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Abstract— In this paper, we address the issue of localization
in anisotropic sensor networks. Anisotropic networks are differ-
entiated from isotropic networks in that they possess properties
that vary according to the direction of measurement. Anisotropic
characteristics result from various factors such as the geographic
shape of the region (non-convex region), the different node
densities, the irregular radio patterns, and the anisotropic terrain
conditions. In order to characterize anisotropic features, we
devise a linear mapping method that transforms proximity
measurements between sensor nodes into a geographic distance
embedding space by using the truncated singular value decom-
position (SVD) pseudo-inverse technique. This transformation
retains as much topological information as possible and reduces
the effect of measurement noises on the estimates of geographic
distances. We show via simulation that the proposed localization
method outperforms DV-hop, DV-distance, and MDS-map, and
makes robust and accurate estimates of sensor locations in both
isotropic and anisotropic sensor networks.

Index Terms— Localization, Sensor networks, and singular
value decomposition.

I. INTRODUCTION

Driven by advances in MEMS micro-sensors, wireless net-
working, and embedded processing, ad-hoc networks of de-
vices and sensors with (limited) sensing and wireless commu-
nication capabilities are becoming increasingly available for
commercial and military applications such as environmental
monitoring (e.g., traffic, habitat, security), industrial sensing
and diagnostics (e.g., factory, appliances), critical infrastruc-
ture protection (e.g., power grids, water distribution, waste
disposal), and situational awareness for battlefield applications.
For these purposes, sensor nodes collaborates with each other
in sensing, monitoring, and tracking events of interests by
exchanging acquired data, usually stamped with the time
and position information. If the data sent by a sensor node
carries incorrect position information, it could be useless or
even harmful. As such, localization — how each sensor node
obtains its accurate position, even in the presence of differ-
ent geographic shapes of the monitoring region (non-convex
region), different node densities, irregular radio patterns, and
anisotropic terrain conditions — has become an important and
critical issue in deploying wireless sensor networks.
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Localization for wireless sensor networks has been inten-
sively studied in recent years. A simple approach of having
all the sensor nodes equipped with a global positioning system
(GPS) does not suffice because of the size, cost, and power
consumption constraints of sensor nodes. Instead, most local-
ization methods determine the positions of unknown sensor
nodes under the assumption that a small portion of sensor
nodes, called beacon nodes, are aware of their positions by
means of manual configuration or GPS [1]-[12]. In these
methods, each sensor node estimates (based either ranging
techniques or proximity measurements) its distances to beacon
nodes, and calculates its position by triangulation/lateration
techniques. Refinement can be made to iteratively improve
the accuracy of these localization methods, by, for example,
gradually adjusting the node position so as to minimize the
discrepancy between the calculated Euclidean distances and
the measured distances to its neighboring nodes [5], [6].

One underlying assumption used in most localization meth-
ods is that the network topology is isotropic, i.e., the properties
of proximity measurements are identical in all directions.
Unfortunately, this assumption often does not hold in practice,
due to the geographic shape of the region (non-convex region),
the different node densities, the irregular radio patterns, and the
anisotropic terrain conditions. As a result, their performance
degrades severely in anisotropic sensor networks. For example,
in one of the pioneering methods, APS [3], each beacon node
computes the average distance per hop by dividing the sum
of distances to the other beacon nodes by the sum of hop-
counts, without taking into account of the fact that the per-
hop distance may be different in different directions, due to
terrains, obstacles, and/or other effects. A sensor node that
does not know its location estimates its distance to a beacon
node, by multiplying the average per-hop-distance of the
beacon node by the hop-count to the beacon node (measured
by the sensor node).

Recently, several methods have been proposed for
anisotropic networks, among which the multidimensional scal-
ing (MDS) based methods [11], [12] may have received
the most attention. By assuming that the network is locally
isotropic in small regions, they establish local maps based
on the MDS technique in small regions, and merge local
maps into a global map covering the entire sensor network
area. Although these “divide and conquer” methods further
improves the accuracy of localization under certain cases, their
performances are quite susceptible to the choice of the size of
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small regions. As a matter of fact, this parameter depends
greatly on the terrain conditions and other factors that affect
the isotropy of the network.

In this paper, we present a new technique to analyze the re-
lationship between the geographic distance and the proximity
between sensor nodes in anisotropic networks. Conceptually,
localization can be considered as an embedding problem that
maps the set of objects into an embedding space. In Lipschitz
embeddings, a coordinate space is defined such that each axis
corresponds to a reference set of objects, and the coordinate
values of an object o are the distances from o to the reference
objects [13], [17], [18]. Based on this concept, each sensor
node has two coordinates in Lipschitz embedding spaces that
correspond, respectively, to the proximity measure and the
Euclidean distance between itself and beacon nodes.

We derive an optimal linear transformation that projects
one embedding space (that is built upon proximity measures)
into the geographic distance space by using the singular value
decomposition (SVD) technique. The (i, j)th element of the
transformation matrix represents the effect of proximity to
the jth beacon node on the geographic distance to the ith
beacon node. The distance to a beacon node is computed by
a weighted sum of proximities to all the beacon nodes in
all directions. Moreover, by introducing a truncation method
to SVD, the proposed method reduces the effect of noise in
the transformation process, while keeping as much topological
information as possible. Finally, we show via simulation that
as compared to MDS-based localization methods, the proposed
localization method makes robust and accurate estimates of
node locations in both isotropic and anisotropic sensor net-
works.

The rest of the paper is organized as follows: In Section II,
we provide preliminary material and formulate the localization
problem. In Section III, we give a summary of related work in
the literature. In Section IV-V, we first introduce optimal linear
transformation from the proximity space into the geographic
distance space, and then elaborate on system implementation
issues. Following that, we present in Section VI experimental
results, and conclude the paper in Section VII.

II. BACKGROUND

A. Localization Problem

The localization problem we consider is as follows: Given
the proximity measures to beacon nodes, determine the un-
known locations of sensor nodes, where the proximity between
two nodes is defined as a quantitative measure that reflects
the geographic distance. For example, in range-free sensor
networks, network characteristics such as the number of hops
are adequate candidates as the proximity measure.

Consider a sensor network S with M beacon nodes and N
(non-beacon) nodes with unknown positions. (For notational
convenience, we term the nodes with unknown positions as
unknown nodes.) The locations of beacon nodes and unknown
nodes are denoted as xi ∈ R

d in d-dimensional space for
i = {1, · · · , M} and i = {M + 1, · · · , M + N}, respectively.
The geographic distance between two nodes, x i and xj is then

defined by the Euclidean distance:

dij = fd(xi,xj) :=

√√√√ d∑
k=1

(xik − xjk)2, (1)

where xik and xjk are the kth coordinates of xi and xj ,
respectively. Let pij be the proximity measure between the
ith node and the jth node. Then the localization problem can
be formally stated as

Given: xi, pij , and psi for i, j ∈ {1, · · · , M},
Estimate: xs for a sensor node s.

Namely, under the assumption that the locations x i of the
beacon nodes are known, the problem is to estimate, with the
use of the proximities pij and psi for i, j ∈ {1, · · · , M}, the
geographic position xs of the sensor node s.

B. Anisotropic Environment

For a sensor network S, we assume that there exists a
certain mapping function, fp : R

2d −→ R, that describes the
mapping from the geographic locations (x i and xj) to the
measured proximity pij for each pair of sensor nodes, where
the proximity is written as pij = fp(xi,xj). If the mapping
fp(xi,xj) is a function of the Euclidean distance between
xi and xj , the sensor network is said to be isotropic, i.e.
pij = fp(xi,xj) = gp(dij), ∀ i, j ∈ {1, . . . , M + N} and
gp : R −→ R.

In practice, the proximities measured by a sensor node to
the others often differ in different directions. This implies
that the proximity between a pair of sensor nodes depends
greatly on the distinct locations of these sensor nodes, and the
sensor network is anisotropic. For instance, if the proximity
is defined by the minimum hop-count obtained by flooding
probing packets, and if sensor nodes are scattered in a non-
convex region, the path between a pair of sensor nodes may
not be a straight line and has to detour around the region.
This results in a larger proximity between the sensor nodes
than that in a convex region. Similarly, in a weakly connected
sensor network, the geographic distance may be shorter than
the product of the hop-count and the transmission range, as
intermediate nodes may not exist on the straight line between
the two nodes. That is, a loosely populated sensor network is
likely anisotropic.

Fig. 1 gives several examples of isotropic/anisotropic sensor
networks. (We will use these networks both for the subsequent
discussion and for the simulation study.) Fig. 1(a) gives an
isotropic sensor network, where 250 sensor nodes (each with
a radio range of r) are uniformly distributed within a square
area. For notational convenience, we normalize the distance
with the radio range r, i.e., the distance is measured in units
of u = r. The square area is of size 10u × 10u. Fig. 1(b)
and (c) give two possible anisotropic sensor networks. In Fig.
1(b), sensor nodes enclose a circular obstacle in the right half
plane, giving rise to an example anisotropic network. In this
case, even though the geographic distances of two pairs of
nodes are the same, their proximities can be quite different.
In Fig. 1(c), sensor nodes in the left half plane have a radio
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(a) Topology A: Isotropic network
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(b) Topology B: Anisotropic network due to
geographic structures
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(c) Topology C: Anisotropic network due to
different radio ranges

Fig. 1. Sensor network topologies used in the simulation study.

range of r1 = u, whereas those in the right half plane have
a radio range of r2 = 1.3u, giving rise to another example
anisotropic network. In the case, nodes in different areas have
different radio ranges (due to, for example, terrain and foliage
effects). This difference also makes the ratio of the geographic
distance to the hop-count different in different regions.

In anisotropic sensor networks, in order to obtain accu-
rate localization results, it is necessary to compensate for
anisotropic properties. This can be done by gathering and uti-
lizing information of the relationship between the geographic
distances and the measured proximities in as many directions
as possible. We will elaborate on this issue in Section IV

III. RELATED WORK

A. Generic Approaches

Bulusu et al. [1] attempted to reduce the use of GPS
by placing multiple nodes (beacon nodes) with overlapping
coverage regions at known locations. The authors proposed a
simple localization method that determines the location of a
sensor node as the centroid of the locations of its neighboring
beacon nodes. Doherty et al. [2] formulated the localization
problem as a convex optimization problem with proximity
constraints imposed by known connections. The problem was
then solved in a centralized manner.

Niculescu and Nath [3] proposed a distributed positioning
algorithm, called ad-hoc positioning system (APS), in which
three different propagation methods were investigated, i.e.,
DV-hop, DV-distance, and Euclidean schemes. In the DV-hop
scheme, each node exchanges distance tables that contain the
locations of, and the hop-counts to, beacon nodes with its
neighboring nodes. Once a beacon node obtains these dis-
tance tables from other beacon nodes, it estimates an average
distance per hop, and exploits it to estimate the geographic
distance from each unknown node to the beacon node. The
unknown node estimates its location by performing lateration,
i.e., a simplified version of the GPS triangulation. The DV-
distance scheme employs, rather than hop-counts, geographic
distances (measured with the use of radio signal strengths).
Finally the Euclidean scheme relies on the geometry of neigh-
boring nodes to estimate the geographic location.

Savvides et al. proposed an iterative multilateration method
in [4], [6]. Each node that has at least three beacon nodes
within its radio range estimates its location based on geometric
constraints. Once a non-beacon node is localized, it becomes
a beacon node that can be used to localize other non-beacon
nodes. This process is iteratively executed until the positions
of all the nodes that eventually have three or more beacons
are estimated. A drawback of this iterative multilateration
is the error accumulation that results from the use of non-
beacon nodes with an estimated location as beacon nodes.
To overcome the drawback of the range error accumulation,
Savarese et al. [5] proposed an algorithm that is composed of
two phases: the start-up phase and the refinement phase. The
initial position of a node is obtained in the start-up phase by
using the proximity (hop-count) information as in DV-Hop,
and is gradually adjusted in the refinement phase by using the
measured ranges between its neighboring nodes. Nagpal et al.
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[7] proposed a coordinate formation algorithm that consists
of (i) probing packet propagation initiated by beacon nodes
for allowing a target node to measure the proximities (hop-
counts) to beacon nodes and (ii) gradient based multilateration
for estimating the location of a target node based on the
distances to beacon nodes. The distance is simply estimated
by dsi = r psi, but if the node density is not high, a path
between nodes may not be a straight line and may be longer
than the radio range r. In such a case, this algorithm uses the
following formula:

dsi = r psi

(
1 + e−nlocal −

∫ 1

−1

e
nlocal

π (arccos t−t
√

1−t2)dt

)
,

where nlocal is the node density of the sensor network. He et
al. [8] proposed a simple, area-based localization technique
that does not require expensive lateration algorithms. Each
node chooses three beacon nodes from all neighboring beacon
nodes, forms a triangle by connecting these three beacon
nodes, and calculates the center of the intersection of all the
triangles to determine its position.

Most of the proposed positioning algorithms including [1]-
[8] work well in isotropic sensor networks. However, their
performance severely degrades in anisotropic networks as a
result of not taking into account of the anisotropic properties.

B. Multidimensional Scaling (MDS) Based Approaches

Several novel methods using multidimensional scaling
(MDS) were recently proposed for localization in sensor
networks [9], [10], [11], [12]. Multidimensional scaling is a
data analysis technique used to visualize proximity of a set
of objects in a low dimensional space. Let P be a proximity
matrix, whose ijth element is the proximity measured between
the ith and jth sensor nodes. The squared matrix PPT is
shifted to the center of the matrix P, and is decomposed by
similarity transformation. Then, by selecting the eigenvectors
associated the first m largest eigenvalues, these localization
methods obtain an m dimensional space representation (m is
usually 2-3), called a relative map. Locations in the relative
map are relative to each other, and hence have to be rotated,
shifted, and reflected in order to coincide with the geographic
locations of sensor nodes.

Raykar et al. [9] formulated a localization problem for
sound sensors and actuators as a non-linear least square
minimization problem. The authors suggested to use the coor-
dinates obtained by MDS as the initial guess to mitigate the
local minima problem.

Shang et al. [10] proposed a MDS-based localization
method, called MDS-map, that works well with connectiv-
ity information. However, MDS-map requires availability of
global connectivity information for all the sensor nodes (in
order to calculate the similarity transformation), and as a
result, is a centralized method. (Its complexity is O(n3), where
n is the total number of sensor nodes.) Moreover, as shown
in [10], MDS-map does not seem to outperform the previous
methods, when the number of beacon nodes are large.

To eliminate the need for global connectivity information
and centralized computation, Shang and Ruml [11] proposed

an improved version of MDS-map, called MDS-map (P). Each
node performs MDS with the connectivity information to its
neighbor nodes and obtains a local (relative) map. These local
maps are then merged together to form a global (relative) map.
The global map has to be aligned, by a linear transformation,
in order to construct a geographic (absolute) map.

Ji and Zha [12] proposed to use the scaling by majorizing
a complicated function (SMACOF) to obtain weighted MDS
iteratively, when a portion of the pairwise proximity informa-
tion is not available. The relative maps are calculated in small
groups of sensor nodes and are merged in a distributed fashion.
The authors proposed an incremental and distributed method
to align the relative map to the geographic map.

Although the MDS-map method [10] leverages global con-
nectivity information, it does not achieve better performance
in anisotropic sensor networks than the latter two methods
[11], [12] that establish small local maps and merge them
to construct a global map. This is because the MDS-map
method leaves out significant information by using two (or
three) eigenvectors of the n eigenvectors obtained from the
similarity transformation. This implies that the m (m = 2
or 3) eigenvectors selected in the MDS process retain only
m principal components of the proximity information, and
other significant information including anisotropic network
properties are essentially left out. The latter two methods
[11], [12], on the other hand, divide an anisotropic sensor
network into a number of small regions, each of which is
considered to be locally isotropic. Relative, local maps are
then established, and merged into a global map. As a result, the
anisotropic characteristics can be better retained in the global
map. The downside of these two approaches is, however,
that the performance is quite susceptible to the choice of an
appropriate region size and the origin of the global map. The
performance is also affected by error propagation during the
merging process.

C. Our Proposed Method

Our proposed method bears similarity with the MDS-based
method in that it uses the singular value decomposition (SVD)
technique to analyze the proximity matrix. However, it differs
in several fundamental aspects:

• Accurate characterization: We employ SVD to analyze
the relationship between the geographic distances and
the proximities, with the objective of retaining as much
anisotropic characteristics as possible.

• Less computational complexity: In the proposed
method, SVD is applied to the proximity matrix only
between beacon nodes, but not all the nodes. Although
SVD has computational complexity of O(n3), the param-
eter n in the proposed method refers to the number of
beacon nodes. An unknown sensor node simply computes
its geographic distance to beacon nodes by matrix mul-
tiplication.

• Simple protocol operations: The corresponding proto-
col in the proposed method is similar to that in APS
[3]. Unlike the MDS-based method, it does not require
availability of global topology information, partition of
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the area into small regions for generating relative maps,
or global coordination and integration for a global map.

IV. PROXIMITY CHARACTERIZATION

In this section, we present our theoretical base for proxim-
ity characterization in wireless sensor networks. Specifically,
we analyze the proximities measured between beacon nodes
with known geographic locations, and derive optimal linear
transformation, called proximity-distance map (PDM), that
describes the relationship between the proximities and the
geographic distances in anisotropic sensor networks.

A. Embedding Spaces in Localization

The proximities measured from a (beacon or non-beacon)
node to beacon nodes define its coordinate in a linear system.
Given that there exist M beacon nodes, the coordinate of a
node si in an M -dimensional Lipschitz embedding space [17],
[18] is represented by the proximity vector:

pi = [pi1, · · · , piM ]T

where pij is the proximity measured by the ith node to the
jth node and pii = 0. The overall embedding space can be
represented by an M -by-M proximity matrix P, whose ith
column is the coordinate of node s i:

P = [p1, · · · ,pM ].

Here P is a square matrix with zero diagonal entries.
Similarly, we define the geographic distance vector and

matrix as

li = [li1, · · · , liM ]T and L = [l1, · · · , lM ],

where the geographic matrix L is an M -by-M symmetric
square matrix with zero diagonal entries.

B. Proximity-Distance Map (PDM)

Now we derive the optimal linear transformation T, called
the proximity-distance map (PDM), that gives a mapping from
the proximity matrix P to the geographic distance matrix L.
Note that T is an M -by-M square matrix. Each row vector
ti of T can be obtained by minimizing the following square
error:

ei =
M∑

k=1

(lik − tipk)2

= ||lTi − tiP||2.
The least-square solution for the row vector t i is

ti = lTi PT (PPT )−1.

As a result, PDM is defined as

T = LPT (PPT )−1. (2)

Remark 1 The element tij of T represents the effect of the
proximity to the jth beacon node on the geographic distance
to the ith beacon node. Note that the main diagonal t ii of T
can be considered as scaling factors roughly approximating

the mapping from the proximity to the geographic distance.
The geographic distance from a node to a beacon node is
specified as a weighted sum of proximities to all the beacon
nodes.

Note that as PDM retains all the proximity characteristics to all
beacon nodes in all directions, it can precisely characterize the
anisotropic relationship between proximities and geographic
distances.

C. Calculation of PDM

We derive a numerically stable form of Eq. (2) with the
use of the singular-value decomposition (SVD) [19]. Let the
singular-value decomposition of P be expressed as

P = U ·
[

Σ 0
0 0

]
·VT , (3)

U and V are column and row orthogonal matrices:

U = [u1, · · · ,uM ],
V = [v1, · · · ,vM ],

and Σ is a diagonal matrix:

Σ = diag(σ1, · · · , σW ),

where the subscript W is the rank of matrix P, and σ i’s are
singular values of P in the decreasing order (i.e., σ1 ≥ · · · ≥
σW > 0). Then the matrix P+, called pseudo-inverse or the
Moore-Penrose generalized inverse of P, is defined as

P+ = PT (PPT )−1 = V·
[

Σ−1 0
0 0

]
·UT =

W∑
i=1

1
σi

viuT
i .

(4)
With the use of P+, PDM can be simply expressed as T =
LP+.

Caution should be taken in calculating and using the
pseudo-inverse of P. If the proximity measurements cannot
be accurately made, the noise introduced in the measurement
may produce inaccurate transformation metrics, because of
the terms that contain reciprocals of small, near-zero singular
values in Eq. (4). To reduce such effects, we use the truncated
pseudo-inverse method described in [20], [21], in which small
singular values are simply discarded by truncating the terms at
an earlier index γ < W. That is, instead of using Σ in Eq. (4),
we use

Σγ = diag(σ1, · · · , σγ),

and the truncated pseudo-inverse of P can be written by

P+
γ =

γ∑
i=1

1
σi

viuT
i . (5)

While truncating higher terms in Eq. (4) reduces the adverse
effect of measurement noises, it may also result in significant
loss of anisotropic information. To determine an adequate in-
dex γ, we use the following criterion: the percentage accounted
for by the first k singular values is defined by

τk =
∑k

i=1 σi∑W
i=1 σi

.
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One may pre-determine a cut-off value, τ ∗ of cumulative
percentage of singular values, and calculate γ to be the
smallest integer such that τγ ≥ τ∗. We usually set τ∗ to 0.98.

Remark 2 PDM reconstructs an embedding space for geo-
graphic distances using proximities measured between beacon
nodes, i.e., L̃ = T [p1, · · · ,pM ] = LP+

γ P ≈ LP+P = L.

A sensor node with an unknown position can obtain its
proximity vector ps by counting, for example, the hop-counts
to the beacon nodes. It then obtains the estimate of its
geographic distances to the beacon nodes by multiplying p s

with PDM:
l̃s = Tps = LP+

γ ps. (6)

It can then determine its geographic location by lateration
algorithms [3], [4], [7]. The estimation accuracy can be further
improved by leveraging the refinement techniques reported in
[5], [6]. We will discuss in Section V the protocols for beacon
nodes to gather information for calculating T, and for sensor
nodes to obtain T.

D. Performance Evaluation

We evaluate the performance of PDM with respect to the
estimation accuracy of geographic distances between sensor
nodes in anisotropic sensor networks. The three network
configurations depicted in Fig. 1 are used. We assume, for
simplicity, that beacon nodes flood probing packets to the
entire sensor network and the proximity is measured in the
number of hops. We compare the performance of PDM with
that of DV-hop [3], in which each beacon node b calculates
the average geographic distance per hop-count as

cb =
∑M

i fd(xb,xi)∑M
i pbi

,

and the geographic distance between a beacon node b and a
sensor node s is calculated as lsb = cb psb. In each simulation
run, we calculate the error index as

Ed =

∑M+N
i=1

∑M
j=1

∣∣∣lij − l̃ij

∣∣∣
M(M + N)u

,

where M and N are the numbers of beacon nodes and
unknown nodes, respectively.

First, we evaluate the performances of DV-hop and PDM
with respect to different radio ranges (u ≤ r ≤ 2u) in the
case of M = 10. As shown in Fig. 2, the average errors of DV-
hop and PDM do not differ significantly in isotropic networks
(Topology A). On the other hand, PDM gives significantly
smaller average errors in anisotropic networks (Topology B).
An interesting observation is that the average error gets large
when the radio range gets large and the network is better
connected. This is because the measurement of hop-counts
becomes “coarse” when the radio range becomes large.

Fig. 3 gives the average errors versus the ratio of beacon
nodes for two different values of radio ranges (r = u and
r = 1.3u). In the case of a less connected network (Fig. 3(a),
r = u), PDM gives better estimation accuracy in all cases, and
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its accuracy significantly improves as the ratio of beacon nodes
increases. (This is not the case with DV-hop.) In the case of
a stronger connected network (Fig. 3 (b), r=1.3u), both PDM
and DV-hop perform better than in the case of a less connected
network. The performance of DV-hop is comparable to that of
PDM in isotropic networks (Topology A), but deteriorates in
anisotropic networks (Topology B and C).

In summary, PDM and DV-hop use exactly the same infor-
mation, i.e. the hop-counts and geographic distances between
beacon nodes. However, PDM achieves significantly better
estimation accuracy in anisotropic networks.

V. DISTRIBUTED LOCALIZATION SYSTEM BASED ON PDM

A. Procedure for Information Collection and Linear Transfor-
mation Calculation

The localization procedure should be carried out in the
initialization phase and be repeated on a regular basis through-
out the lifetime of sensor networks. For example, if a new
beacon node becomes available after the initial deployment,
the localization procedure should be executed to exploit the
location information of the newly deployed beacon node.
To develop a light-weight, adaptive, distributed localization
procedure, the following criteria should be met: (1) a beacon
node can initiate a probing procedure at any instant so as to
notify other nodes of its existence, and (2) without a prior
knowledge of the number of beacon nodes, beacon and sensor
nodes can properly carry out the localization procedure with
the use of locally collected information.

In this subsection, we devise a flooding-based procedure for
collecting information that characterizes geographic distances
and proximities. The procedure is similar to that used in Adhoc
Positioning System (APS) [3]. This flooding-based procedure
is easy to implement, but may be comparatively expensive. In
Section V-B, we will discuss how to eliminate the flooding
process. The procedure for collecting the required mapping
information is as follows:

(S1) Every node starts with an empty list, each entry of
which will be filled with a probing packet sent by
each beacon node.

(S2) After a random delay di (0 < di ≤ Dinit), each
beacon node broadcasts to its neighboring nodes
a probing packet containing its ID, location, the
“initial” proximity to be increased, and its current
proximity vector {i, xi, p = 0, pi = null}. If this
procedure has been executed before, p i computed in
the previous procedure is embedded in the probing
packet.

(S3) Whenever a node b receives a probing packet, it
calculates the new proximity. If the new proximity
is larger than the proximity in the beacon list, the
node discards the probing packet. Otherwise, the
node updates its beacon list with the probing packet
and forwards the packet to its neighboring nodes.
Note that the proximity can be either the hop-count
or the geographic distance measured using radio
signal. If the hop-count is used as the proximity, it
is increased by one for each hop. On the other hand,

if the proximity is measured with the use of radio
signals from ranging devices, it is increased by the
measured geographic distance.

(S4) In addition, if the proximity vector included in the
probing packet is not null, a sensor node updates
both the proximity matrix P and the geographic
distance matrix L. Moreover, if no more probing
packet arrives in Dupdate = Dinit + Drtt time
units and the dimension of P is greater than 3, it
computes SVD of P and obtains T by Eq. (2), where
Drtt is the estimated network diameter of the sensor
network. (In case that the network diameter cannot
be accurately estimated, Drtt can be set to a default
value.).

(S5) A sensor node s (with the unknown location) obtains
ps from its beacon list, calculates the geographic
distances to beacon nodes by Eq. (6), and estimates
its location xs by a lateration algorithm.

(S6) Finally, the steps (S2)–(S5) are repeated in order
to deliver the proximity vectors of beacon nodes to
all the nodes on the sensor network. Note that the
proximity vector in the probing packet was initially
null. After this second iteration, each beacon node
can independently broadcast a new probing packet
in order to adapt to possible changes of the network
topology.
For example, when a beacon node is newly deployed,
it may not receive any probing packet immediately.
Instead it waits for the next localization procedure to
be executed, in order to participate in the localization
process. Meantime, it may estimate its proximity
vector pb by averaging the proximity vectors of
neighboring sensor nodes within its radio range.

In comparison with APS, the additional complexity incurred
in the proposed procedure is the computational overhead for
calculating the SVD of P so as to obtain T in (S4). Note
that the communication overhead of APS and PDM is almost
the same, and the only difference is the size of algorithm
dependent parameters included in the probing packet (i.g., the
average distance per hop for DV-hop, and T for PDM). We
claim that the additional complexity is not prohibitively large
because of the following reasons:

(1) In (S4), the timer with a timeout interval of Dupdate

enables sensor nodes to avoid unnecessarily frequent
computations of SVD of P without knowing the
exact number of beacon nodes.

(2) The SVD of P can be incrementally computed. Once
the SVD of P is computed, it is not desirable to re-
compute SVD of P due to the high computational
complexity of SVD (O(M 3)). Instead, a beacon node
employs an incremental SVD technique proposed in
[22] to update U, Σ, and V. With a computational
complexity of O(M 2), the incremental technique
projects the new proximity vector onto the current
SVD and obtains its approximation.

(3) The dimension of P is not large (i.e., M -by-M rather
than (M + N)-by-(M + N) as in the MDS-based
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Fig. 4. Extrapolation of proximity in the case that the scope of packet
flooding is limited (circle: beacon node, square: sensor node).

method).

Nevertheless, it is not desirable for every node to compute
the (probably) identical T. Instead, it is possible that a few
nodes compute T and broadcast it to other nodes. However,
this scheme incurs the additional communication overhead. We
will investigate this communication overhead in Section VI.

B. Alternatives to Packet Flooding

The procedure of having beacon nodes broadcasting probing
packets may be expensive in the case of large sensor networks.
Fortunately, if the number of beacon nodes is sufficiently large,
the relationship of the geographic distance and the proximity
between sensor nodes can still be characterized (and the PDM
be constructed) without packet flooding. Specifically, (S2) and
(S3) in Section V-A can be modified so that (1) all the beacon
nodes unicast their probing packets to one another; and (2)
a sensor node with an unknown location unicasts its probing
packets to the beacon nodes and obtains its proximity vector.
(We will show simulation results for this case in Section VI-
B.)

Alternatively, we can simply limit the scope of packet flood-
ing by specifying the TTL value to H-hops in each probing
packet. One issue with this approach is that it may cause
inconsistency between beacon lists maintained by different
beacon nodes. Fig. 4 illustrates such an example. A sensor
node s with an unknown location measures its proximities to
a set of beacon nodes, i.e., Bs = {b1, b2, b3, u, b, bc}. In (P4),
node s constructs the 6-by-6 matrices of L and P. As node u
and b’s beacon lists are Bu = {b1, b2, b3, ba} and Bb = {b1,
b2, b3, bb, bc} respectively, node s is required to estimate the
proximity between u and b in order to compute T.

The above issue can be resolved as follows. Node u
computes the proximity to node b, with the help of a set,
B̄, of nodes whose hop-counts to both nodes u and b are
less than H , (e.g., B̄ = {b1, b2, b3} in Fig. 4). As each node
ni ∈ B̄ has the proximities from itself to both nodes u and
b for i = 1, · · · , |B̄|, the proximity psu can be approximately
obtained as

pub = min
i

(puni + pnib) .

If node s needs the proximities between the other pairs of
beacon nodes (e.g., pubc ), it repeats the above approach to the
others.

C. Lateration Algorithm

After (S5) is performed, each sensor node obtains the esti-
mates of its geographic distances to beacon nodes. A lateration
algorithm is then used to determine the location of the sensor
node. We consider the following lateration algorithms:

• (L1) Linearized model based method [3]: A linear sys-
tem is derived by linearizing the the Euclidean distance
equations with respect to a priori location estimate. The
location is later corrected by a least square solution of
the linear system. This correction process is iteratively
performed by updating the linear system with the new
location estimate.

• (L2) Descent gradient method [7]: The descent gradient
method with a constant step size α is applied to minimize
the objective function

E =
1
2

M∑
i=1

(dsi − l̃si)2.

• (L3) Non-iterative multilateration [4], [23]: For the
quadratic version of the Euclidean distance equations,
a linear system is derived by subtracting one of the
equations from the other equations. The location estimate
is given by the least square solution of the linear system.

Through simulation studies, we observe that (L1) gives
relatively accurate estimates, but requires an initial guess of the
location. The performance of the descent gradient method (L2)
is susceptible to the step size α, the selection of which is not
a trivial issue. A large step size causes divergence (especially
for a large number of beacon nodes), while a small step size
causes slow convergence. Non-iterative multilateration (L3)
requires neither a judicious guess of the initial location nor the
time-consuming iteration process. However, its performance
is more susceptible to the measurement noise than the others.
As a result, we use the linearized model based lateration (L1)
to determine the location of a sensor node, with the initial
location set to the location of the beacon node that is closest
(in terms of the estimated Euclidean distance) to the sensor
node.

VI. EXPERIMENTAL RESULTS

To evaluate the performance of PDM, we have conducted
a simulation study by comparing the performances of DV-
hop (DV-distance), MDS-map, and the proposed PDM-based
method in the network configurations depicted in Fig. 1. We
implement (i) all the algorithms in Matlab [24] for comparing
the performance with respect to the estimation accuracy, and
(ii) both DV-hop and the PDM-based method in J-Sim [25] for
evaluating the performance with respect to the communication
overhead. Note that unlike DV-hop and PDM, MDS-map
requires the global information between all the sensor nodes.
We consider two sets of scenarios according to how the
proximity information is obtained:
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Fig. 5. Resulting network topologies after power control is applied to
Topologies A and B in Fig. 1.

(A) the proximity information is gathered by packet flooding
(Section V-A); and

(B) power control is first applied so that each sensor node
does not transmit with the maximal transmission power,
but instead with an adequate transmission power to main-
tain network connectivity [14], [15], [16]. As a result,
different sensor nodes may have different radio ranges.
Probe packets are then disseminated by each node via
unicasts to the other nodes on the induced topology
(Section V-B).

Fig. 5 depicts the resulting network topology after power
control has been applied to Topologies A and B. In this set of
scenarios, as each sensor node has a different radio range, the
product of the hop-count and the radio range is no longer
a proper estimate of the geographic distance. This implies
that the relationship between the geographic distance and the
proximity is more complicated in this scenario than in scenario
A.

In each experiment, two types of proximity are consid-
ered: the hop-count and the estimated geographic distance
between sensor nodes (obtained from the received radio signal
strength). Also, the following error index is used to quantify

the estimation error:

Ep =

∑M+N
i=1

∑M+N
j=1 fd(xi,xj)

(M + N)2 u
,

where M + N is the total number of sensor nodes.

A. Results for Scenario A

Effect of radio ranges on localization accuracy: First
we investigate the effect of radio ranges (or equivalently how
well the network is connected) on the localization accuracy
in isotropic (Topology A) and anisotropic (Topology B) net-
works. If sensor nodes are uniformly distributed in a square
area and well connected, the network is considered to be
isotropic. Fig. 6(a) and (b) depict the average location errors
in isotropic networks (Topology A). PDM gives the smallest
estimation error under all cases. DV-hop performs as well as
PDM when sensor nodes are well connected (r ≥ 1.4u). If
the hop-count is used as the proximity measure (Fig. 6(a)),
the performance of all three methods (in terms of estimation
accuracy) slightly deteriorates as the radio range increases.
This is because the proximity is expressed as coarser integer
values. On the other hand, if the estimated geographic distance
is used as the proximity measure (Fig. 6(b)), the performance
improves as the radio range increases. Fig. 6(c) and (d) depict
the average location errors in anisotropic networks (Topology
B). The estimation error of PDM is, respectively, half and
one-third of that of MDS-map and DV-hop.

Effect of the number of beacon nodes on localization
accuracy: Second we investigate the effect of the number
of beacon nodes on the localization accuracy in isotropic
(Topology A) and anisotropic (Topologies B and C) networks.
We vary the number of beacon node M from 4 to 30. In the
case of M = 30, the ratio of beacon nodes to the total number
of sensors is 0.12.

Fig. 7 gives the localization errors when the hop-count
is used as the proximity measure. In the case of isotropic
networks (Topology A), if the radio range is large enough
to provide strong connectivity, (e.g., r = 1.3u in Fig. 7(b)),
DV-hop and PDM give almost the same performance. In the
case of anisotropic networks (Topologies B and C), DV-hop
and MDS-map perform comparatively worse than PDM (Fig.
7(c)–(f)).

Fig. 8 gives the localization errors when the estimated
Euclidean distance is used as the the proximity measure. As
compared to Fig. 7, the performance of all three methods
significantly improves, and PDM gives the smallest estimation
errors.

Effect of the non-uniform distribution of beacon nodes
on localization accuracy: Third, we investigate how sensitive
each of the three schemes is to the distribution of beacon
nodes in isotropic (Topology A (r = u)) and anisotropic
(Topology B (r = u) and C (r1 = u, r2 = 1.3u)) networks.
In order to generate configurations in which beacon nodes
are not uniformly distributed, we choose M beacon nodes
from sensor nodes with the probability pb = 2rbx/xmax or
pb = −2rb(x/xmax − 1), where rb, x, and xmax are the ratio
of beacon nodes to sensor nodes, the x coordinate of a selected
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(b) Topology A (proximity = estimated distance)
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(c) Topology B (proximity = hop-count)
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(d) Topology B (proximity = estimated distance)

Fig. 6. Localization errors versus radio ranges (u ≤ r ≤ 2u), when the number of beacon node is 10. The x-axis is the number of neighbors (as r changes
from u to 2u).

node, and the width of sensor network area, respectively.
In this fashion, the density of beacon nodes either linearly
increases or decreases as the x-coordinate gets large.

Fig. 9 gives the localization errors when the beacon node
are non-uniformly distributed. As the hop-count is used as the
proximity measure, the location errors should be compared
against those in Fig. 7(a), (c), and (e) to study the sensitivity
level of each scheme to the distribution of beacon nodes.
Comparing Fig. 9(a) and (b) with Fig. 7(a), we can conclude
that given Topology A, the location error of DV-hop is the
smallest when the density of beacon nodes increases with
respect to the x-axis (Fig. 9(a)). This is because, as shown
in Fig. 1(a), the sensor nodes are deployed with a slightly
higher density in the right half plane. MDS-map and PDM
give comparable performance regardless of the distribution
of beacon nodes. In Topologies B and C, the accuracy of
DV-hop is apparently affected by the distribution of beacon
nodes. The localization error of DV-hop under Topologies B
and C is the smaller in Fig. 9(d) and (e) than in Fig. 9(c)
and (f), respectively. Moreover, the errors are even smaller

than those in the case of the uniform distribution in Fig.
7(c) and (e), respectively. This implies that the locations of
beacon nodes for DV-hop should be carefully determined so
as to enable collection of accurate topological information.
The performance of MDS-map and PDM, in contrast, is less
sensitive to the distribution of beacon nodes in both isotropic
and anisotropic networks.

Communication overhead of localization methods: To
compare the performance with respect to the communication
overhead, we have implemented DV-hop and PDM in J-Sim
[25]. Note that both algorithms employ the same mechanism
of packet flooding to obtain the proximity from beacon nodes
to sensor nodes. Fig. 10 shows the communication overhead of
DV-hop and PDM with respect to the ratio of beacon nodes in
Topology A. We observe that in both methods, a sensor node is
localized after the second iteration of the procedures in Section
V-A. In the first iteration, the proximity information between
beacon nodes is gathered. In the next iteration, the algorithm
dependent parameter (i.e., the average distance per hop for
DV-hop, and T for PDM) is embedded in probing packets
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(a) Topology A (r = u)
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(b) Topology A (r = 1.3u)
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(c) Topology B (r = u)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.02  0.04  0.06  0.08  0.1  0.12

av
er

ag
e 

lo
ca

tio
n 

er
ro

r

ratio of beacon sensors

dv-hop
mds-map

pdm

(d) Topology B (r = 1.3u)
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(e) Topology C (r1 = u, r2 = 1.3u)
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(f) Topology C (r1 = 1.3u, r2 = 1.69u)

Fig. 7. Localization errors versus the ratio of beacon nodes. The hop-count is used as the proximity measure.
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(a) Topology A (r = u)
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(b) Topology A (r = 1.3u)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.02  0.04  0.06  0.08  0.1  0.12

av
er

ag
e 

lo
ca

tio
n 

er
ro

r

ratio of beacon sensors

dv-distance
mds-map

pdm

(c) Topology B (r = u)
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(d) Topology B (r = 1.3u)
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(e) Topology C (r1 = u, r2 = 1.3u)
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(f) Topology C (r1 = 1.3u, r2 = 1.69u)

Fig. 8. Localization errors versus the ratio of beacon nodes. The estimated geographic distance is used as the proximity measure.
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(a) Topology A (denser in the right half)
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(b) Topology A (denser in the left half)
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(c) Topology B (denser in the right half)
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(d) Topology B (denser in the left half)
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(e) Topology C (denser in the right half)
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(f) Topology C (denser in the left half)

Fig. 9. Localization errors versus the ratio of beacon nodes, when beacon nodes are not uniformly distributed. The density of beacon nodes either linearly
increases (left column) or decreases (right column) as the x-coordinate gets large. The hop-count is used as the proximity measure.
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Fig. 10. Communication overhead of DV-hop and PDM versus the ratio of beacon nodes. For PDM, the computation of T is performed at sensor nodes, a
beacon node, or M beacon nodes.

and propagated to the whole sensor network. As shown in
Fig. 10, the communication overhead linearly increases with
respect to the number of beacon nodes and is smaller in the
sensor network with a larger radio range (i.e., r = 1.3u in
Fig. 10(b)).

We also simulate a scenario in which the computation of
T is performed at beacon nodes (rather than at sensor nodes)
and after the second iteration, the beacon nodes broadcast
T to other sensor nodes with limited computation power.
As shown in Fig. 10, the additional overhead incurred by
performing additional broadcasts is not negligible. However,
this scheme can significantly reduce the computational power
required at sensor nodes. This implies that there exists a
tradeoff between the computational and communication
overheads.

In summary, DV-hop (DV-distance) gives accurate estimates
of geographic locations only in isotropic networks with high
connectivity. MDS-map gives better performance than DV-
hop (DV-distance) in Topology B, perhaps due to the fact
that the two eigenvectors obtained by MDS capture principal
components of anisotropic properties. PDM achieves the best
performance consistently under all cases. As the radio range
and the number of beacon nodes are larger than certain
thresholds, the estimation errors for PDM fall below 0.3u
under all cases.

B. Results for Scenario B

Effect of the number of beacon nodes on localization
accuracy: Now we repeat the experiment carried out in Fig. 7,
except that (i) each node first exercises power control to induce
a new topology; and (ii) the probing packets are sent via
unicasts. Fig. 11 shows the localization errors when the hop
count is used as the proximity measure. We vary the number
of beacon nodes M from 4 to 50. In the case of M = 50, the
ratio of the number of beacon nodes to the total number of
nodes is 0.2. As shown in Fig. 11(a), the estimation errors of

DV-hop and MDS-map are quite large and decrease slowly as
the number of beacon nodes increases. The estimation error of
PDM is much smaller and decreases faster as the number of
beacon nodes increases. This implies that PDM can capture
the topological features in the case of low connectivity (as
power control has been applied). We observe that the error
falls below 1 and 0.5 for M > 14 (ratio = 0.056) and 41
(ratio = 0.164), respectively. In Fig. 11(b), DV-hop and MDS-
map do not show performance improvement when M > 25
(ratio = 0.1), while PDM gives almost the same improvement
as that in Fig. 11(a).

In summary, after sensor nodes exercise power control and
the network connectivity becomes lower, it becomes more
difficult to extract the geographic information from proximity
measures. Even under this case, PDM makes accurate location
estimation as long as the ratio of beacon nodes exceeds a
certain threshold.

VII. CONCLUSION

In this paper, we have designed and evaluated a new PDM-
based localization method in anisotropic sensor networks.
We represent the measured proximities and the geographic
distances in Lipschitz embedding spaces, and devise a transfor-
mation method that projects the coordinates in the embedding
space built on proximities into the geographic distance space.
The transformation matrix accurately characterizes anisotropic
network topologies because it retains the components of prox-
imities to the beacon nodes in all directions. We show that
the transformation can be obtained by using the truncated SVD
pseudo-inverse technique even in the presence of measurement
noises. Finally, we show via simulation that the proposed
PDM-based method outperforms DV-hop, DV-distance [3],
and MDS-map [10], and makes robust and accurate estimates
of sensor locations in both isotropic and anisotropic sensor
networks.

Recall that in Section V-B, we state that if the number
of beacon nodes is sufficiently large, each (beacon or non-
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Fig. 11. Localization errors versus the ratio of beacon nodes in power-controlled sensor networks. The hop-count is used as the proximity measure.

beacon) node can measure its proximities to a subset of beacon
nodes by unicast probing. The criteria for correctness are (1)
all the beacon nodes in a subset unicast their probing packets to
one another; and (2) an unknown node obtains the proximity-
distance map (PDM) from one of the beacon nodes in the same
subset. As part of our future work, we will investigate how
to decompose the set of beacon nodes into subsets, so that
proximity measurements among beacon nodes in each subset
are sufficient to capture the anisotropic characteristics of the
entire sensor network.
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