
Towards a Software Component Ontology
Alex Talevski

Digital Ecosystems and Business
Intelligence Institute (DEBII), Curtin

University of Technology

GPO Box U1987, Perth, WA, 6845,
Australia

A.Talevski@cbs.curtin.edu.au

Pornpit Wongthongtham
Digital Ecosystems and Business

Intelligence Institute (DEBII), Curtin
University of Technology

GPO Box U1987, Perth, WA, 6845,
Australia

P.Wongthongtham@cbs.curtin.
edu.au

Surasak Komchaliaw
Digital Ecosystems and Business

Intelligence Institute (DEBII), Curtin
University of Technology

GPO Box U1987, Perth, WA, 6845,
Australia

Maxtor_p@hotmail.com

ABSTRACT
Research has shown that component-based software engineering
leads to software that exhibits higher quality, shorter time-to-
market and therefore, lower development cost. However, the
development of component-based systems has been widely
plagued with problems surrounding the integration of third-party
components. Currently, software developers are forced to rely on
ambiguous definitions of a component’s services. There is no easy
to understand protocol for defining how third-party components
and component compositions are described and integrated into
systems. Most vendors specify their components’ services in a
proprietary or context dependant fashion. This makes it difficult
to clearly understand a component’s services, their use and their
operational pre and post conditions. Software Engineering
ontologies define common sharable software engineering
knowledge. They explicitly define software engineering concepts,
their relationships and their interactions. In this paper, we propose
a Software Component Ontology that specifically defines a
formal, explicit specification of a shared conceptualization in the
domain of software component engineering. We propose the use
of our software component ontology as the basis for the
development of future component compositions and component
based applications.

Categories and Subject Descriptors
D.2 [Software Engineering]: Software Component.

General Terms
Management, Standardization.

Keywords
Software Component, Ontology, Software Engineering.

1. INTRODUCTION
Large-scale systems account for the majority of all software
development undertakings [1]. Growing enterprises demand rapid
and frequent software development, maintenance, customization
and evolution. However, the software development industry tends
to develop large-scale systems that are monolithic, error-prone
and expensive [2][3][4]. Such systems normally evolve from an
uncoordinated build-and-fix pattern. A lack of a systematic
approach to large-scale software development has resulted in
many project failures [2][3][4]. Failures such as these can be
attributed to many factors relating to software development
complexity.

1.1 Software Complexity
Parnas [5] suggests that when a system is described by a
continuous function, it can contain no hidden surprises. Small
input changes should always cause correspondingly small changes
in outputs [6].
Software programmers, analysts, architects and testers can only
simultaneously comprehend seven chunks of information, plus or
minus two [7]. Therefore, the distinguishing characteristic of
large-scale software compared with the smaller variants is that it
is much more difficult to grasp. A large-scale software system
may have many variables that reside on multiple threads of
control. The collection of variables and various processes
represents the state of a software application. Discrete systems
may have a vast number of possible combinations that potentially
place a system in a new state. If an error is made as a result of
improper development reasoning, the state of the system may
change unpredictably.

1.2 Component based Software
Software complexity has plagued large-scale system development
projects. In particular, we have noticed that rapidly changing
requirements, diverse end-user bases, and the creation of extended
enterprises (collaborative development models) play a major part
in the necessity for simplified software development. Components
extend the existing object principles by strengthening the role of
an interface. A component interface separates the component
implementation from its interaction. It contains a collection of
operations and attributes that specify the services that a
component provides. Component-based software engineering is a
way of raising the level of abstraction for software development
so that software development can be simplified through a more

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

ACM COPYRIGHT NOTICE:
Copyright © 2008 by the Association for Computing Machinery, Inc. Permission to make digital or hard
copies of part or all of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org.

 © ACM, 2008. This is the author's version of the work. It is posted here by permission of ACM for your personal use.
 Not for redistribution. The definitive version was published in Proceedings of the 10th
International Conference on Information Integration and Web-Based Applications & Services, iiWAS 2008.
ISBN: 978-1-60558- 349-5, iiWAS 2008. http://doi.acm.org/10.1145/1456492.1456507

coordinated divide and conquers approach to software problem
solving. This results in benefits such as:

• Reusability – Reusability removes dependencies on
development tools and languages, and allows the reuse
of already tested and certified components that are of
high quality and perform well.

• Productivity - When reusable artifacts are applied
throughout the software process, less time is spent
creating the plans, models, documents, code, and data
that are required to deliver a system.

• Quality - Ideally, a software component that is
developed for reuse would be verified to be correct, and
would contain no defects. As a component is reused,
defects are found and eliminated and its implementation
is refined.

• Cost - A reduction in cost results from less effort being
spent developing the software product. In addition, an
increase in software quality lowers software
maintenance costs.

Component-based approaches achieve loose coupling among
interacting software components where disparate components
interact using a common interaction protocol and architectural
constraints. By abstracting a component’s internals through an
interface, components become well isolated and standardized.
Component services are well-defined, self-contained, and do not
depend on the context or state of other services [8]. Therefore,
composite component architectures can be formed without
knowing the specific implementation details of a particular
service. This allows specialized component developers to focus
on their areas of expertise while ignoring other complexities and
continually refining component quality and performance. These
components are then guaranteed through their interface definition
and acquired as building blocks.

1.3 Component Tailorability
Tailorability is a formal concept which defines how generic
software can satisfy the specialized, rapidly changing, unclear and
/ or evolving changes in third-party system requirements. It
provides a means for the dynamic creation and modification of
software based on multiple levels of detail and complexity. Morch
[9] identified three levels of tailoring activity that typically exist
within a software development project.

• Customization – Customization refers to user interface
modifications.

• Integration – The integration level of tailoring refers to
changes in application components, compositions,
interconnections and their configuration.

• Extension – The extension level of tailoring refers to the
addition of new application components and
configurations.

Each tailoring activity requires formal, explicit specification and a
shared conceptualisation for it to be eased within a distributed
development environment where third-party components are
reused. Using a framework as a basis for the creation and
modification of software, it possible to construct, customize,
integrate and evolve software in a straightforward way.
With the evolution of the web and web services it is now more
and more common for software developers to acquire third party
components online and reuse them within their own application

contexts [10] in a distributed development environment.
Unfortunately, even with the broad benefits of component
development, component-based systems have been widely
plagued with problems surrounding system composition and
integration. Currently, software developers are forced to rely on
lacking or ambiguous definitions and specifications of a
component’s services. There is no easy to understand protocol for
defining how a third-party component is described, configured,
integrated and modified to fit within third-party system
requirements or within distributed development environments.
Most vendors specify their components’ services in a proprietary
or context dependant fashion. This makes it difficult to clearly
understand a component’s operational properties and
requirements.

2. ONTOLOGIES
Changes are inevitable during software development projects;
such projects are continuously confronted with an evolving
specification problem. If such changes are not properly tracked
and traced or maintained, this would impede the development and
third party integration of components. In component projects, the
project data needs to be modified periodically to reflect

• project development progress
• changes in the software requirements
• changes in design
• additional functionality
• incremental improvements
• reconfiguration

Ontologies are a widely accepted state-of-the-art knowledge
representation. Software engineering concepts, ideas and
knowledge, software development methodologies, tools and
techniques are organized into a software engineering ontology
that is used as the basis for classifying the communication
concepts by enabling specification, reasoning, problem solving
and other intelligence aspects within software development
projects.
We have merged Gruber’s [11], Borst’s [12], and Studer’s [13]
definitions of an ontology as a basis for the software engineering
ontology definition. Ontologies are formal, explicit specifications
of a shared conceptualization in the domain of software
engineering with the following properties;

• machine-process-able semantics
• explicitly defined
• consensual knowledge
• abstract model

When coupled with multi-agent systems, ontologies allow greater
ease of communication by aggregating the agreed project
knowledge with domain knowledge, and other concepts of
software engineering into a shared information resource platform
that is distributed amongst the development team and others that
reuse the projects artifacts. The first Software Engineering
Ontology is available online at www.seontology.org.
In this paper we present the model of our software component
ontology using the notations proposed in [14] to represent the
ontology and communication architecture. The ontology will be
transformed to a software development resource using the web
ontology language, OWL, and can be accessed by multi-site,
multi-team and multi-development groups. The development of

the software component ontology basically consists of two
processes i.e. (i) creating concepts or ontology classes and the
relationships that hold among them; (ii) defining constraints of the
relationships or ontology restrictions.

3. SOFTWARE COMPONENT
ONTOLOGY
A software component ontology is well defined, both human and
machine understandable, common, standardized and sharable
software engineering knowledge within the component ware
domain. It is concerned with all processes of component
production from the stages of component requirements through
verification and validation. It defines component engineering
concepts, abstractions, relationships and interactions as domain
concepts and instantiations for manual or automated reasoning
surrounding component compositions and interaction. Software
component ontologies signify standardized project information
which evolves to reflect component development. It fosters a
seamless and virtual intra project environment of project data
across sites and third party vendors / buyers. In order to define
components and allow them to be discovered, identified, queried
and reused, the ontology defines the use of components within a
software development environment. Using the software
component ontology, it is possible to define components through
uniquely identifying and querying their, description, interfaces,
operations, attributes, pre and post conditions, performance
characteristics and extra functional properties. The ontology
enables effective ways of distributing such knowledge for
software engineers, software developers and automated
components systems. Reaching such a consensus of understanding
is of benefit in a distributed and/or third-party component
development environment.
In this section, we focus on component specifications and
compositions. Using the Software Component Ontology,
components, their interfaces and their interconnections are
defined as an ontology specification. This explicit model supports
software tailoring by defining application constructs, their
composition and interaction. External entities (other applications
and constructs) may access this ontology data in order to evaluate
the composition of a tailored system or use the services that it
provides. A composition is typically formed from many
interconnected components that are constructed in a layered and
hierarchical manner. Interconnected compositions are coupled
using operation and attribute connectors and adaptors.

3.1 Component
The Software Component Ontology model illustrated in Figure 1
represents an explicit specification of a single software
component and its interface.
A component may expose a number of interfaces. Each interface
either provides or requires services in the form of attributes and
operations. An attribute is a named property value that defines the
characteristics and state of a component. An operation is the
implementation of a specific service that represents the dynamic
behaviors of a component. Operations are specified using their
input and output parameters and pre and post conditions.

<<Concept>>
Component Specification

<<Concept>>
Operation Specification

Pre-condition Multiple String
Post-Condition Multiple String

<<Concept>>
Required Operation

<<Concept>>
Attribute

<<Concept>>
Required Attribute

<<Concept>>
Provided Attribute

<<Concept>>
Provided Operation

<<Concept>>
Required Interface

<<Concept>>
Interface Specification

<<Concept>>
Provided Interface

<<Concept>>
Input Parameter

<<Concept>>
Parameter

<<Concept>>
Output Parameter

1..*
has

<<Concept>>
Interface Permission

has
1..*

0..*
has

has

has

has

has

has

has

has

0..*

0..*

0..*

0..*

0..*

0..*

0..*

Figure 1. Software component ontology model

3.2 Customization
Graphical User Interfaces (GUI) attempt to reduce the complexity
involved in using the computer by utilizing the great pattern
recognition and graphic processing power of the human mind. A
typical user interface contains a number of windows in the shape
of a form. Forms can contain a number of controls which in turn
can embed controls within them. User interface and control
behavior is typically specialized through the modification of a
control’s attributes, operations and event mappings.
The Software Component Ontology User Interface model
illustrated in Figure 2 describes a component’s user interface and
its configuration, composition and interaction with underlying
components.

Figure 2. Software component ontology user interface model

3.3 Integration
Connectors and adaptors provide a level of indirection that
reduces dependencies among components. Interconnected
compositions are coupled using operation and attribute connectors
and adaptors.

Attribute Connectors
Figure 3 illustrates a Software Component Ontology Attribute
Connector. Attribute connectors are used to connect required and
provided attributes. Once connected, a required attribute always
requests the value it requires from the provided attribute that it is
connected to. Two attribute connector types exist. Attribute
connectors can be used to connect required component attributes
to provided attributes or operation returns, or to a static value
provided by the user. Attribute adaptors are connectors that
translate component interaction.

Figure 3. Software component ontology attribute connector

model

Operation Connectors
Figure 4 illustrates a Software Component Ontology Operation
Connector model. Like attribute connectors, operation connectors
are used to connect required and provided operations. Once
connected, a required operation always calls the provided
operation that it is connected to. Two operation connector types
exist. Operation connectors can be used to connect required
component operations to provided operations or attributes, or to a
static return value as provided by the user. Attribute connectors
may be used when required to connect operation parameters.
Operation adaptors may be used to connect an incompatible
provided operation.

Figure 4. Software component ontology operation connector

model

3.4 Extension
A component implemented by combining the functionality
provided by others is referred to as a composite component. The
process of extending applications through component composites
is referred to as component composition. Component composition
is an iterative process where we define new and increasingly
complex component compositions in a recursive and hierarchical
fashion. Therefore, component-based applications represent
groups of interconnected component plug-ins in a composite
architecture. Whenever a component passes a message to another,
the two components are said to be synchronized. The interaction
between client and server is predefined as an interaction protocol.
The ultimate goal of this approach is the use of a plug and play
strategy where components are used as building blocks and the
interconnection of such components is performed through the use
of models and automated tools. Our approach extends
applications from four key constructs; Application Solutions
(Figure 5), Service Modules, Compositions, and Components
(Figure 6).

MODULE 1

APPLICATION
SOLUTION

CONNECTOR / ADAPTOR

MODULE 2 MODULE N

Figure 5. Application solution

Components’ compositions and interconnections must be
specified using the software component ontology in order to assist
solution developers and automated systems with specification and
reasoning surrounding the construction of component based
applications. The whole set of software component concepts are
transformed into the generic software component ontology as
domain knowledge in the area of software engineering. The
software component ontology is divided into generic sub-
ontology and the specific sub-ontology. The generic software
component ontology represents all software component concepts
while specific software component ontology represents some
concepts of software components for the particular project need.

COMPONENT 1

COMPONENT 2 …...

COMPONENT N - 1

COMPONENT
COMPOSITION 1

COMPONENT N

COMPONENT
COMPOSITION N

COMPONENT

COMPOSITION N + … 1

COMPOSITION LAYER 1

COMPONENT LAYER

COMPOSITION LAYER 2

MODULE
USER

INTERFACE

MODULE

…... COMPOSITION LAYER L

Figure 6. Service module

4. SOFTWARE COMPONENT
ONTOLOGY MANAGEMENT
The ontology system is built on top of Jena [15]. Developed by
Hewlett-Packard, Jena 2.1 is a framework with the capacity of
manipulating ontologies [16]. The ontology system provides
navigating, querying, and manipulating functions. The design
philosophy of the ontology system is to use the in-memory
storage model and serialize it into a physical document stored in
the ontology repository. The ontology system provides three
services: navigating, querying and manipulating services. To
navigate the software component ontology, the ontology system
reads the OWL software component ontology into a model and
then accesses the individual elements. The software component
ontology can be navigated for clarification or classification of
certain concepts. Software component ontology queries serve as a
searching tool to help narrow down the vast number of concepts
and instances in the ontology. The software component ontology
could be queried on interface definitions, component composition,
component specification, etc. By consulting the software
component ontology, automatic selection and composition of
software components based on interface definition can be
achievable by a software agent.

Specific component ontology instances can be added, deleted and
updated. There will be changes over a period of time made to the
instantiations of the ontology. The changes will be recorded by a
logger object. Basically, instantiations can be updated by three
basic operations: add, delete and modify. The add operation
extends the existing instantiations of the ontology with new
instantiations. The delete operation removes some instantiations
from the ontology. The modify operation modifies some
instantiations of the ontology but it still keeps its original
construct. Generally, any update to the instantiations of ontology
can be described by a sequence of the three operations. For
example, a delete operation followed by an add operation can be
considered as a replacement operation. Notice that the
replacement operation loses its original construct while the
modify operation still maintains its construct.

5. CONCLUSION AND FUTURE WORK
Component-based software engineering leads to software that
exhibits higher quality, shorter time-to-market and therefore,
lower development cost. However, the development of
component-based systems has been widely plagued with problems
surrounding the integration and composition of third-party
components. Currently, software developers are forced to rely on
ambiguous definitions of a component’s services. There is no easy
to understand protocol for defining how third-party components
and interconnected component compositions are described and
integrated into systems that are developed in multi-site
development environments. The lack of a framework for
expressing component collaboration makes component-oriented
programs more complicated to maintain, expand and widely
reuse. The Software Component Ontology outlined in this paper
defines common sharable software component knowledge.
Software component concepts, their relationships and their
interactions are explicitly defined. Our model provides an
approach to transforming explicit semantic component knowledge
to conceptual component knowledge representations.

6. REFERENCES
[1] “ATP FOCUSED PROGRAM: Component-Based Software”,

On-line at: http://www.atp.nist.gov/atp/focus/cbs.htm (2003).
[2] “Salvaging a Failed CRM Initiative”, Gartner Inc., On-line at:

http://www3.gartner.com/DisplayDocument?ref=g_search&id
=352804 (2002).

[3] M. Doane, ”The Overwhelming Failure of Go-It-Alone
CRM”, Meta Group, On-line at:
http://www.metagroup.com/us/displayArticle.do?oid=35932
(2002).

[4] I. Sommerville, G. Dewsbury, K. Clarke, M. Rouncefield,
“Dependability and Trust in Organisational and Domestic
Computer Systems”, In Trust in Technology: A Socio-
technical Perspective, Kluwer 2004.

[5] D. Parnas, The Influence of Software Structure on Reliability,
in Current Trends in Programming Methodology: Software
Specification and Design. Englewood Cliffs, NJ: Prentice-
Hall. 1977.

[6] D. Parnas, “Software Aspects of Strategic Defence Systems”,
Communications of the ACM, 28(12): 1326--1335, 1985.

[7] G. Miller, “The Magical Number Seven, Plus or minus Two:
Some Limits on Our Capacity for Processing Information”,
The Psychological Review 63(2): 81--97, March 1956.

[8] “Service-oriented architecture (SOA)”, On-line at:
http://www.service-
architecture.com/webservices/articles/service-
oriented_architecture_soa_definition.html (2003).

[9] A. Morch, “Three Levels of End-User Tailoring:
Customisation, Integration, and Extension”, Computers and
Design in Context, The MIT Press, pp: 51--76, Cambridge,
Massachusetts, 1997.

[10] C. Jackson and H. J. Wang, "Subspace: Secure Cross-
Domain Communication for Web Mashups," presented at
WWW 2007, Banff, Alberta, Canada, 2007.

[11] T.R. Gruber, A translation approach to portable ontology
specification, in Knowledge Acquisition, 1993.

[12] W. Borst, Construction of Engineering Ontologies, Centre of
Telematica and Information Technology, University of
Tweenty, Enschede, The Netherlands, 1997.

[13] R. Studer, B. VR, D. Fensel, Knowledge Engineering:
Principles and Methods, in: IEEE Transactions on Data and
Knowledge Engineering, 1998.

[14] P. Wongthongtham, E. Chang, T.S. Dillon, “Ontology
Modelling Notations for Software Engineering Knowledge
Representation”, 2007 Inaugural IEEE International
Conference on Digital Ecosystems and Technologies, Cairns,
Australia, February 2007.

[15] Carroll, J.J., et al., Jena: Implementing the Semantic Web
Recommendations, Digital Media Systems Laboratory, HP
Laboratories Bristol, 2004.

[16] McBride, B. Jena: Implementing the RDF Model and Syntax
Specification. in Semantic Web Workshop, WWW2001.
2001.

