Receiver-Driven View-Dependent Streaming
of Progressive Mesh

Wei Cheng Wei Tsang Ooi

Department of Computer Science, National University of Singapore
{chengwe?2, ooiwt}@comp.nus.edu.sg

ABSTRACT vertex Sp|
Progressive mesh streaming enables users to view 3D megtres o
the network with increasing level of details, by sendingreeaver-
sion of the meshes initially, followed by a series of refinatse To
optimally increase the rendered mesh quality, refinememdsld
edge collapse

be sent in descending order of their visual contributionsedeon

the user’s viewpoint. A common approach is to let the sender
decide this sending order, but the computational cost ofimgak Figure 1: Edge collapse and vertex split. This edge collapse
this decision prohibits such sender-driven approach froatirsy removes one vertex by collapsing the edge, V; to a vertex V%,
to large number of clients. To improve scalability, we prep@ and the vertex split reconstructs the edge fromVs. VerticesV;
receiver-driven protocol, in which the receiver decidessbnding ~ and V; are the cut neighbors ofVs.

order and explicitly requests the refinements, while thelsesim-

ply sends the data requested. The sending order is comptted a
the receiver by estimating the visibility and visual cobtitions of

the refinements, even before receiving them, with the he(erRif.
Experiments show that our protocol reduces the CPU costeof th
sender by 24% and the outgoing traffic of the sender by 40%.

model of the David statue, with 28 million vertices and 56-mil
lion triangles, needs more than 10 minutes to download at psMb
even after compression. A natural choice to reduce thenggitne

is progressive streaming, which allows users to see a coarse mesh
quickly, with quality improved incrementally as more date\es.

Categories and Subject Descriptors A commonly used representation of 3D models to support pro-
1.3.2a [Graphics Systemg Distributed/Network Graphics; C.2.4b ~ gressive streaming is progressive mesh [6], which is baseido
[Distributed Systemd: Distributed Applications operations:edge collapse andvertex split. With the edge collapse

operation, we can simplify a complex mesh into a simple basshm
by continuously collapsing one edge into a vertex. We reicoas

General Terms the original mesh by applying vertex split, the inverse & duge

Performance, Design collapse, in the reverse order of collapsing (see FigureThgre-
fore, progressive streaming can be implemented by senldéegtr-
KeyWOI’dS tex splits as refinements after sending the base mesh.
)) In progressive mesh streaming, it is desirable to incrdaseit
View-dependent streaming, progressive meshes sual quality on the client side as quickly as possible. Thealid
way is to send the vertex splits in the descending order df the
1. INTRODUCTION contribution to mesh quality, commonly measured by the Haus

dorff distance between the original and reconstructed rfgsis
Hausdorff distance is view independent, bandwidth may teteda
in sending invisible vertex splits before the visible ondareover,
even among the visible vertex splits, the view-independesiric
cannot reflect the real contribution to the visual qualityctiénts
with different viewpoints. A vertex split that significaptthanges
a mesh may change the rendered image only slightly.

A better metric for visual contribution of a vertex split, igh
considers the receiver’s viewpoint, is an image-basedimsin-
ilar to that proposed by Lindstrom and Turk [12], using theame

High resolution 3D models, such as artworks, cultural hgst
and scientific visualization are increasingly availablerothe In-
ternet. Stanford Digital Michelangelo Project [11], foraemple,
provides high resolution 3D meshes of statues by Michelange
While current generations of commodity GPU already enaielals
time rendering of these meshes, transmission of the mestegs o
the network remains a main bottleneck. For example, thef@tan

Permission to make digital or hard copies of all or part of twork for square error between the rendere_d imag__es of the origindl ares
personal or classroom use is granted without fee providatidbpies are reconstructed mesh. Based on this metriew-dependent stream-
not made or distributed for profit or commercial advantage that copies ing, in which vertex splits are sent in the descending ordléneir
bear this notice and the full citation on the first page. Toycoherwise, to contributions to the quality of rendered image, is intragtlic
republish, to post on servers or to redistribute to listguies prior specific In previous implementations of view dependent streamiry [1

permission and/or a fee. . .]
NOSSDAV '08 Braunschweig, Germany 15, 18, 10, 20], the server decides which vertex splits tal sém

Copyright 2008 ACM 978-1-60588-157-6/05/2008 ...$5.00. these implementations, the client sends its viewing paterseo

Sender Receivesender Receiver Sender Receiver
S
uest ete)
Re NI pare=
- "/e
I
- W
iy eMesh . _ -
nf Vview poin
Ormay a changed
()) (c)
common part sender—driven receiver—driven

Figure 2: Sender-driven protocol and receiver-driven proocol

the server, and the server sends the chosen vertex spétsdaft
termining the visibility and the appropriate resolutiondifferent
regions of the mesh (See Figure 2b).

This sender-driven protocol, however, has two significagdaky
nesses. Firstly, it is not scalable to many receivers. Deteng
visibility of vertices and sorting the visible vertex splibased on
their visual contributions are expensive operations. eoee the
sender needs to maintain the rendering state of each redeive
avoid sending duplicate data when receivers changes viatvpo

Secondly, due to the stateful design and huge computatienal
quirements, the sender-driven approach cannot be exteadigt
to support caching proxy and peer-to-peer architecture,dwm-
mon solutions to scalability. It is not realistic to requéaach proxy
or peer to provide much CPU time and memory. Furthermore, a
proxy or peer might not store the complete mesh.

To address the above weaknesses, we propose a receivar-driv
protocol, in which the receiver decides the sending orddrean
plicitly requests the vertex splits. The sender simply sethd data
requested (See Figure2c), so no expensive computatioredede
Furthermore, the server is stateless, so existing cachey fanad
peer-to-peer techniques can be applied.

The receiver-driven protocol also reduces the size of data s
by the sender. In sender-driven protocols, for each vepbi the
sender has to send identifications to indicate which veaéetsplit
(Vs in Figure 1), requiring at leagbg2n bits if n vertices exist [7].

In the receiver-driven protocol, however, the sender neetisend
these identifications since the vertex splits can be serrdicg
to the requesting order from the receiver. The identificatjcent
by the receiver, consumes the down-link bandwidth of theleen
which is often less likely to be the bottleneck than the unb:li

Implementing the receiver-driven protocol is non-trividdirst,
we need to assign each vertex a unique identification nuner s
that the receiver can explicitly request vertex splits. ddelc the
receiver has to efficiently decide the importance of a vesiait
based on partially received mesh. Although it is difficult fbe
receiver to accurately measure the visual importance ofr@we
split, we find that estimation suffices in our scheme.

The main contributions of our work are as follows. We propose
a receiver-driven protocol of view-dependent streamingctvsig-
nificantly reduces the CPU time of the sender and makes thliesen
stateless. Our protocol exploits the receiver's computaspurces
to approximate the optimal list of vertex splits to receieeirn-
prove the rendered mesh quality. We also introduce an dhgoiio
efficiently encode the receiver’s requests.

The rest of the paper is organized as follows. In Section 2, we
introduce the related work. We briefly review the traditioviaw-
dependent approaches in Section 3. Then, we present thearece
driven protocol in Section 4. We evaluate our protocol inteecs
and conclude in Section 6.

2. RELATED WORK

The view-dependent approach first appeared as a dynamic sim-
plification method used for adaptive rendering of a complBx 3
mesh [7, 13]. Only vertex splits that contribute to the rerde
image will be rendered, allowing real-time rendering of aneo
plex mesh even with limited rendering capability. Besidexpes-
sive mesh, other multi-resolution representations, swschestex-
clustering and subdivision scheme, are used in view-deperre-
finement systems [17, 2, 3].

Later, the view-dependent approach is used in progresseans-

ing of 3D meshes. In the scheme proposed by Southern et &. [15
the client is stateless and maintains only the visible d&teet al.
[16] and Kim et al. [10] proposed that received data are dtare
the receiver even after they become invisible, so they nettha
resent when they are visible again. In these papers, vi@eraent
approaches mainly aim at addressing limited renderinghibiya

Yang et al. [18] and Zheng et al. [20], on the other hand, use
view-dependent streaming to address limited network baditw
Yang et al. proposed a scheme where the server chooses the ap-
propriate resolution according to the available netwonkdvedth.
Zheng et al. [20] use prediction to reduce the effect of nétwo
latency and compensate the round-trip delay with the rémgler
time. These systems use sender-driven approach and do -hot ad
dress server scalability issues.

The main challenge of these view-dependent schemes isdindin
an appropriate subset of vertex splits to generate a setisfaren-
dered image on the client side. The flexibility of choosingiaset
of vertices, hence, is crucial in view-dependent strearrg this
flexibility is restricted by the dependency among the veseixs.

For a manifold mesh, a vertex split operation depends onxhe e
istence of (a) the vertex to be splivy(in Figure 1), (b) two cut
neighbors ¥, V;. in Figure 1). More dependencies exist if artificial
folds are strictly forbidden [7, 13], but in this paper wedge these
dependencies since we can tolerate temporary folds in bense.

To et al. [16] further remove the second dependency. In their
method, if a cut neighbor does not exist during a vertex st
ancestor will be used as the cut neighbor instead. Kim andee
improve this method so that the final mesh can keep the ofigina
connectivity. Kim et al. [8] propose a better scheme thabtsan
ordinary progressive mesh to be split in random order. Tleithod
is applied in our protocol to reduce the cut neighbor depecyge
and will be described in further details in Section 4.

The flexibility in choosing split order, however, increasies dif-
ficulty in developing an effective encoding scheme. Most €om
pression algorithms for progressive mesh choose a specifer o
of vertex splits to reduce redundancy by exploring the dati@n
between consecutive vertex splits. Moreover, compresatiaan
only be sequentially decoded so we cannot change the seading
der. One solution proposed by Yang et al. [18] is to divide the
whole mesh into several segments and encode them sepéarmmtely
trade off between flexibility and compression efficiencyeTwveak-
ness is that the size of the base mesh is relatively large shrec
original vertices in the border of segments are kept in theeba
mesh. Furthermore, the quality of the base mesh is uneven.

Some related work [8, 19] have proposed compression ahgasit
that allow random splitting of a mesh without sacrificing qoes-
sion efficiency. These algorithms are not designed for netwo
transmission, but our scheme extended several ideas fromekKi
al. [8] and applied them in view-dependent streaming.

The discussion above focuses on view dependent streaming of
3D meshes. View dependent streaming have also been used for
other 3D data, such as terrain [4] and 3D scenes [14].

Figure 3: Vertex hierarchy and vertex front. A rectangle repre-
sents a vertex and the number inside is its identification num
ber, including tree ID and node ID.

3. CURRENT VIEW-DEPENDENT
APPROACHES

In this section, we briefly review the current view-depertcen
proaches since they are the basis of our scheme.

View-dependent systems often organize the vertices laieirar
cally. For example, Hoppe [7] represents parent-childi@iamong
the vertices in a progressive mesh as a forest of binary, tneesed
vertex hierarchy, in which the root nodes are vertices in the base
mesh, and the leaf nodes are vertices in the original mestHjge
ure 3). A vertex split replaces one vertéx (n Figure 1) by its two
children (;, andV% in Figure 1). Thus, after applying some vertex
splits, the result is a mesh lying between the original meshthe
base mesh. The set of vertices in current mesh is cedietei front
[7] (see Figure 3).

Due to dependencies among the vertices, visibility deteami
tion of a vertex cannot be based on the vertex alone. An bieisi
vertex still needs to be split if any of its descendants ifhlés To
avoid determining the visibility recursively for all the steendants,

Sender Receive

Data

E_VS,

j Eﬁvsjs%
e [BVSTEY

VS

IDn |E_VS

n

Figure 4: The process of the sender in receiver-driven protcol.
E represents encoded data, and VS means vertex split.

deduce the IDs of the ancestors and the descendants of eseh ve
For example, given ‘1001’ as the ID of a vertex, we can dedbat t
‘100’ is the ID of its parent, ‘10010’ is the ID of its left cliland
10011’ is the ID of its right child. This property frees thersler
from sending the IDs of the two newly generated vertidésdnd
V4 in Figure 1), as they can be deduced by the receiver.

The above property is also essential in splitting a progress
mesh in random order, in which the set of neighbors of a vertex
during the decodingv” may not be\, the set during the encoding.
If a cut neighbor with an ID of d is not in A/, then either one of
its ancestors or at least one of its descendants must bedohg t
[8]. In the former case, the ancestor is found and used asuthe c
neighbor since its ID is the prefix dfd. In the latter case, the
descendants of the original cut neighbon\ith are found since they
all haveld as their prefix. Kim et al. [8] propose a method to find
out the proper one as the cut neighbor and they show thattdespi
using replacement in the vertex splitting, the original mean be
accurately reconstructed when all the vertex splits aréexpp

Kim et al. [8] also propose an algorithm to encode the IDs af tw
cut neighbors at about 12 bpv (bit per vertex) and the coatdm

a common method is to use a bounding sphere to represent a vers, y, andz at about 21 bpv (with 12 bit quantization). Although

tex and all its descendants. Then, we can safely ignore axert
split if its bounding sphere falls outside the view frustu®imi-
larly, a bounding cone of normal is used in back face culling [
These bounding object-based methods are not appropriaterin
receiver-driven protocol. First, it can only determine tbility,
but cannot sort the vertex splits by their visual contribog. More
importantly, the sender has to send these bounding paresweth
the vertex splits, almost doubling the data size. We expbain
solution to this issue in Section 4.

After deciding the visibility, the sender sends the chosemex
splits to the receiver. Six parameters are needed in a vepix
of a manifold mesh: the identification number (we call ID from
now on) of the vertex to be splitf in Figure 1)Ids, the IDs for
two cut neighbors(; and V. in Figure 1),1d; andId,, and the
coordinates:, y, andz of the right child {4 in Figure 1). Here, half
collapse is used s&, remains at the same position Bf. Many
implementations use the sequence number of a vertex gedexsit
its ID, but this method enforces the sender to be statefaksihe
sender has to remember the sending order of each receiver.

Kim and Lee [9] proposed a new method, in which every vertex
has an ID that is independent of the sending order. The ID of a
vertex is a bit string with two parts: tree ID and node ID. Tieas
the sequence number of the root of this tree in the base megh, a
the node ID represents the path from the root to this vertaken
binary tree. For example, if the tree ID is ‘01’, which is atke ID
of the root vertex of this tree, the bit string ‘010’ and ‘OXle the
IDs of the left child and right child of the root vertex restieely.

A vertex hierarchy with the assigned IDs is shown in Figure 3.

Besides being independent of the sending order, anothefiben
of this scheme is that the IDs embed the hierarchy. Thus, we ca

their paper focuses on random access of local meshes, wééind t
this method is useful in progressive streaming as well.

4. RECEIVER-DRIVEN PROTOCOL

We now present our proposed receiver-driven protocol fenwvi
dependent progressive mesh streaming. We first introdecprth
cess of transmitting a progressive mesh. Then, we explainthe
receiver decides the requesting order. Finally, we exglain we
efficiently encode the request from the receiver.

4.1 Mesh Transmission

A streaming session is initiated when the receiver requests
a specific mesh. The sender returns the complete base mesh and
other necessary information (See Figure 2a) to the receiver

Then, the receiver determines the requesting order of thiexve
splits based on the received base mesh, encodes their liDseads
them to the sender. On the sender side, the vertex splitdcaszls
in an associative array, which maps the ID to the vertexsphifter
receiving the encoded IDs from the receiver, the senderdieciine
IDs and searches for the vertex splits in the associativay avith
IDs as the key values. The matched vertex splits are senttbdlck
receiver (See Figure 4). The sender does only two things edgec
IDs and retrieve the vertex splits, and is therefore stasele

4.2 Determining Visual Importance

We now introduce how the receiver decides the requestingrord
We cannot directly use the mean square error between rehiere
ages of reconstructed mesh and original mesh to determénerth
der, since we need to know the importance of a vertex spldrieet

Figure 5: Rendered image on the receiver’s screen. The shadle
are the screen area of verteX/; and vertex Va.

is received. To overcome this problem, we estimate the itapoe
of the vertex splits to request for based on the received nusgtg
the screen-space area of all the neighbor faces of a verttheas
metric of its visual importance (see Figure 5). The ratienalthat

if the screen area of a vertekj(in Figure 5) is larger, it is likely the
quality can be improved more by splitting this vertex. MoreQ
the screen-space area can be efficiently computed with theohe
the GPU, by simply counting the number of pixels inside tleega
in the frame buffer.

righti subtree

100100
left right

Figure 6: The code of ID of the bottom two vertices is
1011001000.

dz, dy, anddz on average. It is worth noting that more bits are
needed forlz, dy, anddz for the earlier vertex splits (about 30 to
35 bpv) since their values are larger. The number of bits ested
decreases significantly for later part of the vertex spktda dy,
anddz decrease. We think that compressingy, andz based on
better prediction techniques may further increase theefiody and
it will be an interesting topic of future work.

We now introduce how we encode the vertex split IDs, which
need 32 bpv without compression. The two parts of an ID, ttee |

Once the screen-space areas are computed, the receiver sendd node ID, are encoded separately. We use a bit stadgto

the requests following the descending order of the scrpanes
area. If the viewpoint changes, the visual importance véllrée-
computed and a new list of vertex splits will be requestedc&the
received splits refine the mesh, the receiver recomputesgishal
importance periodically to update the order even withoeswaoint
change. The refresh period, one second in our experimende
decided by the receiver based on mesh size and network bdtmdwi

The client can stop requesting once it finds that the rengerin
quality is sufficient. The receiver has the flexibility of ¢muing
to request for the remaining vertex splits for future useah also
pre-fetch some invisible vertices based on the predictidatare
viewpoints.

If the receiver stops requesting when the visual qualityaitss
factory, it may miss some visible vertices since the vigipdeter-
mination is just an estimate. Some invisible vertices maxeh@o-
tentially visible descendants, but they will not be recdiifetheir
parent has no screen-space area. Fortunately, in most, thises
kind of error is small and tolerable (See the experimentltesu
Section 5). If strict accuracy is needed, the receiver caosé to
continue requesting for the remaining vertex splits.

4.3 Encoding of Vertex Splits and IDs

In this section, we explain how we encode the vertex splits an
the IDs of the requested vertex splits. Note that, in our wonk
consider only manifold meshes and use half collapse in thplsi
fication.

To encode a vertex split, we need to encode the IDs of the tivo cu
neighbors and itg, y, andz coordinates. We use Kim’s algorithm
[8] to code the IDs of the cut neighbors. To encode the coatds)
instead of encoding, y, andz directly, we encod@z, dy, anddz
with Huffman coding algorithm. Herér = « — zo, dy = y — vo,
anddz = z — 20, andxo, yo, andzo are the coordinates df;,
the vertex to be split. The rationale to code the differensebat
they have less entropy, especially for the later part ofexesplits,
which only change the coordinates slightly. It is worth ngtthat
all the encoding process are done off-line and the encodeexve
splits are stored in the associative array, so the encodithgnat
increase overhead to the sender.

According to the results of our experiments with the Stashfor
Happy Buddha model, we can quantize, dy, anddz to 14 bits.
We need 11 bpv for botlid; and Id, and 20 bpv for all three of

store the encoded result. First, we sort the IDs in a packetrding

to the tree IDs, in increasing order. Then, we store the fiest D

to code and store each of the following tree ID as the difference
from the previous tree ID. Since they are sorted, the diffeges are
positive and relatively small numbers.

Algorithm 1 Encoding Vertices in One Tree. Input: IDs of vertices
in a tree to be split; Output: a bit string as ttule.

if no vertex needs to be encode in the left subtines
append ‘0’ tocode;

else
append ‘1’ tocode;
encode the left subtree;

end if

if no vertex needs to be encode in the right subtinea
append ‘0’ tocode;

else
append ‘1’ tocode;
encode the right subtree;

end if

Next, we encode the node IDs in a tree into a bit string with a
recursive algorithm (See Algorithm 1). In brief, we use twis o
represent whether one or more descendants need to be Spfitr(*
yes and ‘0’ for no) in the left subtree and right subtree retpely.

In the example shown in Figure 6, for the root vertex, sindeast
one vertex in the left subtree needs to be split, we appentb‘l’
the code and encode the left subtree. At the root of the lefrse,
since no vertex needs to split in its left subtree, we app8éhdrid
check its right subtree. Vertices to be split exist in théatrigub-
tree, so we append ‘1’ and encode its right subtree reclysase
100100'. Finally, we return back to the root and append i@ite
no nodes in the right subtree needs to be split. Therefoeaesult
is 1011001000

During decoding, the sender traverses the tree accorditigeto
bits of the code. The bit ‘1’ means to decode the subtree amd th
bit ‘0’ means to stop and return. If a vertex has no descesdant
that needs to be decoded, then this vertex is split. Decaslidgne
when the procedure returns to the roots.

The advantage of this method is that the code length is \ariab
and the length can be determined without extra flags. Thengodi

efficiency depends on how many vertices need to be splitensid
tree. Two bits are assigned to each vertex traversed durangr-
coding (including the vertices to be split and their ancesitotheir
path to the roots). Thus, the code efficiency is higher wheremo
vertices in one tree are encoded since the overhead is aetrti
across the vertices.

We can further reduce the data size for some receivers whose
up-link (receiver to sender link) bandwidth is much lesatlize
down-link (sender to receiver link) bandwidth. These reees can
request the sender to send not only the vertex split for tipeasted
vertex but also the vertex splits for its descendant. Fomgne, if
the receiver sends an ID ‘10010’, the sender can send veptiéx s
for ‘100107, ‘100100, ‘100101’. The receiver can expligiindi-
cate in the packet how many descendants to send. This md#wwd a
allows the server to better utilize its outgoing bandwidgtfibing
the pipeline when RTT between the server and the client is. hig

View Point 2

View Point 1

View Point 3

5. EVALUATION

In this section, we introduce the experiments results ttuata Figure 7: The upper row shows the rendered images, and the
our protocol. We choose two computers on a LAN as the sender |oyer row shows the reconstructed meshes when the quality of
gnd the receiver. We use several meshes from Stanford Witiver | odered images is acceptable. The rectangles over the imes
in our experiments, but we only present the result of Happydbia represent the viewable areas of the user.
in this paper due to the space limit.

5.1 CPU Usage of the Sender View Point 1| View Point 2 | View Point 3
We compare the CPU usage of the sender in sender-driver proto | error pixels 305 226 115

col and receiver-driven protocol after all vertex splite agceived proportion 0.12% 0.09% 0.05%

(see Table 1). The implementation of the sender-driveropobtis PSNR 37.8 38.3 40.6

modified from our receiver-driven protocol using the vibtpide-
termination algorithm from Kim et al. [10]. In both experints,

the client changes its viewpoints exactly the same way. Apzder

with an Intel Core 2 Duo 2.4 GHz CPU and 4 GB memory is used
as the sender. We profile the code five times with Google CPU pro
filer and take the average value. We can see that the reaiver
protocol reduces the CPU usage of the sender by 24% since-we re
move the processes for determining the visibility and uipdathe
vertex front on the sender.

5.2 Transmitted Data Size

During transmissions of the Happy Buddha model (542652 ver-
tex splits) using the receiver-driven protocol, 1.83 MBy&ge sent
from the receiver to the sender as vertex split IDs, and 2.Bytes
are sent from the sender to the receiver as vertex splitss, o
average, IDs cost 27 bpv and vertex splits cost 32 bpv. Ifeend
driven protocol is used, both IDs and vertex splits are semt the
sender to the receiver, so the total data sent by the sereldr G
MBytes. Thus, by moving IDs from the down-link to up-link, we
reduce the outgoing bandwidth consumption of the senderdrg m
than 40%.

Reducing the outgoing data size also shortens the dowmigadi
time. In the receiver-driven protocol, although the totahsmitted

Table 2: Errors of rendered mesh when only visible vertices g
split. There are 250,000 (508 500) pixels in total.

size remains the same, about 40% of the data are now traedmitt
in the up-link of the client. On duplex links where up-linlatis-
mission can occur concurrently with down-link transmissithe
total transmission time reduces by about 40% as well.

5.3 Quality

We follow Lindstrom and Turk [12] and use an image-based met-
ric to evaluate the quality of a reconstructed mesh. It isgrable
since the representation of a 3D mesh on the receiver sitle 2D
rendered image. In this paper, we use the PSNR value of the ren
dered image as the metric, with the rendered image of thénafig
mesh as the reference.

Figure 8 shows how PSNR changes with the amount of data re-
ceived. Assuming constant transmission rate, this figwe stiows
how PSNR value changes with time. We do the experiments with
three different viewpoints (see Figure 7). In receivexini proto-
col, the quality grows much faster than sender-driven atbe-
cause data transmitted are reduced. View-independeinsing,
although having the highest compression ratio (20 bpv {td)stes

Sender-drivery Receiver-driven majority of bandwidth in sending invisible vertex splits & in-
send base mesh 1.40s 1.13s creases the quality at a slower rate, especially when ontpal s
decode IDs - 1.55s part of the mesh is visible (e.g. View Point 3).
search vertex split 1.85s 1.85s As we explained in Section 4, if the receiver stop requestarg
determine visibility 0.41s - tex splits after all the visible splits received, some ptigdly vis-
update vertex front 1.41s - ible vertices may not be generated. We use two methods to com-
encode IDs 0.94s - pare the rendered images between the original mesh andcthre re
others 0.16s 0.16s structed mesh when all visible vertices are split. One ist fiow

many pixels are different and the other is to compute the PSNR

Table 1: Comparison of CPU usage of the sender. value. Table 2 shows that the error is negligible.

PSNR

Relation between PSNR and received bytes

Relation between PSNR and received bytes

Relation between PSNR and received bytes

3
3
4
P
Y
PSNR

Receiver-Driven 1
SenDer-Driven ---+---

View-independent

10 I I | N

10 L L

Receiver-Driven B
Sender-Driven ---+---
\(iew-independent

PSNR

Receiver-Driven B
Sender-Driven ---+---
\(iew-ingepenqent e

L 10 L L L

600 900 1200
Received Bytes (KB)

1500 0 200 400

View Point 1

600

Received Bytes (KB)

View Point 2

800 1000 1200 0 100 200 300 400 500 600 700 800

Received Bytes (KB)

View Point 3

Figure 8: How PSNR changes with amount of received data. We twff the curve when PSNR = 35 as its value approaches infinity
when enough data are received.

6.

CONCLUSION

In this paper, we propose the receiver-driven approachiéw-v
dependent streaming of 3D meshes. Our preliminary studywsho
that the approach is promising in reducing the sender’sureso
requirements, both in CPU and outgoing bandwidth. Thelstge
nature of the sender in our approach makes it a natural cliwice
peer-to-peer mesh streaming and caching proxy. We plamtly st
how our protocol can be applied in these two areas. Our pobtoc

can also be easily extended to support streaming of a scehe wi

multiple mesh objects.

Acknowledgment

This work is supported by National University of SingaporeaA
demic Research Fund R-252-000-306-112.

7.
(1]

(2]

(3]

[4]
[5]

[6]
[7]

(8]

REFERENCES

P. Alliez and M. Desbrun. Progressive compression for
lossless transmission of triangle meshedProceedings of

S GGRAPH '01, pages 195-202, Los Angeles, USA, August
2001.

P. Alliez, N. Laurent, H. Sanson, and F. Schmitt. Effi¢cien
view-dependent refinement of 3D meshes using
sqrt(3)-subdivisionThe Visual Computer, 19(4):205-221,
July 20083.

D. I. Azuma, D. N. Wood, B. Curless, T. Duchamp, D. H.
Salesin, and W. Stuetzle. View-dependent refinement of
multiresolution meshes with subdivision connectivity. In
Proceeding of AFRIGRAPH ' 03, pages 69-78, Cape Town,
South Africa, May 2003.

F. Chang and W. chi Feng. Streaming terrainsPtaceeding
of NOSSDAV' 08, Urbana-Champaign, USA, June 2008.

P. Cignoni, C. Rocchini, and R. Scopigno. Metro: Measgri
error on simplified surface€omputer Graphics Forum,
17(2):167-174, 1998.

H. Hoppe. Progressive meshes Aroceeding of S GGRAPH
'96, pages 99-108, New Orleans, USA, August 1996.

H. Hoppe. View-dependent refinement of progressive
meshes. IProceeding of SGGRAPH '97, pages 189-198,
Los Angeles, USA, August 1997.

J. Kim, S. Choe, and S. Lee. Multiresolution random
accessible mesh compressi@omputer Graphics Forum,
25(3):323-331, September 2006.

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

J. Kim and S. Lee. Truly selective refinement of prognessi
meshes. IfProceedings of Graphics Interface 2001, pages
101-110, June 2001.

J. Kim, S. Lee, and L. Kobbelt. View-dependent mesh
streaming with minimal latencynternational Journal of
Shape Modeling, 11(1):63—-90, June 2005.

M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Kel,

L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg,
J. Shade, and D. Fulk. The digital Michelangelo project: 3D
scanning of large statues. Rroceedings of SGGRAPH ' 00,
pages 131-144, New Orleans, USA, July 2000.

P. Lindstrom and G. Turk. Image-driven simplificatié&xCM
Trans. Graph., 19(3):204-241, July 2000.

D. Luebke and C. Erikson. View-dependent simplificatad
arbitrary polygonal environments. Rroceeding of

S GGRAPH '97, pages 199-208, Los Angeles, USA, August
1997.

D. E. Ott and K. Mayer-Patel. Coordinated multistreagi
for 3d teleimmersion. IfProceeding of ACM MM’ 04, pages
596-603, New York, USA, October 2004.

R. Southern, S. Perkins, B. Steyn, A. Muller, P. Maraisq
E. Blake. A stateless client for progressive view-depehden
transmission. IiProceedings of Web3D '01, pages 43-50,
Paderborn, Germany, February 2001.

D.S. P. To, R. W. H. Lau, and M. Green. A method for
progressive and selective transmission of multi-resofuti
models. InProceedings of VRST ' 99, pages 88-95, London,
UK, December 1999.

J. C. Xia and A. Varshney. Dynamic view-dependent
simplification for polygonal models. Iproceedings of VIS
'96, pages 327-334, 498, San Francisco, USA, October
1996.

S. Yang, C.-S. Kim, and C.-C. Kuo. A progressive
view-dependent technique for interactive 3-D mesh
transmissionlEEE Transactions on Circuits and Systems for
Video Technology, 14(11):1249-1264, November 2004.
S.-E. Yoon and P. Lindstrom. Random-accessible
compressed triangle mesh&8EE Transactions on
Visualization and Computer Graphics, 13(6):1536-1543,
November-December 2007.

Z. Zheng, P. Edmond, and T. Chan. Interactive
view-dependent rendering over networksSEE Transactions
on Visualization and Computer Graphics, preprints, 2007.

