
ar
X

iv
:0

71
0.

03
18

v1
 [

cs
.D

S]
 1

 O
ct

 2
00

7

Fast minimum-weight double-tree shortcutting

for Metric TSP: Is the best one good enough?⋆

Vladimir Deineko1 and Alexander Tiskin2

1 Warwick Business School, The University of Warwick, Coventry CV47AL, UK
2 Dept. of Computer Science, The University of Warwick, Coventry CV47AL, UK

Abstract. The Metric Traveling Salesman Problem (TSP) is a classical
NP-hard optimization problem. The double-tree shortcutting method for
Metric TSP yields an exponentially-sized space of TSP tours, each of
which approximates the optimal solution within at most a factor of 2. We
consider the problem of finding among these tours the one that gives the
closest approximation, i.e. the minimum-weight double-tree shortcutting.
Burkard et al. gave an algorithm for this problem, running in time O(n3+
2dn2) and memory O(2dn2), where d is the maximum node degree in the
rooted minimum spanning tree. We give an improved algorithm for the
case of small d (including planar Euclidean TSP, where d ≤ 4), running
in time O(4dn2) and memory O(4dn). This improvement allows one to
solve the problem on much larger instances than previously attempted.
Our computational experiments suggest that in terms of the time-quality
tradeoff, the minimum-weight double-tree shortcutting method provides
one of the best known tour-constructing heuristics.

1 Introduction

The Metric Travelling Salesman Problem (TSP) is a classical combinatorial opti-
mization problem. We represent a set of n points in a metric space by a complete
weighted graph on n nodes, where the weight of an edge is defined by the distance
between the corresponding points. The objective of Metric TSP is to find in this
graph a minimum-weight Hamiltonian cycle (equivalently, a minimum-weight
tour visiting every node at least once). The most common example of Metric
TSP is the planar Euclidean TSP, where the points lie in the two-dimensional
Euclidean plane, and the distances are measured according to the Euclidean
metric.

Metric TSP, even restricted to planar Euclidean TSP, is well-known to be
NP-hard [14]. Metric TSP is also known to be NP-hard to approximate to within
a ratio 1.00456, but polynomial-time approximable to within a ratio 1.5. Fixed-
dimension Euclidean TSP is known to have a PTAS (i.e. a family of algorithms
with approximation ratio arbitrarily close to 1) [3]; this generalises to any metric
defined by a fixed-dimension Minkowski vector norm.

⋆ The authors acknowledge the support of The University of Warwick’s DIMAP (the
Centre for Discrete Mathematics and its Applications) during this work.

http://arxiv.org/abs/0710.0318v1

Two simple methods, double-tree shortcutting [18] and Christofides’ [6, 19],
allow one to approximate the solution of Metric TSP within a factor of 2 and
1.5, respectively. Both these methods belong to the class of tour-constructing
heuristics, i.e. “heuristics that incrementally construct a tour and stop as soon
as a valid tour is created” [12]. In both methods, we build an Eulerian graph
on the given point set, select an Euler tour of the graph, and then perform
shortcutting on this tour by removing repeated nodes, until all node repetitions
are removed. In general, it is not prescribed which one of several occurrences of a
particular node to remove. Therefore, the methods yield an exponentially-sized
space of TSP tours (shortcuttings of a specific Euler tour in a specific Eulerian
graph), each of which approximates the optimal solution within at most a factor
of 2 (respectively, 1.5).

The two methods differ in the way the initial weighted Eulerian graph is
constructed. Both start by finding the graph’s minimum-weight spanning tree
(MST). The double-tree method then doubles every edge in the MST, while the
Christofides method adds to the MST a minimum-weight matching built on the
set of odd-degree nodes. The weight of the resulting Euler tour is higher than the
optimal TSP tour at most by a factor of 2 (respectively, 1.5), and the subsequent
shortcutting can only decrease the tour weight.

While any tour obtained by shortcutting of the original Euler tour approxi-
mates the optimal solution within at most a factor of 2 (respectively, 1.5), clearly,
it is still desirable to find the shortcutting that gives the closest approximation.
Given an Eulerian graph on a set of points, we will consider its minimum-weight
shortcutting across all shortcuttings of all possible Euler tours of the graph.
We shall correspondingly speak about the minimum-weight double-tree and the
minimum-weight Christofides methods.

Unfortunately, for general Metric TSP, both the double-tree and Christofides
minimum-weight shortcutting problems are NP-hard. Consider first the double-
tree version of the problem. Given an unweighted graphs, any instance of the
Hamiltonian cycle problem can be regarded as an instance of Metric TSP with
distances 1 and 2. Add an extra node connected to all other nodes by edges of
weight 1, and take the newly added edges as the MST. It is easy to see that the
minimum-weight shortcutting problem on the resulting instance is equivalent
to the original Hamiltonian cycle problem. The minimum-weight double-tree
shortcutting problem was also believed for a long time to be NP-hard for planar
Euclidean TSP, until a polynomial-time algorithm was given by Burkard et al.
[5]. This is the algorithm we improve upon in the current paper. In contrast, the
Christofides version of the problem remains NP-hard even for planar Euclidean
TSP [15].

In the rest of this paper, we will mainly deal with the rooted MST, which is
obtained from the MST by selecting an arbitrary node as the root. In the rooted
MST, the terms parent, child, ancestor, descendant, sibling, leaf all have their
standard meaning. Let d denote the maximum number of children per node in
the rooted MST. Note that in the Euclidean plane, the maximum degree of an
unrooted MST is at most 6. Moreover, a node can have degree equal to 6, only

if it is surrounded by six equidistant nodes forming a regular hexagon; we can
exclude this degenerate case from consideration by a slight perturbation of the
input points. This leaves us with an unrooted MST of maximum degree 5. By
choosing a node of degree less than 5 as the root, we obtain a rooted MST with
d ≤ 4.

The minimum-weight double-tree shortcutting algorithm by Burkard et al.
[5] applies to the general Metric TSP, and runs in time O(n3 +2dn2) and mem-
ory O(2dn2). In this paper, we give an improved algorithm3 for the case of
small d, running in time O(4dn2) and memory O(4dn). We then describe our
implementation of the new algorithm, which incorporates a couple of additional
heuristic improvements designed to speed up the algorithm and to increase its
approximation quality. Computational experiments show that the approxima-
tion quality and running time of our implementation are among the best known
tour-constructing heuristics.

A preliminary version of this paper appeared as [9].

2 The algorithm

Preliminaries. Let G be a weighted graph representing the Metric TSP problem
on n points. The double-tree method consists of the following stages:

– construct the minimum spanning tree of G;
– duplicate every edge of the tree, obtaining an n-node Eulerian graph;
– select an Euler tour of the double-tree graph;
– reduce the Euler tour to a Hamiltonian cycle by repeated shortcutting, i.e.

replacing a node sequence a, b, c by a, c, as long as node b appears elsewhere
in the current tour.

We say that a Hamiltonian cycle conforms to the doubled spanning tree, if it
can be obtained from that tree by shortcutting one of its Euler tours. We also
extend this definition to paths, saying that a path conforms to the tree, if it is
a subpath of a conforming Hamiltonian cycle.

In our minimum-weight double-tree shortcutting algorithm, we refine the
bottom-up dynamic programming approach of [5]. Initially, we select an arbitrary
node r as the root of the tree. For a node u, we denote by C(u) the set of all
children of u, and by T (u) the node set of the maximal subtree rooted at u,
i.e. the set of all descendants of u (including u itself). For a set of siblings U ,
we denote by T (U) the (disjoint) union of all subtrees T (u), u ∈ U . When U is
empty, T (U) is also empty.

The characteristic property of a conforming Hamiltonian cycle is as follows:
for every node u, upon entering the subtree T (u), the cycle must visit all nodes
of T (u) before leaving the subtree, and must not re-enter the subtree afterwards.

3 Note that Burkard et al. [5] also give an O(2dn3) algorithm for a more general TSP-
type problem, where the set of admissible tours is restricted by an arbitrary PQ-tree.
Our algorithm does not improve on the algorithm of [5] for this more general problem.

For an arbitrary node set S, we will say that a path through the graph sweeps S,
if it visits all nodes of S consecutively in some order. In this terminology, a con-
forming Hamiltonian cycle must, for every node u, contain a subpath sweeping
the subtree T (u).

In the rest of this section, we denote the metric distance between u and v by
d(u, v). We use the symbol ⊎ to denote disjoint set union. For brevity, given a
set A and an element a, we write A ⊎ a instead of A ⊎ {a}, and A \ a instead of
A \ {a}.

Computing the solution weight (upsweep). The algorithm proceeds by computing
minimum-weight sweeping paths in progressively increasing subtrees, beginning
with the leaves and finishing with the whole tree T (r). A similar approach is
adopted in [5], where in each subtree, all-pairs minimum-weight sweeping paths
are computed. In contrast, our algorithm only computes single-source minimum-
weight sweeping paths originating at the subtree’s root. This leads to substantial
savings in time and memory.

A non-root node v ∈ C(u) is active, if its subtree T (v) has already been
processed, but its parent’s subtree T (u) has not yet been processed. In every
stage of the algorithm, we choose the current node u, so that all children of u
(if any) are active. We call T (u) the current subtree. Let V ⊆ C(u), a ∈ T (V).
By Du

V (a) we denote the weight of the shortest conforming path starting from
u, sweeping subtree u ⊎ T (V), and finishing at a.

Consider the current subtree T (u). Processing this subtree will yield the
values Du

V (a) for all V ⊆ C(u), a ∈ T (V). In order to process the subtree,
we need the corresponding values for all subtrees rooted at the children of u.
More precisely, we need the values Dv

W (a) for every child v ∈ C(u), every subset
W ⊆ C(v), and every destination node a ∈ T (W). We do not need any explicit
information on subtrees rooted at grandchildren and lower descendants of u.

Given the current subtree T (u), the values Du
V (a) are computed inductively

for all sets V of children of u. The induction is on the size of the set V . The base
of the induction is trivial: no values Du

V exist when V = ∅.
In the inductive step, given a set V ⊆ C(u), we compute the values Du

V ⊎v(a)
for all v ∈ C(u) \ V , a ∈ T (v), as follows. By the inductive hypothesis, we have
the values Du

V (a) for all a ∈ T (V). The main part of the inductive step consists
in computing a set of auxiliary values Du

V,W (v), for all subsets W ⊆ C(v). Every
such value represents the weight of the shortest conforming path starting from
node u, sweeping the subtree u ⊎ T (V), then sweeping the subtree T (W) ⊎ v,
and finishing at node v. Suppose the path exits the subtree u ⊎ T (V) at node x
and enters the subtree T (W) ⊎ v at node y. We have

Du
V,W (v) =



















d(u, v) if V = ∅, W = ∅

miny∈T (W)

[

d(u, y) +Dv
W (y)

]

if V = ∅, W 6= ∅

minx∈T (V)

[

Du
V (x) + d(x, v)

]

if V 6= ∅, W = ∅

minx∈T (V);y∈T (W)

[

Du
V (x) + d(x, y) +Dv

W (y)
]

if V 6= ∅, W 6= ∅
(1)

u

b

T (V)

b

v

b

T (W)

b

b

x

b

y

Fig. 1: Computation of Du
V,W (v)

u

b

T (V)

b

v

b

T (v)

b

a

(a) Case W = ∅

u

b

T (V)

b

v

bb

T (v)

b

a

(b) Case W 6= ∅

Fig. 2: Computation of Du
V ⊎v(a), a ∈ T (v)

(see Figure 1). The required values Dv
W (y) have been obtained when processing

subtrees T (v) for the active nodes v ∈ C(u). Note that the computed auxiliary
set contains Du

V ⊎v(v) = Du
V,C(v)(v).

Now we can compute the values Du
V ⊎v(a) for all a ∈ T (v) \ v = T (C(v)). A

path corresponding to Du
V ⊎v(a) must sweep u ⊎ T (V), and then T (v), finishing

at a. While in T (v), the path will first sweep a (possibly single-node) subtree
v ⊎ T (W), finishing at v. Then, starting at v, the path will sweep the subtree
v ⊎ T (W), where W = C(V) \ W , finishing at a. Considering every possible
disjoint bipartitioning W ⊎W = C(V), such that a ∈ T (W), we have

Du
V ⊎v(a) = min

W⊎W=C(V): a∈T (W)

[

Du
V,W (v) +Dv

W
(a)

]

(2)

(see Figure 2).

We now have the values Du
V ⊎v(a) for all a ∈ T (v). The computation (1)–(2)

is repeated for every node v ∈ C(u) \ V . The inductive step is now completed.

The processing of subtree T (u) completes when all possible choices of subset
V and node v have been exhausted.

Eventually, the root r of the tree becomes the current node, and we process
the complete tree T (r). This establishes the values Dr

S(a) for all S ⊆ C(r),
a ∈ T (S), which includes the values Dr

C(r)(a) for all a 6= r. The weight of the
minimum-weight conforming Hamiltonian cycle can now be determined as

min
a 6=r

[

Dr
C(r)(a) + d(a, r)

]

(3)

u

bb

T (V n v

1

)

v

1

bb

T (C(v

1

) n v

2

)

v

2

bb

T (C(v

2

) n a)

a

b

T (a)

Fig. 3: Computation of Pu
V (a), a ∈ T (V), k = 3

Theorem 1. The upsweep algorithm computes the weight of the minimum-weight
tree shortcutting in time O(4dn2) and space O(2dn).

Proof. In computation (1), the total number of quadruples u, v, x, y is at most
n2 (since for every pair x, y, the node u is determined uniquely as the lowest
common ancestor of x, y, and the node v is determined uniquely as a child of
u and an ancestor of y). In computation (2), the total number of triples u, v, a
is also at most n2 (since for every pair u, a, the node v is determined uniquely
as a child of u and an ancestor of y). For every such quadruple or triple, the
computation is performed at most 4d times, corresponding to 2d possible choices
of each of V , W . The cost of computation (3) is negligible. Therefore, the total
time complexity of the algorithm is O(4dn2).

Since our goal at this stage is just to compute the solution weight, at any
given moment we only need to store the values Du

V (a), where u is either an active
node, or the current node (i.e. the node for which these values are currently being
computed). When u corresponds to an active node, the number of possible pairs
u, a is at most n (since node u is determined uniquely as the root of an active
subtree containing a). When u corresponds to the current node, the number of
possible pairs u, a is also at most n (since node u is fixed). For every such pair,
we need to keep at most 2d values, corresponding to 2d possible choices of V .
The remaining space costs are negligible. Therefore, the total space complexity
of the algorithm is O(2dn). ⊓⊔

Reconstructing the full solution (downsweep). In order to reconstruct the minimum-
weight Hamiltonian cycle itself, we must keep all the auxiliary values Du

V,W (v)
obtained in the course of the upsweep computation for every parent-child pair
u, v. We solve recursively the following problem: given a node u, a set V ⊆ C(u),
and a node a ∈ T (V), find the minimum-weight path Pu

V (a) starting from u,
sweeping subtree u⊎T (V), and finishing at a. To compute the global minimum-
weight Hamiltonian cycle, it is sufficient to determine the path P r

C(r)(a), where

r is the root of the tree, and a is the node for which the minimum in (3) is
attained.

For any u, V ⊆ C(u), a ∈ T (V), consider the (not necessarily conforming or
minimum-weight) path u = v0 → v1 → v2 → · · · → vk = a, joining nodes u and

a in the tree (see Figure 3). The conforming minimum-weight path Pu
V (a) first

sweeps the subtree u⊎T (C(u)\ v1). After that, for every node vi, 0 < i < k, the
path Pu

V (a) sweeps the subtree vi ⊎ T (C(vi) \ vi+1) as follows: first, it sweeps a
subtree vi⊎T (Wi), finishing at vi, and then, starting at vi, it sweeps the subtree
vi ⊎T (W i), for some disjoint bipartitioning Wi ⊎W i = C(vi) \ vi+1. Finally, the
path Pu

V (a) sweeps the subtree T (a), finishing at a.
The optimal choice of bipartitionings can be found as follows. We construct

a weighted directed graph with a source corresponding to node u = v0, a sink
corresponding to node vk = a, and k− 1 intermediate layers of nodes, each layer
corresponding to a node vi, 0 < i < k. Each intermediate layer consists of at most
2d−1 nodes, representing all different disjoint bipartitionings of the set C(vi) \
vi+1. The source and the sink represent trivial bipartitionings ∅⊎(V \v1) = V \v1
and C(a) ⊎ ∅ = C(a), respectively. Every consecutive pair of layers (including
the source and the sink) are fully connected by forward edges. In particular,
the edge from a node representing the bipartitioning X ⊎ X in layer i, to the
node representing the bipartitioning Y ⊎ Y in layer i + 1, is given the weight
Dvi

X,Y
(vi+1). It is easy to see that an optimal choice of bipartitioning corresponds

to the minimum-weight path from source to sink in the layered graph. This
minimum-weight path can be found by a simple dynamic programming algorithm
(such as the Bellman–Ford algorithm, see e.g. [7]) in time proportional to the
number of edges in the layered graph.

Let W1 ⊎ W 1, . . . ,Wk−1 ⊎ W k−1 now denote the k − 1 obtained optimal
subtree bipartitionings. The k edges of the corresponding source-to-sink shortest
path determine k edges (not necessarily consecutive) in the minimum-weight
sweeping path Pu

V (a). These edges are shown in Figure 3 by dotted lines. It now
remains to apply the downsweep algorithm recursively in each of the subtrees
u⊎T (V \v1), v1⊎T (W1), v1⊎T (W 1), v2⊎T (W2), v2⊎T (W 2), . . . , vk−1⊎T (Wk−1),
vk−1 ⊎ T (W k−1), T (a).

Theorem 2. Given the output and the necessary intermediate values of the up-
sweep algorithm, the downsweep algorithm computes the edges of the minimum-
weight tree shortcutting in time and space O(4dn).

Proof. The construction of the auxiliary graph and the minimum-weight path
computation runs in time O(4dk), where k is the number of edges in the tree
path u = v0 → v1 → v2 → · · · → vk = a in the current level of recursion. Since
the tree paths in different recursion levels are edge-disjoint, the total number
of edges in these paths is at most n. Therefore, the time complexity of the
downsweep stage is O(4dn).

By Theorem 1, the space complexity of the upsweep stage is O(2dn). In
addition to the storage used internally by the upsweep stage, we also need to
keep all the values Du

V,W (v). The number of possible pairs u, v is at most n (since
node u is determined uniquely as the parent of v). For every such pair, we need
to keep at most 4d values, corresponding to 2d possible choices of each of V , W .
The remaining space costs are negligible. Therefore, the total space complexity
of the algorithm is O(4dn). ⊓⊔

3 Heuristic improvements and computational

experiments

Despite the guaranteed approximation ratio of the double-tree shortcutting and
Christofides methods, neither has performed well in previous computational ex-
periments (see [11, 17]). However, to our knowledge, none of these experiments
explored the minimum-weight double-tree shortcutting approach. Instead, the
double-tree shortcutting was performed in some suboptimal, easily computable
order, such as a depth-first tree traversal. We shall call this method depth-first
double-tree shortcutting.

In particular, Reinelt [17] compares 37 tour-constructing heuristics, includ-
ing the depth-first double-tree algorithm and the Christofides algorithm, on a
set of 24 geometric instances from the TSPLIB database [16]. Although most
instances in this experiment are quite small (2000 or fewer points), they still
allow us to make some qualitative judgement about the approximation quality
of different heuristics. Depth-first double-tree shortcutting turns out to have the
lowest quality of all 37 heuristics, while the quality of the Christofides algorithm
is somewhat higher, but still far from the top.

Intuitively, it is clear that the reason for the poor approximation quality of
the two algorithms may be in the wrong choice of the shortcutting order, es-
pecially considering that the overall number of alternative choices is typically
exponential. This observation motivated us to implement the minimum-weight
double-tree shortcutting algorithm from [5]. It came as no surprise that this
algorithm showed higher approximation quality than all the tour constructing
heuristics in Reinelt’s experiment. Unfortunately, Reinelt’s experiment did not
account for the running time of the algorithms under investigation. The theoret-
ical time complexity of the algorithm from [5] is O(n3 + 2dn2); in practice, our
implementation exhibited quadratic growth in running time on most instances.
Both the theoretical and the practical running time were relatively high, which
raised some justifiable doubts about the overall superiority of the algorithm.

As it was expected, the introduction of a new efficient minimum-weight tree
shortcutting algorithm described in Section 2 significantly improved the run-
ning time in our computational experiments. However, this improvement alone
was not sufficient for the algorithm to compete against the best existing tour-
constructing heuristics. Therefore, we introduced two additional heuristic im-
provements, one aimed at increasing the algorithm’s speed, the other at increas-
ing its approximation quality.

The first heuristic improvement, aimed at speeding up the algorithm, is sug-
gested by the well-known bounded neighbour lists [12, p. 408]. Given a tree, we
define the tree distance between a pair of nodes a, b, as the number of edges on
the unique path from a to b in the tree. Given a parameter k, the depth-k list of
node u includes all nodes in the subtree T (u) with the tree distance from u not
exceeding k. The suggested heuristic improvement is to limit the search across
a subtree rooted at u in (1)–(2) to a depth-k list of u for a reasonably low value
of k. Our experiments suggest that this approach improves the running time
dramatically, while not having a significant effect on the approximation quality.

The second heuristic improvement, aimed at increasing the approximation
quality, works by expanding the space of the tours searched, in the hope of finding
a better solution in the larger space. Let T be a (not necessarily minimum)
spanning tree, and let Λ(T) be the set of all tours conforming to T , i.e. the
exponential set of all tours considered by the double-tree algorithm. Our goal
is to construct a new tree T1, such that its node degrees are still bounded by
a constant, but Λ(T) (Λ(T1). We refer to the new set of tours as an enlarged
tour neighborhood.

Consider a node u in T , and suppose u has at least one child v which is
not a leaf. We construct a new tree T1 from T by applying the degree increasing
operation, which makes node v a leaf, and redefines all children of v to be children
of u. It is easy to check that any tour conforming to T also conforms to T1. In
particular, the nodes of T (v), which are consecutive in any conforming tour of
T , are still allowed to be consecutive in any conforming tour of T1. Therefore,
Λ(T) ⊆ Λ(T1). On the other hand, sequence w, u, v, where w is a child of v, is
allowed by T1 but not by T . Therefore, Λ(T) (Λ(T1).

We apply the above degree-increasing heuristic as follows. Let D be a global
parameter, not necessarily related to the maximum node degree in the original
tree. The degree-increasing operation is performed only if the resulting new
degree of vertex u would not exceed D. Note that when the maximum degree
bound would be exceeded, this cannot be avoided by performing the degree
increasing operation partially: it would be wrong to reassign only some, instead
of all, children of node v to a new parent. To illustrate this statement, suppose
that v has two children w1 and w2, which are both leaves. Let w2 be redefined
as a new child of u. The sequence v, w2, w1 is allowed by T but not by T1,
since it violates the requirement for v and w2 to be consecutive. Therefore,
Λ(T) 6⊆ Λ(T1).

Given a tree, the degree increasing operation is applied repeatedly to con-
struct a new tree, obtaining an enlarged tour neighbourhood. In our experiments,
we used breadth-first application of the degree increasing operation as follows:

Root the minimum spanning tree at a node of degree 1;
Let r′ denote the unique child of the root;
Insert all children of r′ into queue Q;
while queue Q is not empty do

extract node v from Q;
insert all children of v into Q;
if deg(parent(v)) + deg(v) ≤ D then

redefine all children of v to be children of parent(v)

Incorporating the above two heuristic improvements, the minimum-weight
double-tree algorithm from Section 2 was modified to take two parameters: the
search depth k, and the degree-increasing limit D. We refer to the double-tree
algorithm with fixed parameters k and D as a double-tree heuristic DTD,k. We
use DT without subscripts to denote the original minimum-weight double-tree
algorithm, equivalent to DT1,∞.

Size 1000 3162 10K 31K 100K 316K 1M 3M

DT 7.36 7.82 8.01 8.19 8.39 8.40 8.41 –

DT1,16 8.64 9.24 9.10 9.43 9.74 9.66 9.72 9.66

DT3,16 6.64 6.97 7.04 7.37 7.51 7.53 7.55 7.50

DT3,32 6.52 6.84 6.92 7.21 7.31 7.36 7.37 7.31

DT4,16 6.00 6.27 6.39 6.69 6.82 6.87 6.85 –

DT4,32 5.93 6.22 6.33 6.60 6.74 6.78 6.77 –

DT5,16 5.67 5.91 5.97 6.27 6.43 6.51 6.47 –

DT5,32 5.62 5.89 5.93 6.23 6.38 6.46 6.43 –

(a) Average excess over the Held–Karp bound (%)

Size 1000 3162 10K 31K 100K 316K 1M 3M

DT 0.18 1.56 15.85 294.38 3533 51147 156659 –

DT1,16 0.04 0.14 0.47 1.57 5.60 20.82 101.09 388.52

DT3,16 0.10 0.33 1.12 3.55 11.90 40.91 138.41 491.58

DT3,32 0.18 0.69 2.45 7.56 25.46 82.99 269.73 935.55

DT4,16 0.23 0.84 2.78 8.81 29.02 94.36 307.31 –

DT4,32 0.45 2.00 6.93 22.11 74.70 236.33 744.50 –

DT5,16 0.62 2.30 7.79 24.48 81.35 253.59 807.74 –

DT5,32 1.11 5.74 20.73 65.96 224.34 695.03 2168.95 –

(b) Average normalised running time (s)

Table 1: Results for DT and DTD,k on uniform Euclidean distances

We compared experimentally the efficiency of the original algorithm DT with
the efficiency of double-tree heuristics DTD,k for two different search depths
k = 16, 32, and for four different values for the maximum degree parameter
D = 1 (no degree increasing operation applied), 3, 4, 5. The case D = 2 is essen-
tially equivalent to D = 1, and therefore not considered. In our computational
experiments we used the test data from DIMACS Implementation Challenge
[12, 2]. These are uniform random Euclidean instances with 1000 points (10 in-
stances), 3162 points (five instances), 10000 points (three instances), 31623 and
100000 points (two instances of each size), 316228, 1000000, and 3168278 points
(one instance of each size).

For each heuristic, we consider both its running time and approximation qual-
ity. We say that one heuristic dominates another, if it is superior in both these
respects. The experimental results, presented in Table 1, clearly indicate that
nearly all considered heuristics (excluding DT1,16) dominate plain DT. More-
over, all these heuristics (again excluding DT1,16) dominate DT on each individ-
ual instance used in the experiment. For further comparison of the double-tree
heuristics with existing tour-constructing heuristics, we chose DT1,16 and DT5,16.

The main part of our computational experiments consisted in comparing
the double-tree heuristics against the most powerful existing tour-constructing
heuristics. As a base for comparison, we chose the heuristics analysed in [12],

Size 1000 3162 10K 31K 100K 316K 1M 3M

RA+ 13.96 15.25 15.04 15.49 15.43 15.42 15.48 15.47

Chr-S 14.48 14.61 14.81 14.67 14.70 14.49 14.59 14.51

FI 12.54 12.47 13.35 13.44 13.39 13.43 13.47 13.49

Sav 11.38 11.78 11.82 12.09 12.14 12.14 12.14 12.10

ACh 11.13 11.00 11.05 11.39 11.24 11.19 11.18 11.11

Chr-G 9.80 9.79 9.81 9.95 9.85 9.80 9.79 9.75

Chr-HK 7.55 7.33 7.30 6.74 6.86 6.90 6.79 –

MTS1 6.09 8.09 6.23 6.33 6.22 6.20 – –

MTS3 5.26 5.80 5.55 5.69 5.60 5.60 – –

DT1,16 8.64 9.24 9.10 9.43 9.74 9.66 9.72 9.66

DT5,16 5.67 5.91 5.97 6.27 6.43 6.51 6.47 –

(a) Average excess over the Held–Karp bound (%)

Size 1000 3162 10K 31K 100K 316K 1M 3M

RA+ 0.06 0.23 0.71 1.9 5.7 13 60 222

Chr-S 0.06 0.26 1.00 4.8 21.3 99 469 3636

FI 0.19 0.76 2.62 9.3 27.7 65 316 1301

Sav 0.02 0.08 0.26 0.8 3.1 21 100 386

ACh 0.03 0.12 0.44 1.3 3.8 28 134 477

Chr-G 0.06 0.27 1.04 5.1 21.3 121 423 3326

Chr-HK 1.00 3.96 14.73 51.4 247.2 971 3060 –

MTS1 0.37 2.56 17.21 213.4 1248 11834 – –

MTS3 0.46 3.55 24.65 989.1 2063 21716 – –

DT1,16 0.04 0.14 0.47 1.57 5.60 20.82 101 389

DT5,16 0.62 2.30 7.78 24.48 81.35 254 808 –

(b) Average normalised running time (s)

Table 2: Comparison between established heuristics and DT-heuristics on uniform
Euclidean instances

as well as two recent matching-based heuristics from [13]. The experiments were
performed on a Sun Systems Enterprise Server E450.

Table 2 shows the results of these experiments. Abbreviations of the heuris-
tics in the table follow [12, 13]. As seen from the table, the average approximation
quality of DT1,16 turns out to be higher than all classical heuristics considered
in [12], except Chr-HK. Moreover, heuristic DT1,16 dominates heuristics RA+,
Chr-S, FI, Chr-G. Heuristic DT5,16 dominates Chr-HK. Heuristic DT5,16 also
compares very favourably with MTS heuristics, providing similar approxima-
tion quality at a small fraction of the running time. The above results show
clearly that double-tree heuristics deserve a prominent place among the best
tour-constructing heuristics for Euclidean TSP.

The impressive success of double-tree heuristics must, however, be approached
with some caution. Although the normalised time is an excellent tool for com-

Size 1000 3162 10K 31K 100K 316K

RA+ 12.84 13.88 16.08 15.59 16.22 16.33

Chr-S 12.03 12.79 13.08 13.47 13.50 13.45

FI 9.90 11.85 12.82 13.37 13.96 13.92

Sav 13.51 15.97 17.21 17.93 18.20 18.50

ACh 10.21 11.01 11.47 11.78 12.00 11.81

Chr-G 8.08 9.01 9.21 9.47 9.55 9.55

Chr-HK 7.27 7.78 8.37 8.42 8.46 8.56

MTS1 8.90 9.96 11.97 11.61 9.45 –

MTS3 8.52 9.5 10.11 9.72 9.46 –

DT4,16 6.37 8.24 8.79 9.40 9.38 9.39

DT5,16 5.72 7.17 7.92 8.32 8.46 8.42

(a) Average excess over the Held–Karp
bound (%)

Size 1000 3162 10K 31K 100K 316K

RA+ 0.1 0.2 0.7 1.9 5.5 12.7

Chr-S 0.2 0.8 3.2 11.0 37.8 152.8

FI 0.2 0.8 2.9 9.9 30.2 70.6

Sav 0.0 0.1 0.3 0.9 3.4 22.8

ACh 0.0 0.2 0.8 2.1 6.4 54.2

Chr-G 0.2 0.8 3.2 11.0 37.8 152.2

Chr-HK 0.9 3.3 11.6 40.9 197.0 715.1

MTS1 0.78 4.19 45.09 276 1798 –

MTS3 0.84 4.76 49.04 337 2213 –

DT4,16 0.2 0.87 3.16 9.55 34.43 120.3

DT5,16 1.12 4.85 16.08 53.35 174 569

(b) Average normalised running time (s)

Table 3: Comparison between established heuristics and DT-heuristics on clustered
Euclidean instances

paring results reported in different computational experiments, it is only an
approximate estimate of the exact running time. According to [12, page 377],
“[this] estimate is still typically within a factor of two of the correct time”.
Therefore, as an alternative way of representing the results of computational ex-
periments, we suggest a graph of the type shown in Figure 4, which compares the
heuristics’ average approximation quality and running time on random uniform
instances with 10000 points. A normalised time t is represented by the interval
[t/2, 2t]. The relative position of heuristics in the comparison and the dominance
relationships can be seen clearly from the graph. Results for other instance sizes
and types are generally similar.

Additional experimental results for clustered Euclidean instances are shown
in Table 3 (with DT1,16 replaced by DT4,16 to illustrate more clearly the overall
advantage of DT-heuristics), and for TSPLIB instances in Table 4.

Size 1000 3162 10K 31K 100K

RA+ 17.46 16.28 17.78 19.88 17.39

Chr-S 13.36 14.17 13.41 16.50 15.46

FI 15.59 14.28 13.20 17.78 15.32

Sav 11.96 12.14 10.85 10.87 19.96

ACh 9.64 10.50 10.22 11.83 11.52

Chr-G 8.72 9.41 8.86 9.62 9.50

Chr-HK 7.38 7.12 7.50 6.90 7.42

MTS1 7.0 6.9 5.1 4.7 4.1

MTS3 6.2 5.1 4.0 2.9 2.7

DT1,16 6.36 5.99 8.09 9.99 10.02

DT5,16 6.13 5.58 7.65 8.98 9.30

(a) Average excess over the Held–Karp bound (%)

Size 1000 3162 10K 31K 100K

RA+ 0.1 0.2 0.8 2.2 5.6

Chr-S 0.1 0.2 1.8 3.9 31.8

FI 0.2 0.8 3.1 9.8 26.4

Sav 0.0 0.1 0.3 0.6 1.4

ACh 0.0 0.1 0.5 1.5 3.9

Chr-G 0.1 0.2 1.8 3.8 29.5

Chr-HK 0.7 2.2 9.7 50.1 177.9

MTS1 – 1.5 34.4 107.3 620.0

MTS3 – 2.1 42.4 135.4 1045.3

DT1,16 0.3 0.9 4.1 18.4 49.3

DT5,16 0.6 2.1 11.0 57.1 115.1

(b) Average normalised running time (s)

Table 4: Comparison between established heuristics and DT-heuristics on geometric in-
stances from TSPLIB: pr1002, pcb1173, rl1304, nrw1379 (size 1000), pr2392, pcb3038,
fnl14461 (size 3162), pla7397, brd14051 (size 10K), pla33810 (size 31K), pla859000 (size
100K).

While we have done our best to compare the existing and the proposed
heuristics fairly, we recognise that our experiments are not, strictly speaking, a
“blind test”: we had the results of [12] in advance of implementing our method,
and in particular of selecting the top DT-heuristics for comparison. However,
we never consciously adapted our choices to the previous knowledge of [12],
and we believe that any subconscious effect of this previous knowledge on our
experimental setup is negligible.

4 Conclusions and open problems.

In this paper, we have presented an improved algorithm for finding the minimum-
weight double-tree shortcutting approximation for Metric TSP. We challenged

0 2 4 6 8 10 12 14 16

5

6

7

8

9

10

11

12

13

14

15

Average normalised running time (s)

A

v

e

r

a

g

e

e

x

e

s

s

o

v

e

r

t

h

e

H

e

l

d

-

K

a

r

p

b

o

u

n

d

(

%

)

b

DT

1;16

b

Chr-G

b

A
h

b

Sav

b

FI

b

Chr-S

b

RA

+

b

Chr-HK

b

DT

5;16

b

DT

3;16

Fig. 4: Comparison between established heuristics and DT-heuristics on uniform Eu-
clidean instances with 10000 points

ourselves to make the algorithm as efficient as possible. The improvement in time
complexity from O(n3+2dn2) to O(4dn2) (which implies O(n2) for the Euclidean
TSP) placed the minimum-weight double-tree shortcutting method as a peer in
the set of the most powerful tour-constructing heuristics. It is known that most
powerful tour-constructing heuristics have theoretical time complexity O(n2),
and in practice often exhibit near-linear running time. The minimum-weight
double-tree method now also fits this pattern.

While we have not been using the language of parameterised complexity [10],
we (and the previous work [5]) have in fact demonstrated that the problem of
finding the minimum-weight double-tree tour for Metric TSP is fixed-parameter
tractable (where the maximum degree of the MST is the relevant parameter).
It would be interesting to see if this connection with parameterised complexity
theory can be extended further, e.g. by using any of the established techniques
for designing fixed-parameter tractable algorithms.

Our results should be regarded only as a first step in exploring new oppor-
tunities. Particularly, the minimum spanning tree is not the only possible choice
of the initial tree. Instead, one can choose from a variety of trees, e.g. Held
and Karp (1-)trees, approximations to Steiner trees, spanning trees of Delaunay
graphs, etc. This variety of choices merits a further detailed exploration.

It is well-known that when the initial tree is a path, the resulting double-tree
tour neighborhood is the set of all pyramidal tours [5]. In this case, a dozen of
conditions on the distance matrix are known (see e.g. [4]), which guarantee that
the tour neihborhood contains the absolute minimum-weight tour. It may be
possible to generalise this approach by identifying new special types of trees and
conditions on the distance matrices, which would guarantee that the minimum-

weight double-tree algorithm finds an absolute minimum-weight tour. For more
results on polynomial solvability of TSP with special conditions imposed on the
distance matrix, see [4, 8].

The minimum-weight shortcutting problem for the Christophides graph re-
mains NP-hard even in the planar Euclidean case. However, our algorithm turns
out to be applicable also to this problem on certain classes of instances. It can
be shown that if the Christofides graph is a cactus (i.e. all its cycles are pairwise
edge-disjoint), then the set of all its shortcuttings is a subset of the set of all
double-tree shortcuttings. Therefore, our algorithm, as well as the algorithm of
[5], can be used to find efficiently the minimum-weight shortcutting when the
Christofides graph is a cactus. In particular, such a shortcutting can be found
in polynomial time in the planar Euclidean case.

Our efforts invested into theoretical improvements of the algorithm, sup-
ported by a couple of additional heuristic improvements, have borne the fruit:
computational experiments with the minimum-weight double-tree algorithm show
that it becomes one of the best known tour constructing heuristics. It appears
that the double-tree method is also well suited for local search improvements
based of transformations of trees and searching the corresponding tour neigh-
borhoods. One can easily imagine various tree transformation techniques that
could make our method even more powerful.

5 Acknowledgements

The authors thank an anonymous referee of a previous version of this paper,
whose detailed comments helped to improve it significantly. The MST subroutine
in our code is courtesy of the Concorde project [1].

References

1. Concorde TSP solver. http://www.tsp.gatech.edu/concorde.
2. DIMACS TSP challenge. http://www.research.att.com/~dsj/chtsp.
3. S. Arora. Polynomial-time approximation schemes for Euclidean TSP and other

geometric problems. Journal of the ACM, 45:753–782, 1998.
4. R. E. Burkard, V. G. Deineko, R. van Dal, J. A. A. van der Veen, and G. J.

Woeginger. Well-solvable special cases of the traveling salesman problem: A survey.
SIAM Review, 40(3):496–546, September 1998.

5. R. E. Burkard, V. G. Deineko, and G. J. Woeginger. The travelling salesman and
the PQ-tree. Mathematics of Operations Research, 23(3):613–623, August 1998.

6. N. Christofides. Worst-case analysis of a new heuristic for the travelling salesman
problem. Technical report, Carnegie-Mellon University, 1976.

7. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-

rithms. The MIT Electrical Engineering and Computer Science Series. The MIT
Press and McGraw–Hill, second edition, 2001.

8. V. Deineko, B. Klinz, and G. Woeginger. Four point conditions and exponential
neighborhoods for the Symmetric TSP. In Proceedings of the 17th ACM–SIAM

SODA, pages 544–553, 2006.

9. V. Deineko and A. Tiskin. Fast minimum-weight double-tree shortcutting for
Metric TSP. In Proceedings of the 6th WEA, volume 4525 of Lecture Notes in

Computer Science, pages 136–149, 2007.
10. R. G. Downey and M. R. Fellows. Parameterized Complexity. Monographs in

Computer Science. Springer, 1998.
11. D. S. Johnson and L. A. McGeoch. The traveling salesman problem: a case study.

In G. Aarts and J. K. Lenstra, editors, Local Search in Combinatorial Optimisation,
chapter 8, pages 215–310. John Wiley & Sons, 1997.

12. D. S. Johnson and L. A. McGeoch. Experimental analysis of heuristics for the
STSP. In G. Gutin and A. P. Punnen, editors, The Traveling Salesman Problem

and Its Variations, chapter 9, pages 369–487. Kluwer Academic Publishers, 2002.
13. A. B. Kahng and S. Reda. Match twice and stitch: a new TSP tour construction

heuristic. Operations Research Letters, 32:499–509, 2004.
14. C. H. Papadimitriou. The Euclidean traveling salesman problem is NP-complete.

Theoretical Computer Science, 4:237–247, 1977.
15. C. H. Papadimitriou and U. V. Vazirani. On two geometric problems related to

the travelling salesman problem. Journal of Algorithms, 5:231–246, 1984.
16. G. Reinelt. TSPLIB — a traveling salesman problem library. ORSA Journal on

Computing, 3(4):376–384, 1991.
17. G. Reinelt. The Travelling Salesman: Computational Solutions for TSP Applica-

tions. Springer-Verlag, 1994.
18. D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis II. An analysis of several

heuristics for the traveling salesman problem. SIAM Journal of Computing, 6:563–
581, 1977.

19. A. Serdyukov. On some extremal walks in graphs. Upravlyaemye systemy, 17:76–
79, 1978.

