f f i cu l t for the
human reader to parse. Even if this is not so, compiler wr i ters using
LL parsers and recursive descent (which has similar theoretical limita-
t ions) have been able to deal with this sort of problem.

Left recursion is not a major problem if we are prepared to go to the
ef for t of rewr i t ing the grammar. Although this can, in pr inciple, be
automated, the drawback of any rewri t ing preprocessor is that it makes
debugging d i f f icu l t . Be that as it may, using t rans i t ive closure instead
of recursion to specify repetit ion has much to recommend it. Not only
does it eliminate the problem of immediate left recursion, but it results
in a f la t ter parse tree. Recursion is useful for nested constructs, and
for describing precedence in arithmetic expressions. In both these cases,
the depth of the parse tree has significance. It describes the s t ruc ture
of the nested construct or shows the order in which parts of the ex-
pression are to be evaluated. Where repetit ion is the only reason for
using recursion, adding extra depth to the parse tree is unnecessary.
The effect is one of making it more d i f f icu l t for the reader to spot the
parts of the grammar where recursion is really necessary.

Aside from these issues, is it desirable to have left recursion in a
grammar? Surely, a person reading a grammar wants to be able to see
as easily as possible what terminal str ings can be der ived. If the
grammar is left recursive, it may not be obvious what the f i r s t nonter-
minal is.

Since left recursion can always be eliminated, there are no classes of
language construct which cannot be described if left recursion is disal-
lowed.

Taking all these points into account, LL parsers place restr ict ions on
the class of language which can be defined which are desirable from the
point-of-v iew of making the grammar comprehensible. If t ransi t ive clo-
sure is added as an extension to the BNF notation (not as an extension
to its power), the potential for wr i t ing readable grammars is increased.
Furthermore, the possibi l i ty of more eff icient parsing involving less
recursion is introduced.

What of Wirth's contention that recursive descent is good enough [Wirth
1985]?

The theoretical capabilit ies of recursive descent are similar to those of
LL. The big di f ference comes in the fact that an LL parser generator
transforms the grammar into a table, whereas the recursive descent
parser is constructed by hand-t ranslat ing the productions into a pro-
gram.

Although the recursive descent parser has the advantage that it can be
read by the programmer, and t r icks which overcome the limitations of
the under ly ing top-down determinist ic model can be hand-coded, it has
a signif icant d rawback . The LL parser can be generated d i rect ly from
the grammar (possibly with some t ransl i terat ion, which can be achieved
with suitable tools). As long as the parser generator and the dr iver
routine in terpret ing the table are correct, the language parsed will be

-39-

that defined by the grammar. Furthermore, the dr iver routine can be
efficiently written (in assembly language, if necessary) once and for
alt, whereas the speed of the recursive descent parser will be determined
by the quality of the implementation of the language it is written in.
No matter how well that language is implemented, the recursive proce-
dures making up the parser will incur more overhead than a specialised
dr iver routine accessing a parse table and stack specially designed for
this purpose.

RECOMMENDATIONS

Compiler writers obviously remain free to use whatever tools they have
at their disposal. However, if language designers follow Wirth's advice
and use implementation as part of the design process [i b id .] , they must
not only choose tools which are appropriate to the task in hand, but
they must also consider the needs of other implementers.

If LL parsers are sufficiently powerful for most purposes, and constructs
which are not LL have the potential to make the grammar unclear, there
is a case for designers to avoid using more powerful models.

After all, there are very few LL constructs which are not LALR [Beatty
1982] and none at a l l which are not LR. So other other implementers
would still be free to use their favourite tools.

REFERENCES

Ada 1983.
Ada Programming Language, Military Standard ANSI/MIL-STD-1815A.

Aho, Alfred V. and UIIman, Jeffrey D. 1977.
Principles of Compilec Design, Addison-Wesley, Reading,
Massachusetts.

Beatty, John C. 1982.
"On the Relationship Between LL(1) and LR(1) Grammars", Journal
of the ACM, 29(4) October 1982 (1007-1022).

Knuth, Donald E. 1965.
"On the Translation of Languages from Left to Right", Information and
Control 8 (607-639).

Kristensen, Bent Bruun and Madsen, Ole Lehrman. 1981.
"Methods for Computing LALR(k) Lookahead", Transactions on Pro-
gramming Languages and Systems 3(1) January 1981 (60-82).

Naur, Peter. 1963 (editor).
"Revised Report on the Algorithmic Language Algol 60", Communications
of the ACM 6(1) January 1963 (1-20).

Nijholt, Anton. 1982.
"On the Relationship Between the LL(1) and LR(1) Grammars", Infor-
mation Processing Letters 15(3) October 1982 (97-101).

Owen, Robert and Reyneke, Chris. 1982.
The Wits Ada Syntax Checker, Honours Project, Computer Science
Department, University of theWitwatersrand, Johannesburg, January
1982.

-40-

Park, Joseph C., Choe, K. M. and Chang, C. H. 1985.
"A New Analysis of LALR Formalisms", Transactions on Programming
Languages and Systems 7(1) January 1985 (159-175).

Soisalon-Soininen, Elias. 1982.
"Inessential Error Entries and Their Use in LR Parser Optimization"•
Transactions on Programming Languages and Systems 4(2) April 1985
(172-195).

Spector, David. 1981.
"Full LR(1) Parser Generation"•
(58-66).

Wirth, Niklaus. 1985.
"From Programming Language
Turing Award Lecture•
1985 (160-164) .

SIGPLAN Notices 16(8) August 1981

Design to Computer Construction"
Communications of the ACM 28(2) February

