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Abstract. The intersection of large ordered sets is a common problem in the coffitié evaluation of boolean
queries to a search engine. In this paper we propose several ird@imaithms for computing the intersection of
sorted arrays, and in particular for searching sorted arrays in thedatén context. We perform an experimental
comparison with the algorithms from the previous studies from Demaime2-Qrtiz and Munro [ALENEX 2001],
and from Baeza-Yates and Salinger [SPIRE 2005]; in addition, we imgiérnd test the intersection algorithm
from Barbay and Kenyon [SODA 2002] and its randomized variant38/4003]. We consider both the random
data set from Baeza-Yates and Salinger, the Google queries usednjri2eet al., a corpus provided by Google
and a larger corpus from the TREC Terabyte 2006 efficiency queearsir along with its own query log. We
measure the performance both in terms of the number of compariedrsearches performed, and in terms of the
CPU time on two different architectures. Our results confirm or improgeekults from both previous studies in
their respective context (comparison model on real data and CPSumeasaon random data), and extend them to
new contexts. In particular we show that value-based search algofitbrfzsm well in posting lists in terms of the
number of comparisons performed.

1 Introduction

The intersection of large ordered sets is a common probletheircontext of the evaluation of relational queries to
databases as well as boolean queries to a search engineofdtease complexity of this problem has long been well
understood, dating back to the algorithm by Hwang and Limfower three decades ago [13, 14], and the average case
has been studied in the case of the intersection of two shtx the elements are uniformly distributed [9].

In 2000, Demaine et al. [11] introduced a new intersectiggodtihm, termedAdaptive, which intersects all
the sets in parallel so as to compute the intersection in giroportional to the shortest proof of the result set. In a
subsequent study [12], they compared its performance itipea relative to a straightforward implementation of an
intersection algorithm, and proposed a new and better a@agdtjorithm which outperformed both in practice. They
measured the number of comparisons performed, on the irfdexdlection of plain text from web pages. In 2002,
Barbay and Kenyon [4] introduced another intersection ritlgm, which adapts to the correlation between the terms
of the query, and one year later Barbay [3] introduced a ramzied variant. To the best of our knowledge, neither of
these algorithms were implemented before our study. In 2B&éza-Yates [1] introduced an intersection algorithm,
based on an alternative technique. Baeza-Yates and SaJRjgeeasured the performance of the algorithm in terms
of CPU time, on pairs of random arrays.

In this paper we consider the number of comparisons andleesymerformed, as well as the CPU time on two
different architectures (RISC and CISC), on three diffedata sets: (i) a random data set similar to the one considere
by Baeza-Yates and Salinger [2], (ii) the query log used bynBiee et al. [12] on a larger data set provided by Google,

* A preliminary version of this paper appeared in [6].



and (iii) and the GOV2 corpus, of siz81GB, with a larger query log, both from the TREC Terab3%e6 efficiency
guery stream. This combines the previous studies and allmme compare all the aforementioned algorithms on
common platforms. We propose several variants for thesatgion and search in sorted arrays in the context of their
intersection:

— We propose a variant of the algorithm from Baeza-Yates [Hictv performs the intersection of more than two
sorted arrays without sorting the intermediary resultss Variant is significantly faster than the original alglnit
on real instances, both in terms of the number of comparigerfsrmed and in terms of CPU time.

— We reduce the number of comparisons performed by eachéatérs algorithm by introducing value-based search
algorithms, and we further improve their performance byoidticing an adaptive value-based search algorithm.

— We show that a variant of binary search optimizes cache usagethe original version, when the arrays are too
large to fit in memory.

The paper is structured as follows: in the next Section werilesthe data sets and the architectures on which we
evaluated the various algorithms discussed. In Section 8esgeribe in detail the intersection and search algorithms
studied. In Section 4 we present and analyze our experimergasures in the various contexts. We conclude in
Section 5 with a summary of our experiments.

2 Experimental Set-up

In this paper we measure the performance of the algorithora Demaine et al. [12] and from Baeza-Yates and
Salinger [2] which were previously studied in different taxts (random or practical) and under different measures
(CPU or number of comparisons), so they had not until now lbectly compared. We perform this comparison
under each of the previous settings, as well as using a laagpus, on which the performance of algorithms is more
sensitive to cache effects.

2.1 Data sets

Random, uniformly distributed data: We compare the performance of the algorithms on pairs oédats gener-
ated in the same way as Baeza-Yates and Salinger [2]: seggiehimteger random numbers, uniformly distributed in
the rangd1, 10°]. The lengthn of the longest sequence varies frand00 to 22, 000 by steps o83, 000. The lengthn
of the shortest sequence varies frdf0 to 400 by steps ofl00.

For each algorithm and each pair of sizesm), we generat0 instances. We measure the number of comparisons
once for each algorithm and instance, and we average théngitime over1, 000 executions. Each execution, for
a given combination of algorithm and instance, is separftad the next one with the same combination by the
execution of all the other algorithms on all the instancdss Ensures a realistic simulation of the cache behavior.

Google Corpus and Query Log: We compare the performance of the intersection algorittmasswer real queries
on a sample web corpus, both provided by Google. This is tiee spuery log used by Demaine et al. [12], but on a
substantially larger and more recent data set.

The set of web pages contaifiss, 760 text documents i16.85 gigabytes of text. As the documents or web pages
of the corpus were not given a numerical identiféepriori, we numbered the documents as they were stored, by
assigning them a sequential number indicating their omléne indexing process. The resulting inverted word index
has2, 604, 335 alphanumeric keywords with HTML markup removed.

The query log corresponds 50000 entries. For more details on the query log we refer the re@mdBemaine et
al. [12], where its properties are discussed in detail.



TREC GOV?2 Corpus and Query Log: We consider a larger web corpus and an associated query togh form
the data set TREC GOV?2. This web corpus was collected by tHeCT€mpetition in information retrieval, through
a partial crawl of US government websites.

The GOV2 web corpus corresponds to approxima3élyGB of text, which once indexed associas8s515, 138
keywords to the references 2, 197, 524 documents. Each document is on avera)87KB long, most are in HTML
but some are in PDF. The document numbering scheme is suctetitain groups of documents have numbers close
to each other. As a result, this creates gaps in the numbsehrgme where certain numbers between document groups
do not appear.

The query log provided with the TREC GOV2 corpus correspaads0, 000 queries with click-through togov
domains. We randomly selected a sampl&,600 queries for our simulations. There wel@s queries involving only
one keyword, and05 queries where a keyword did not appear in the inverted wateXnThis leave4590 non-trivial
queries, which corresponds to a query log of similar sizénéodne used on the Google data set. The average size of
a query ist.42 keywords. Table 2.1 shows the number of keywords distidouith the queries: most queries have less
than11 keywords.

#ofkeywordsg)[1 [2 [3 [4 [5 [6 [7 [8 [9 [10 [11 [12 [13 [14 [15 [16 |17 |18
# of queries 105 (778 1126612174793 |414 1198|198 (53 |44 (14 (7 |4 |5 |2 |0 |1 |1
Table 1. The distribution of the sizes of TREC queries: on averdgt, keywords per query.

2.2 Machines and Compilers

We implemented the algorithms i@++, and we ran our experiments on two architectures. For eattitecture,

we measured only the performance of the intersection oedantrays once they have been loaded in memory (and
eventually cached on the swap partition of the hard-driveparticular, we did not measure the performance of the
indexing structure, which retrieves those arrays from tigex on the hard-drive.

The INTEL platform: For all data sets we used a PC runnltighux ver si on 2. 4. 20-31. 9 on a processor
Intel (R) Pentium R) 4,at2.66GHz with alow level 1 cache &K, a level 2 cache a§12K, 1GB of memory
and a swap partition of size16GB. We measured the CPU time using thét scl function, specific to the Pentium,
which measures the number of processor cycles, and henleeléscthe time taken by hard-drive accesses to the
swapped patrtition, and by cache misses. The programs werpiled on this machine usingcc 3. 2. 2 with the
optimization option G3.

For the largest data set, we also measured the CPU time usrig tres function, from thesys/ti nes. h
library, to allow the comparison with the equivalent measuon the other platform, which does not support the
rdtscl function.

The SUN platform: For very large instances we ran additional simulationsguaimJl t r aSparc |11 server from
Sun running Unix or8 processors é100MHz, with 16GB of RAM. As the largest sorted array usg$MB, and as
each instance is composed of at misarrays, no instance uses more tH&B, hence all intersection instances hold
in main memory on this machine. This is a RISC architectutdckvmeans in particular that certain multiplications
and divisions may not be directly supported by the procesgbcomputed through function calls.



Algorithm 1 Pseudo-code fa@vs
SvS(set, k)
1: Sort the sets by sizéset[0]] < |set[1]] < ... < |set[k]]).
2: Let the smallest sefkt[0] be the candidate answer set.
3: for each sefS from set do initialize ¢[S] = 0.
4: for each sefS from set do
5. for each element in the candidate answer s
6 search foe in S in the range/[S] to | S|,
7: and updaté[S] to the rank ofe in S.
8: if e was not foundhen

9: removee from candidate answer set,
10: and advanceto the next element in the answer set.
11: end if
12:  endfor
13: end for

The CPU time was measured on this machine using theees function from thesys/ ti nes. h library, which
returns the elapsed real time, including time taken by cawisses. The programs were compiled on this machine
usinggcc 2. 95. 2 with the optimization option C3.

3 Algorithms

In this paper we define search and melding algorithms seggrab that we can study the impact of new search
algorithms on all melding algorithms, and find the best caratidbn over all possible ones.

3.1 Melding Algorithms

Various algorithms for the intersection bfsets have been introduced in the literature [4, 11, 12, JAf8png those,
we do not consider the naive algorithm, which traverses e@acy linearly, as both theoretical and experimental
analysis show that its performance in the comparison madsignificantly worse than the ones studied here. For
similar reasons we do not consider either Mldeptive intersection algorithm, proposed by Demaine et al. [11t, no
the algorithm proposed by Hwang et al. [12]. Instead we famugour main algorithms, some of them with minor
variants.

SvS and Swapping SvS:Svs is a straightforward algorithm widely used, which intetsetbe sets two at a time in
increasing order by size, starting with the two smallest &lgorithm 1). It performs a binary search to determine if
an element in the first set appears in the second set. We atsideo variants of it which replace the binary search
with various other searches.

Demaine et al. considered the vari@utapping SvS, where the searched element is picked from the set with
the least remaining elements, instead of the first (injtiathallest) set irsvS. This algorithm was first proposed by
Hwang et al. [13]: it performs better when the size of the secget is substantially reduced after a search although
experiments show that this does not happen often.



Small Adaptive: Small_Adaptive is a hybrid algorithm, which combines the best propertiedvsfandAdaptive

(see Algorithm 2). For each element in the smallest set,rfiop@s a galloping search on the second smallest set.

If a common element is found, a new search is performed ingh&winingk — 2 sets to determine if the element

is indeed in the intersection of all sets, otherwise a newcbeia performed. Observe that the algorithm computes

the intersection from left to right, producing the answemicreasing order. After each step, each set has an already
examined range and an unexamined rasgell_Adaptive selects the two sets with the smallest unexamined range
and repeats the process described above until there istzasétis been fully examined.

Algorithm 2 Pseudo-code f®mall_Adaptive
Small_Adaptive(set, k)

1: while no set is emptylo

2. Sort the sets by increasing number of remaining elements.

3:  Pick an eliminatoe = set[0][0] from the smallest set.
4. elimset « 1.

5. repeat

6: search foe in set[elimset].

7: incremenklimset;

8: until s =k oreisnotfoundinset[elimset]

9: if s=k then
10: adde to answer.
11: endif
12: end while

Sequential and Random Sequential:Barbay and Kenyon [4] introduced a fourth algorithm, calfeduential,
which is optimal for a different measure of difficulty, basadl the non-deterministic complexity of the instance. It
cycles through the sets performing one entire gallop seatrehtime in each (as opposed to a single gallopieg

in Adaptive), so that it performs at mosgtsearches for each comparison performed by an optimal ntamrdimistic
algorithm: its pseudo-code is given in Algorithm 3.

A randomized variant [3]JRSequential, performs less comparisons thaequential on average on instances
where the searched elements are present in roughly haléadrtiays, rather than in almost all or almost none of the
arrays. The difference witRequential corresponds to a single line, the choice of the next set wioesearch for
the “eliminator” (line12 in Algorithm 3): Sequential takes the next set available whit8equential chooses one
at random among all the sets not yet known to contain the ditar.

Baeza-Yates and Baeza-Yates SortedBaezaYates algorithm was originally intended for the intersection wbt
sorted lists. It takes the median element of the smalleafistsearches for it in the larger list. The element is added to
the result set if present in the larger list. The median othaller list and the rank insertion of the median in the large
set divide the problem into two sub-problems. The algorittoives recursively the instances formed by each pair of
subsets, always taking the median of the smaller subseteamdrgng for it in the larger subset. If any of the subsets is
empty, it does nothing. In order to use this algorithm onanses with more than two lists, Baeza-Yates [1] suggests
to intersect the lists two-by-two, intersecting the snsllists first. As the intersection algorithm works for sdrtists

and the result of the intersection may not be sorted, thdtrgstineeds to be sorted before intersecting it with the next
list, which would be highly inefficient. The pseudo-codeBaezaYates algorithm is shown in Algorithm 4.



Algorithm 3 Pseudo-code f@equential
Sequential(set, k)
1: Choose an eliminater = set[0][0], in the seklimset «— 0.

2: Consider the first set,— 1.
3: while the eliminatore # oo do

4: searchimset[i] fore
5 if the search found then
6: increase the occurrence counter.
7 if the value of occurrence counterkighen outpute end if
8: endif
9: if the value of the occurrence countekisor e was not foundhen
10: update the eliminator ®©«— set[i][succ(e)].
11: endif
12:  Consider the next set in cyclic order— i + 1 modk.
13: end while

To avoid the cost of sorting each intermediate result setjntreduceSo_BaezaYates, a minor variant of
BaezaYates, which does not move the elements found from the input to éselt set as soon as it finds them,
but only at the last recursive step. This ensures that tieeglts are added to the result set in order and trades the cost
of explicitly sorting the intermediate results with the totkeeping slightly larger subsets.

Algorithm 4 Pseudo-code f@aezaYates
BaezaYates(set, k)
1: Sort the sets by sizg¢set[0]] < [set[l]]| < ... < |set[k])).
2: Let the smallest setet[0] be the candidate answer set.
3: for each setet[i],i =1...k do
4: candidate « BYintersect(candidate, set[i], 0, |candidate| — 1,0, |set[]] — 1)
5
6

sort the candidate set.
: end for

BYintersect(setA, setB, minA maxA, minB, maxB)

1: if setA or setB are emptythen return() endif.
. Letm = (minA + maxA)/2 and letnedianA be the element atetA[m].
: Search fomedianA in setB.
if medianA was foundthen
addmedianA tO result.
end if
. Letr be the insertion rank afedianA in setB.
. Solve the intersection recursively on both sides ahdm in each set.

Each of those algorithms has linear time worst case behavitte sum of the sizes of the arrays, and each
performs better than the others on a set of instances. NattBdbzaYates, So_BaezaYates, Small_Adaptive and
SvS take active advantage of the difference of sizes of the aatbthatSmall_Adaptive is the only one that takes



advantage of how this size varies as the algorithm elimgalements, whil€equential andRSequential ignore
this information.

3.2 Search Algorithms

We extend the set of search algorithms tested to value-tsgedthms, such asnterpolation, Extrapolation
or Extrapol_Ahead; and to some cache oblivious search algorithms, suglv@sded_Binary.

Binary Search and variants: Binary search is well known in the literature. The adequatiglémentatioh finds the
insertion rankp of a keyz in a sorted sefl of sizen in 1 + log, n comparisons. In the context of the intersection of
sorted arrays, several elements are searched in eachathay) many applications those elements are of increasing
size, so that the position of the last lookup during the mesisearch is a lower bound for the position of the currently
searched element. While using this lower bound reduces timbauof comparison (we call thislaptive Binary),

it yields a slower CPU performance when the array is verydamd partially cachedotal Binary ignores this
lower bound and uses the cache more efficiently.

We test a third variantRounded_Binary, which represents a trade-off betweédaptive_Binary and
Total_ Binary: it performs the same comparisons tHartal_Binary so long as the compared elements are larger
than the lower bound obtained from the previous search, ehwgwoint it switches to a more sophisticated mode taking
advantage both of the positions of the previous comparjsam of the lower bound. This variant always performs
more comparisons thatdaptive Binary and less thamotal_Binary, but it performs better in terms of CPU on
instances where the array searched is very large, due te edfeltts.

Galloping Search: Originally introduced by Bentley and Yao [7{inbounded search is the problem of searching
for the insertion ranl of a keyx in a sorted sed of unbounded size. The algorithm probes tHesys with index
{1,3,7,15,...,2" — 1} in sequence till it finds a keyl[2¢ — 1] larger thanz, and then performs a binary search4n
between position8*~! — 1 and2’ — 1. This technique is sometimes callede sided binary search [15], exponential
search [8], doubling search [4], or galloping [11, 12]: we will use this last name for our implementatiGalloping
search. It solves the unbounded search proble?idg, (p+1) comparisons.

Interpolation and Extrapolation Search: Interpolation search has long been known to perform significantly
better in terms of comparisons over binary search on datoraly drawn from a uniform distribution, and recent

developments suggest that interpolation search is alsmsamn@ble technique for non-uniform data [10]. Searching fo
an element of value in an arrayset[i] on the range to b, the algorithm probes positiaf{a, b, ¢) defined as follows:

e — setli][a]
set[i][b] — set][i][a]

f(a,b,e)L (ba)J ta

We propose a variantxtrapolation search, which involves extrapolating on the current andipus positions
in set[i]. Specifically, the extrapolation step probes the infigk, p;, ¢), wherep;, is the previous extrapolation probe.
This has the advantage of using “explored data” as the basgafculating the expected index: this strategy is similar
to galloping, which uses the previous jump value as the Basthe next jump (i.e. the value of the next jump is the
double of the value of the current jump).

11t can be implemented in two different ways, each of them optimizing ardiffeperformance measure, the number of two-
way comparisons, closer to CPU time, and the number of three-wayar@sops, closer to the running time in the context of
hierarchical memory. As the latter implementation performed poorly aroaliexts, we discuss here only the one optimizing the
number of two-way comparisons.



Extrapolation Look Ahead Search: We propose another search algorittEatrapol_Ahead, which is similar to
extrapolation, but rather than basing the extrapolatiothercurrent and previous positions, we base it on the current
position and a position that is further ahead. Thus, ourg@inbex is calculated by(p;, p;+1, ¢) wherel is a positive
integer that essentially measures the degree to which tinepeation uses local information. The algorithm uses
the local distribution as a representative sample of theibligion betweenset[i][p;] and the eliminator: a large
value of corresponds to an algorithm using more global informatishile a small value of correspond to an
algorithm using only local information. If the index of thectessosucc(e) of e in set]:] is not far fromp;, then

the distribution betweenet[i|[p;] andset[i|[p; + [] is expected to be similar to the distribution between [i][p;]
andset[i][succ(e)], and the estimate will be fairly accurate. Thus if the setisty, or piecewise uniform, we would
expect this strategy to outperform interpolation becahseset is locally representative. On the other hand, if the se
comes from a random uniform distribution then we would exjrgerpolation to be better because in this case using
a larger range to interpolate is more accurate than usingaliesrmange.

4 Experimental Results

In each of the contexts defined in Section 2 we test all therigfgos defined in Section 3 and we measure their
performance in terms of the number of searches and comparjgerformed, and in terms of CPU time. The CPU
times for the Random and Google data sets correspond onlg&sumes on theNTEL platform, as the instances are
too small for the execution time to be measured on3tie platform. Both platforms are considered for the larger
TREC GOV2 data set.

Note that the number of searches for a fixed merging algoritbes not depend on which search algorithm is used
(they all return the same position), and that the number wfgarisons performed does not depend on the architecture.
Despite the fact that the CPU time on a particular instanneskightly vary from one execution to another, we verified
on small samples5() queries from the TREC data set, all queries from the Goodie skzt) that the CPU measures
over a single run yield the same conclusion than averagirgioMuns: hence we report our results on larger samples
with a single run.

4.1 Experiments on random, uniformly distributed data

In the context of randomly generated data, we only measw@weénformance of the algorithms with two lists, in
a similar way to the study by Baeza-Yates and Salinger [2]ciwbompare the CPU performance on random data
of the combination®8aezaYates usingAdaptive Binary, Small Adaptive usingGalloping and of the naive
linear algorithmBaezaYates usingAdaptive_Binary was the best combination. We test a larger set of algorithms,
on random data generated in a similar way, and we measuretmiberformance in CPU time and the number of
comparisons and searches. Note #dquential behaves exactly the sameSsjuential on two arrays and thus
is not represented.

We show on the plots the number of comparisons and CPU timefifferent intersection and search algorithms
as a function of the size of the largest list when the size of the smallestiists fixed, for various values of.. The
standard deviation is usually very low, hence we omit in tgariés with more than two plots on them.

Comparison with Baeza-Yates and Salinger [2]:In terms of CPU time, our results agree with Baeza-Yates and
Salinger’s study: botBaezaYates andSo_BaezaYates usingAdaptive_Binary outperform any other combination

of algorithms. Figure 1 shows the performance of the five bastbinations of algorithms on this data set. As Figure 2
shows, none of the other search algorithms perform betiarttie initial choice proposed by Baeza-Yates and Salinger.
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Fig. 1. CPU times for the five best combinations of algorithms on random gedeihattancesBaezaYates Us-
ing Adaptive_Binary performs the best for all size ratios, closely followed $wapping SvS and SvS using
Galloping.
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Fig. 2. CPU times for all search algorithms in combination wBezaYates. The best search algorithm is the one
proposed originallyAdaptive_Binary.
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The superiority ofAdaptive_Binary over all search algorithms when usiBgezaYates Or So_BaezaYates
is easily explained: value based search algorithms sudmisrpolation are too costly in CPU time, and adap-
tive search algorithms such &alloping or Extrapol_ Ahead are inefficient when the searched position is in
the middle of the array on average. The superiorityBaézaYates among melding algorithms is relative, as
SvS and Swapping_SvS perform well for almost any search algorithm. The differene CPU performance be-
tweenBaezaYates andSo_BaezaYates USingAdaptive_Binary, SvS, Swapping_SvS or Small_Adaptive using
Galloping is minimal (see Table 2).

Number of searches and comparisonsin terms of the number of search8aezaYates, SvS, Swapping_SvS and
Small_Adaptive perform the best, whil8equential andSo_BaezaYates perform much more searches (see again
Table 2). The difference of performance betwBeazaYates andSo_BaezaYates is easily explainedaezaYates
performs one more comparison per search to reduce the ddmyane more value, which increases the number of
comparisons but reduces the number of searches in compaoiso_BaezaYates. The difference of performance
betweerSequential and the other algorithms is due to the fact tBejuential always chooses the new eliminator
on the array previously searched: in the context where thmahts of the array are uniformly drawn and of very
different size, it always results in a worse performance ttfeoosing the eliminator from the smallest array.

Algorithm Searches Comparisons Runtime
SvS 200 1024 Extrapol_Ahead) 242986 Rounded_Binary)
Swapping_ SvS 200 1024 Extrapol_Ahead) 230916 fdaptive_Binary)
Small Adaptive| 200 1024 Extrapol_Ahead) 435828 (Galloping)
BaezaYates 199 1066 ([nterpolation) 188258 fdaptive Binary)
So_BaezaYates | 328 1064 (nterpolation) 218156 fdaptive_Binary)
Sequential 385 1198 Extrapol_Ahead) 327075 fdaptive Binary)

Table 2. Total number of searches and comparisons and total running timerped by each algorithm on the Random data set,
when associated with the search algorithm performing the best with it. Tinéeruof searches and comparisons are correlated,
although the difference in terms of the number of searches perfooeiaterBaezaYates andSo_BaezaYates does not corre-
sponds to the difference in the number of comparison performedCPhétimes are not correlated with the two other measures.

In terms of the number of comparisons, the use of value basartls algorithms such aterpolation,
Extrapolation Or Extrapol Ahead results in a better performance for any melding algorithmose algorithms
outperform other search algorithms on the uniform distidsuof elements in the arrays.

The best combinations regarding the number of comparisoadorqmed are Swapping SvS using
Extrapol Ahead andBaezaYates using Interpolation, even though Figure 3 shows th&aiapping SvS with
Extrapol_Ahead has a small advantage o&tezaYates with Interpolation.

Fixing the size of the smallest list to other sizes does ret the relative ranking (see Figure 4), so we only report
the data form = 200. For completeness we summarize the results across allthlgsron the whole Random data set
in Table 3.

4.2 Experiments on the Google data set

Demaine et al. [12] studied the combinations of algorithBasm1l Adaptive using Galloping, SvS and
Swapping_SvS usingAdaptive Binary, and found the combinatio®mall_Adaptive usingGalloping to out-
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Fig. 3. Number of comparisons f@aezaYates usingInterpolation andSwapping_SvS usingExtrapol_Ahead
on the Random data s@wapping_SvS with Extrapol_Ahead performs visibly better.
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Fig. 4.CPU times for the five best combinations of algorithms on the Random datéls¢he smallest list of size 400.
The order of the algorithms is the same than when the smallest list has BiBe&thYates usingAdaptive_Binary
performs the best for all size ratios.
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SvS Swapping SvS|Sequential|BaezaYates|So_BaezaYates|Small_Adaptive
cmp|  cpu cmp cpu cmp  cpu cmp  cpu cmp cpu cmp cpu
Total_Binary 28152623972815 254008439745754028112500184501 4025442815 677319
Adaptive_Binary|24692550642469 230916263232707516201882581620 2181562469 444474
Rounded_Binary [26232429862623 24687139974364382629242773419Q0 39134712623 443064
Galloping 20872453332087 244216223733231124102559452373 2860402087 435828
Interpolation |10672791271067 280624124237477910662754631064 3046161067 466444
Extrapolation [12813755831281 371444144446420312613739471262 4019331281 547751
Extrapol_Ahead [10244132091024 404841119857610910854264521073 5060751024 584941

Table 3. Total number of comparisons and CPU times performed by each algooitler the Random data set. In bold, the best
performance in terms of the number of comparisons, for variousingellgorithms in combination witBxtrapol_Ahead, and
the best performance in terms of CPRdezaYates usingAdaptive Binary.

perform the others in terms of the number of comparisonopedd on a set of queries provided by Google on the
index of their own web-crawl.

We measured the performance of each combinations of digasibn the same queries, but on the index of a larger
web crawl, also provided by Google. Similarly to the resglt&en by Demaine et al., we show on the plots the number
of comparisons and CPU times as a function of the nurbafrkeywords in the queries, which corresponds to the
number of arrays forming the instance. The standard dewiatf the two by two difference of performance on each
instance, not represented here, was always very low. Wetbmigtandard deviation of the average performance of
each algorithm on instances composea @irays: it mostly represents the variation of difficulty arga@ueries with
k keywords, and not the stability of the results.

Comparison with Demaine et al. [12]: Considering the same algorithms studied by Demaine etwalresults agree
with the previous studySmall_Adaptive usingGalloping performs less comparisons than the other algorithms, but
in fact Small_Adaptive does not behave much differently fra8nS andSwapping SvS, as the combinationsvs
usingGalloping andSwapping_SvS usingGalloping performs almost equally: the improvement in the number of
comparisons performed is mainly due to the usage o&#1a oping search algorithm (see Figure 5). This similarity
of performance is likely to come from the fact that witl286 keywords per query on averag®:S, Swapping_ SvS
andSmall Adaptive behave the same on instances which consist of only two arrays

The number of comparisons performed is further reduced éyiie of value based search algorithms. All inter-
section algorithms benefit from the uselafterpolation, and all excepBaezaYates andSo_BaezaYates benefit
even more from the use @ktrapol_Ahead, the interpolation search variant that we introduced (géneFigure 5).
As a result, the best combination of search and melding igigios regarding the number of comparison performed are
Small_Adaptive, SvS andSwapping SvS usingExtrapol_Ahead, and results in an important improvement over
the best solution proposed by Demaine et al..

Study of Barbay and Kenyon'’s [4] algorithm: The algorithm proposed by Barbay and Kenyon [4] and its remdo
ized variant [3] both perform noticeably more comparisdrantthe other intersection algorithms measured, indepen-
dently of the search algorithm chosen (see Table 4). This hignber of comparisons is correlated with the high
number of searches performed: the algorithms fails to firlwbater proof by cycling through the arrays.

The searches performed Bgquential are shorter on average than other similar algorithms: ttie b&tween
the number of comparisons and the number of searches is madtesthan for other algorithms such &ss (see
again Table 4). This is probably explained by the fact 8wjuential performs many searches of average size, as
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performance oExtrapol_Ahead is almost indistinguishable fromnterpolation’s although Table 5 shows that it
does perform slightly betteSwapping SvS andSmall_Adaptive show the same behavior.

2e+07

1.5e+07

cpu

le+07

5e+06

T T
average Baeza-Yates Adaptive Binary ———
average Baeza-Yates Sorted Adaptive Binary

average SvS G \{loping ,,,,,,,,
average SwSvS Galloping

10 12
number of sets
Fig. 6. CPU times for the four best combinatio$s’S andSwapping_SvS usingGalloping Search, anBaezaYates

andSo_BaezaYates UsingAdaptive_Binary search on Google data set:S, Swapping_SvS andSo_BaezaYates
perform very similarly, buBaezaYates performs slightly worse.

13



14

opposed to algorithms such &S which perform many small searches in the smallest arraysa bew rather large
ones in the other arrays,

Algorithm ComparisonsSearchefatio

SvS usingGalloping 16884 3542 | 4.77
Swapping_SvS usingGalloping 16884 3541 |4.77
Small_Adaptive usingGalloping 16884 3542 |4.77
Sequential usingGalloping 25440 5801 |4.39
RSequential usingGalloping 24518 5873 |4.17
BaezaYates USingGalloping 24285 3327 |7.30
So_BaezaYates USingGalloping 20935 5209 |4.02
BaezaYates USingAdaptive_Binary 18543 3327 |5.57
So_BaezaYates USiNgAdaptive_Binary| 15689 5209 |3.01

Table 4. Number of comparisons and searches performed on the Googlealafehe average cost of a search (the log of its
length), here measured in number of comparisons, is smallSefpfential andRSequential than forSvs, Swapping SvS or
Small_Adaptive.

Note that the number of comparisons (and ratiopaézaYates andSo_BaezaYates usingGalloping iS not
representative: when usinglaptive Binary search, which is better suited to their behavior, the paréorce in
terms of the number of comparisons is much better (see agdile B). The melding algorithrBo_BaezaYates is
more efficient in terms of the number of comparisons thaszaYates, although it performs more searches, which
still results in a slightly smaller number of comparisons gearches: this corresponds to the additional comparison
performed byBaezaYates to check if the searched element is present in the searched ar

Real time on real data: The CPU performance is correlated to the number of compasifw all melding and search
algorithms, except for the value based search algorithes Fsgure 6). The fact thamterpolation generally
performs more comparisons thagtrapol Ahead (see Table 5), but uses less CPU time indicates that the €ost o
the extra memory accesses performedtkyrapol_Ahead is more significant than the reduction in the number of
comparisons: it might result in an additional cache miss;esit is at distancéz n of the previous access, whetds
the number of remaining element in the array.

For completeness we summarize the results across all thigarion the whole data set in Table 5.

4.3 Experiments on the TREC GOV2 data set

As for the Google data set, we measured the number of seaandesomparisons performed and the CPU time used
by the algorithms. As in the previous section, we show on thesghe number of comparisons and CPU times for
different melding and search algorithms as a function oftln@ber of arrays forming the instances.

We restricted our study to the most promising algorithmafftbe study on Google data set: in particular, we did
not consider the melding algorithARSequential on the TREC GOV2 data set. The fact that the data set is larger
allows us to compare the CPU performance of the algorithntavordifferent architectures: thHg&UN station has much
more memory but a reduced set of instructions, which makdsptication and divisions much more costly; while the
INTEL station has a larger set of instructions, but much less mgmaorthat part of the arrays will be cached on the
swap partition of the hard-drive.
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SvS Swapping_SvS|Sequential|BaezaYates|So_BaezaYates|Small_ Adaptive|RSequential
cmp| cpu cmp cpu cmp cpu cmg cpu cmp cpu cmp cpy cmp  cpu
Total_Binary 582175.14258209 4.97693087 8.67457594 5.42683710 7.14058217 8.3259440(Q 15.4446
Adaptive_ Binary|392213.76239221 3.937558176.70418543 3.28415689 3.11339225 7.2085421Q 13.401
Rounded_Binary |546744.68454671 4.83187267 8.260542865.32778511 6.90854679 7.99588509 14.873
Galloping 168842.79116884 2.8742544(0 4.80824285 3.95320935 3.76916884 5.98024518 11.525
Interpolation |121843.338§12184 3.434178435.64(015352 4.18212386 4.04612185 6.57117398 11.992
Extrapolation [134264.22913426 4.248196726.617174555.42614428§ 5.25813427 7.4931910Q 13.104
Extrapol_Ahead [121255.48012125 5.424177018.64116179 6.63713145 7.27912126 8.61417279 15.036

Table 5. Total number of comparisons and CPU times (in millions of cycles) perarby each algorithm over the Google data set.
In bold, the best performance in terms of number of comparisbrssandSwapping_SvS usingExtrapol_Ahead, and in terms
of CPU timesSvS usingGalloping.

Comparison with Demaine et al. [12]: In terms of the number of comparisons performed, the melding
Small_Adaptive outperforms all the other melding algorithms, in combioativith any search algorithm, which
confirms and extends the results reported by Demaine et2jl(§&e Table 6). As for the Google data set, the value-
based search algorithExtrapol Ahead improves the performance of each melding algorithm, andairiqular
the performance dfmall_Adaptive (again, see Table 6). However, unlike the Google data sepéhformance of
Interpolation is similar to that ofGalloping. This decrease in performance is mainly due to the fact tiet t
numbering scheme of TREC documents left many “gaps” whicttrdmites to the non-uniformity of posting sets.

Study of Barbay and Kenyon'’s [4] algorithm: As for the Google data set, the algoriti$@quential is much worse
than the other melding algorithms for any fixed search allgor; in terms of the number of comparisons or searches
performed as well as in terms of CPU time (see Figure 7). Thsishints that the instances from the TREC GOV2 data
set are not too different from those from the Google datgs&ttJarger, both in terms of the sizes of the arrays and in
the number of arrays.

Impact of the cache: In contrast to the measures on the Google data set, the niwhbemparisons is not always
correlated to the CPU timings, even for comparison basegtisedgorithms. In particular, when using the melding
algorithmsSmall Adaptive or Sequential, the search algorithrRounded Binary performs more comparisons
thanAdaptive_Binary, but uses less CPU (see Figure 9). This indicateskihaided_Binary generates less cache
misses, summing to a better over-all time.

The same is not true with the other melding algorithms, pgesh@ecause the search queries generated by those
algorithms are either shorter (in which case no optimiratibthe cache is needed), or much larger (in which case
cache misses happen at a different level).

Impact of architecture differences: Not surprisingly, the cache optimization of tReunded_Binary search algo-
rithm does not give it any advantage on a machine where atlateefits in memory, such as on platfosun: then all
the binary variants perform very similarly (see Figure 10).

We were also able to measure a quantitative difference leetivee two architectures: the difference of CPU per-
formance between the comparison and value-based seantittatgs, such asalloping andInterpolation, iS
much larger on theUN platform than on th&NTEL platform, and this independently of the melding algorithonsid-
ered (see Figure 11 and 12). In general, the hardware castsopolation search seems higher on a SUN architecture
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Fig. 7. Number of comparisons performed by various melding algorithm coeabinith Galloping on the TREC
GOV2 data set. The difference of performance fré#uential is even worse than on the Google data set.
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Fig. 8.Number of comparisons performed by variants of binary searcloted withSmall_Adaptive onthe TREC
GOV?2 data seRounded_Binary andTotal_Binary perform roughly the same, whilglaptive_ Binary performs
much better.
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Fig. 9. CPU performance of the various variants of binary search onINTEL platform, in combination with
Small_Adaptive. The varianRounded_Binary is better in CPU time, thanks to its optimization of the cache.
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Fig. 10. CPU performance of the various variants of binary search onSthe platform, in combination with
Small_Adaptive. The binary searches are performing roughly the same.
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Fig. 11.CPU performance ofalloping compared tdnterpolation, both combined wittsvs, when solving the
TREC GOV2 data set on tHNTEL platform. The advantage is not clear, but in t@al loping is performing a little
better (see Table 6.
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Fig.12. On SUN CPU performance ofalloping compared taInterpolation, both combined witt8vS, when
solving the TREC GOV2 data set on theN platform.Interpolation is definitely performing worse.



19

than an Intel architecture. We speculate that this mightdused by differences in RISC vs CISC instruction set but
remains to be studied further.

For completeness we summarize the results across all tlgsrion the whole TREC GOV2 data set in Tables 6
and 7.

SvS |Swapping_SvS|Sequential|BaezaYates|So_BaezaYates|Small_ Adaptive
Adaptive_Binary|13.41 [13.44 28.66 7.87 412 13.32
Total_Binary 21.70 |21.64 39.90 22.43 28.73 21.54
Rounded_Binary |20.46 [20.57 37.83 21.43 27.15 20.44
Galloping 4.468 4.473 10.57 9.40 5.562 4.44
Interpolation 4.60 | 4.61 11.13 8.55 4.76 4.57
Extrapolation 4.25 | 4.26 9.84 8.61 4.78 4.23
Extrapol_Ahead | 3.76 | 3.77 8.09 8.05 4.23 3.74

Table 6. Total number of comparisons (in billions) performed by each algorither the TREC GOV2 data set. In bold, the best
results, obtained f@mall_ Adaptive USingExtrapol_Ahead.

SvS Swapping_SvS| Sequential | BaezaYates |So_BaezaYates|Small Adaptive
INTEL SUN|INTEL SUN| INTEL SUN|INTEL SUN|INTEL SUN| INTEL SUN
Adaptive_Binary|11730315388757686 1591699012544095765336311240136273 98411180957 230258
Total_Binary 360526180854 81227 18297459838713545589334118423988081 227041320692 244521
Rounded_Binary | 6491017534363693 18015016979713485637573018217083717 223368108728 241524
Galloping 33255 9690730686 1021971322452198165508812590440462 111422 59081 162243
Interpolation 478831349604906Q0 1402721273383275096706615766954331 142653 75167 200471
Extrapolation | 4969414238550570 1478861369463283167759218594463244 171270 78604 208057
Extrapol_Ahead | 6173115813862021 1635451553963385258730319410881922 192490 88674 223195

Table 7. Total CPU time performed by each algorithm over the TREC GOV2 datarsketld, the smallest CPU times on theTEL
platform, obtained usin§wapping_SvS; and on theSUN platform, obtained usingvs, both in combination wittGalloping
search.
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5 Conclusions

To summarize our results:

— In terms of the number of searches performed, the best ngellgorithms areSmall Adaptive, SvS and
Swapping_SvS on random data anghall_Adaptive on real data.

— In terms of the number of comparisons performed, the bestbowtions on random data consist in one
of the melding algorithms$mall_ Adaptive, SvS and Swapping SvS associated with the search algorithm
Extrapol_Ahead. On real dataSmall_Adaptive leads over the others under this measure and performs best
when combined witlExtrapol_Ahead, which improves on the previous results [12].

— In terms of CPU time, the best performance on random datzagponds to th@aezaYates algorithm using
Adaptive_Binary search (which confirms previous results [2]), closely fekad by theSvs algorithm us-
ing Galloping search. On real data, the algorittgnS leads over the others when used in combination with
Galloping search, as previously observed.

In terms of the number of searches or comparisons perforthegyoor performance of sophisticated algorithms
such asequential, designed to exploit short certificates of the intersedédyor of its randomized variant [3], both
on random and real data, indicates the regularity of thantss in both settings: most instances have a long certificat
On the other hand, the difference of performance of thesetgion algorithnBaezaYates on random and real data
shows that real data are far from randomly uniform. In patéic the good performance of tlExtrapol_ Ahead
search algorithm shows that value-based search algor#inensot only performing well on sorted arrays of random
elements, but also on posting lists.

In terms of CPU time, the architecture differences betwherptatforms led to both quantitative results variations
(the gaps between the performance of some algorithms wgerlan the RISC architecture than on the CISC archi-
tecture), and qualitative result variatior®{nded_Binary optimizes the cache on the architecture with the smallest
amount of memory, but not on the other one). The differencgzef between the Google and the GOV2 data set led to
gualitative changes in the CPU performance between thantarof binary search, as the variants optimized for cache
effects performed better than others on the largest datasdtworst on the smallest. As those search algorithms
are outperformed both in number of comparison performedim@PU time by more sophisticated algorithms, this
does not yield any qualitative change, but it does hint tipindzing the best search algorithm in CPU time, such as
Galloping, so that it takes a better advantage of the cache, might gi&d better CPU performance.

Finally, the best solution to compute the intersection afesbarrays corresponding to conjunctive queries in an
indexed search engines seems to be one of the simplest galdorithmsvs, already used in practice, but improved
by replacing the use of thelaptive_Binary search algorithm by an adaptive search algoritta loping search.
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the TREC GOV2 corpus and query log, Google for making theipgs and query log available, Mike Patterson for
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