
Goals and tradeoffs in the design 
of the MC68881 floating point coprocessor 

by JOEL BONEY 

Motorola Inc. 
Austin, Texas 

ABSTRACT 

This paper describes the goals and tradeoffs in the design of the MC68881 Floating 
Point Coprocessor. The Motorola MC68881 is a complete implementation of the 
proposed IEEE floating point standard on a single VLSI chip. It is a coprocessor 
for the MC68020 microprocessor and is a peripheral processor for other M68000 
family processors. 

The design of the MC68881 was guided by a set of goals. This paper discusses the 
major goals of the MC68881 project and their impact on the design. During the 
definition of the architecture of the MC68881 many engineering tradeoffs were 
made by the design team. This paper also documents how some of these tradeoffs 
affected our decisions. Lastly, the paper gives enough of an overview of the 
MC68881 to make the discussions of the goals and tradeoffs meaningful. 

107 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1499310.1499325&domain=pdf&date_stamp=1984-07-09




Goals and Tradeoffs—MC68881 Floating Point Coprocessor 109 

INTRODUCTION 

No design project should be undertaken without a good set of 
clear goals that are the guiding information allowing the de­
signers to make the necessary tradeoffs during the design 
process. This paper documents the design goals and some of 
the architectural tradeoffs of the MC68881 design project. 
This VLSI design project will take about 4 years from the first 
preliminary specification to first silicon (which is expected 
about the time this paper is published). 

The Motorola MC68881 is a complete implementation of 
the proposed IEEE floating point standard on a single VLSI 
chip.1 It is a coprocessor for the MC68020 microprocessor and 
is a peripheral processor for other M68000 family processors. 
Since it will be necessary to have some knowledge of the 
MC68881 in order to understand the goals and tradeoffs, this 
paper also includes an overview of the MC68881. More spe­
cific detail about the MC68881 can be obtained from other 
papers and articles published by the design team.2'3'4 

AN OVERVIEW OF THE MC68881 

The MC68881 is a high performance floating point unit de­
signed to interface with the 32-bit MC68020 as a coprocessor. 
It can also be used as a peripheral processor with some per­
formance degradation, in systems where the MC68020 is not 
the main processor (e.g. MC68000, MC68008, MC68010). 
The configuration of the MC68881 as a coprocessor or a 
peripheral processor can be completely transparent to user 
software. 

The MC68881 utilizes the general purpose M68000 family 
coprocessor interface to provide a logical extension of the 
CPU's instruction set and register set such that it is trans­
parent to the programmer. The programmer is never aware 
that the coprocessor and main processor are implemented on 
two separate chips. 

Internally the MC68881 is divided into two processing ele­
ments, the Bus Interface Processor (BIP) which handles the 
coprocessor interface and the Arithmetic Processor (AP). All 
interaction with the main processor is handled by the BIP 
while the AP executes all MC68881 instructions.4 

Bus Interface Processor 

All interprocessor transfers are initiated by the MC68020. 
During the processing of an MC68881 instruction, the 
MC68020 transfers instruction information and data to the 
coprocessor via standard M68000 write bus cycles using a 

unique CPU function code and receives data, requests for 
service, and status information from the coprocessor via stan­
dard M68000 read bus cycles. 

The MC68881 contains a number of coprocessor interface 
registers which are addressed like memory by the MC68020's 
micro-machine. These registers are not part of the program­
mer visible register set. 

Reserved opcodes in the M68000 instruction map that 
formerly trapped out to an exception routine (Line 1111 Em­
ulator Trap) are now defined as coprocessor instructions. 
Only the MC68020 tracks the instruction stream. When it 
detects a coprocessor instruction, it writes the next word in the 
instruction stream to the coprocessor and reads the co­
processor's response. The BIP encodes in the response any 
additional action required of the main processor on behalf of 
the coprocessor. A typical request for service is "evaluate the 
effective address and transfer N bytes of data to the co­
processor interface operand register." 

The coprocessor interface permits the MC68881 to execute 
most floating point instructions concurrent with the 
MC68020's execution of non-floating point instructions. 

The MC68881 is designed to operate over 8-, 16-, or 32-bit 
data buses. The part is packaged in a 64-pin DIP or 68-pin 
Pin-Grid-Array package. 

The coprocessor interface is fully compatible with the 
MC68020's on-chip instruction cache and virtual memory ar­
chitecture. The interface insures that all coprocessor exe­
cution time exceptions, including instruction single-step, are 
handled identically to main processor execution time excep­
tions. Both the MC68020 and the MC68881 are designed for 
16.67-Mhz operation. Since the interface is based solely on 
standard M68000 asynchronous bus cycles, the MC68881 need 
not run at the same clock speed as the main processor. 

Arithmetic Processor 

Once the BIP has decoded an instruction and requested any 
operands it needs, the microcode in the Arithmetic Processor 
is started to acquire the operands and to perform the re­
quested operation. The AP is implemented as a pseudo two-
level micro-machine much like the MC68000.7 

Architecture Overview 

The architecture of the MC68881 appears to the user as a 
logical extension of the M68000 family architecture. It is a 
register oriented, one-and-a-half-address processor similar to 
the MC68000 and its derivatives.6 



110 National Computer Conference, 1984 

Programmer's model 

The MC68881 adds the following registers to the pro­
grammer's model of the M68000 family: 

1. Eight 80-bit floating point data registers analogous to the 
M68000 integer data registers. 

2. A 32-bit control register contains enable bits for each 
class of exception trap, and mode bits to select rounding 
mode and rounding precision. 

3. A 32-bit status register contains the floating point condi­
tion codes, quotient bits set by remainder and modulo, 
and exception status information. 

4. A 32-bit instruction address register contains the address 
in memory of the last floating point instruction. This 
address is used in exception trap handling. 

Data formats 

The MC68881 supports the following data formats: 

1. Byte, word, and long word integers, 
2. Single, double, and extended precision binary real, 
3. Decimal real string (packed BCD). 

The three integer data formats are identical to those sup­
ported by M68000 family processors. The floating point data 
formats, single precision (32-bits), and double precision 
(64-bits) are as defined by the IEEE standard.2 

The extended precision data format is also in conformance 
with the IEEE standard, but the standard does not specify this 
format to the bit level as it does for single and double. The 
format on the MC68881 consists of 96 bits, 3 long words, with 
an explicit most significant mantissa bit. Only 80 bits are 
actually used, the other 16 bits are left for future expan­
dability. 

The decimal real string format consists of a signed 3-digit 
base 10 exponent and a signed 17-digit base 10 mantissa. All 
digits are packed BCD so that a whole string fits in 96 bits. 

Integer, single precision, double precision, and decimal real 
string format operands are always converted to an extended 
precision floating point number prior to participating in an 
MC68881 operation. The floating point data registers always 
contain extended precision values, and all internal computa­
tions are performed to extended precision. 

Instruction set 

The instruction set of the MC68881 can be subdivided as 
follows: 

1. Moves; register to register, external operand to register, 
and register to external operand forms are provided. 
The external operand may be any of the 7 data formats 
supported, and may be specified by any MC68020 ad­
dressing mode. 

2. Arithmetic and Transcendental Operations; register to 
register and external operand to register forms are pro­
vided. The external operand may be any of the 7 data 
formats supported, and may be specified by any 

MC68020 addressing mode. The result is always placed 
in the specified floating point data register. 

3. Miscellaneous; move multiples (in and out) branches, 
set on condition, trap on condition, save context, restore 
context, etc. 

The arithmetic and transcendental operations are listed in 
Figure 1. Dyadic operations (those requiring two operands) 
are listed first followed by the monadic operations. 

Add 
Compare 
Divide 
Modulo 
Multiply 

Absolute Value 
Arc Cosine 
Arc Sine 
Arc Tangent 
Hyperbolic Arc Tangent 
Cosine 
Hyperbolic Cosine 
e to the x Power 
e to the x Power - 1 
Get Exponent 
Get Mantissa 
Integer Part 
Log Base 10 

IEEE Remainder 
Scale Exponent 
Single Precision Divide 
Single Precision Multiply 
Subtract 

Log Base 2 
Log Base e 
Log Base e of x + 1 
Negate 
Sine 
Sine and Cosine 
Hyperbolic Sine 
Square Root 
Tangent 
Hyperbolic Tangent 
10 to the x Power 
Test 
2 to the x Power 

Figure 1—Supported operations 

All operations required by the IEEE standard are provided 
on the MC68881 plus many more. All instructions support all 
IEEE defined special values (normalized, zeroes, infinities, 
denormalized numbers, and 'not-a-numbers'), and return the 
IEEE specified results with accuracy as specified in the 
standard. 

Following the precedent set by the orthogonal instruction 
set in the M68000 family of processors, MC68881 instructions 
are provided for move, arithmetic, and transcendental oper­
ations using any data format and any addressing mode. The 
domain of an operand in a given data format is unrestricted 
for all operations. No operations require software envelopes 
to conform to the standard. Similarly, for the transcendentals, 
all argument reduction is performed on-chip. 

The MC68881's conditional instructions utilize 32 floating 
point conditional predicates encoded in five bits. The four 
possible relations between two floating point numbers, 
greater than, equal, less than, or unordered, are encoded into 
four bits. The fifth bit, as required by the proposed standard, 
indicates whether an exception should be raised if the predi­
cate evaluation yields an unordered relationship. 

GOALS AND TRADEOFFS 

Goals 

There were five major goals for the MC68881 project given 
in the following priority: 



Goals and Tradeoffs—MC68881 Floating Point Coprocessor 111 

1. The MC68881 should have the same style of architecture 
as the other members of the M68000 family 

2. Performance 
3. Functionality and user friendliness 
4. Reduce design time and long term design costs 
5. Producibility 

M68000 Family Style of Architecture 

Since we felt that the functionality of the MC68881 would 
eventually be moved onto the same die as the main CPU, an 
important goal was to insure that the architecture of the 
MC68881 fit in with the rest of the family. The MC68881 
should expand the instruction set of the main CPU in an 
orthogonal manner that was transparent to the programmer 
(i.e., the user should not be aware that the MC68020/ 
MC68881 consisted of two devices). 

The coprocessor interface scheme is crucial to achieving this 
goal. The philosophy was to split the work done by the co­
processor interface between the main CPU and the co­
processor such that each element does what it can do best. For 
example, the MC68020 decodes the original instruction and 
determines that it is a coprocessor instruction. It then informs 
the coprocessor by writing a coprocessor defined operation 
word to the coprocessor. The coprocessor decodes this word 
and requests that the main CPU do the effective address cal­
culation and transfer operands of 'n' bytes to the coprocessor. 
Or if a floating point exception occurred, the coprocessor 
might ask the main CPU to commence exception processing. 
Thus it can be seen that the MC68020 does what it already 
knows how to do: decide basic instructions, calculate effective 
addresses, and take exceptions. The coprocessor knows about 
its defined operation and knows what kind and size of data it 
wants from the main CPU or if an exception occurred. 

A tradeoff was made in the coprocessor interface scheme to 
use standard asynchronous M68000 bus cycles for communica­
tion between the main CPU and the coprocessor. There was 
a minor speed penalty for this method when the MC68881 was 
used as a coprocessor for the MC68020, but it allowed the 
MC68881 to be used by all other M68000 family members as 
a peripheral. 

This decision, along with the decision to not make the 
MC68881 a bus master (i.e., the MC68881 does not fetch its 
own operands; they are fetched by the main CPU and passed 
to the MC68881) greatly simplifies the system hardware inter­
face to the MC68881 and allows flexibility. 

Another tradeoff/decision made by the MC68881 design 
team was the selection of a register based one-and-a-half ad­
dress architecture. In this type of architecture one of the 
operands typically comes from memory while the other oper­
and comes from a register with the result going to the register 
or memory. This architecture is consistent with the architec­
ture of the other M68000 family members. Further, since the 
M68000 processors have 8 integer data registers, the decision 
was made to have 8 additional floating point data registers. 
Studies have indicated that 8 registers are optimal for expres­
sion evaluation, etc.; and by having the same number of in­
teger and floating point data registers compiler writers should 
be able to use the same register allocation algorithms for 
integers and floating point. 

Orthogonality across the instruction set and addressing 
modes is a feature of the M68000 family that was preserved by 
the MC68881. All the addressing modes of the MC68020 are 
available for accessing floating point operands. Further, the 
safety features supported by the M68000 processor such as 
illegal instruction and illegal addressing mode traps are also 
supported by the MC68020/MC68881 pair. 

Performance 

Within the constraints of M68000 family architectural con­
sistency, performance was the next most important design 
goal for the MC68881. Both the MC68020 and the MC68881 
were designed for a clock speed of 16.67 Mhz. Even though 
the HCMOS process results in a slightly larger die, it was 
selected for both projects because of speed and low power 
consumption. 

Performance of the basic functions, add, subtract, multiply, 
and divide, was emphasized. Special hardware was added to 
the execution unit to speed up these basic operations. Table I 
gives the execution times for the register to register forms of 
these operations on a MC68020/MC68881 pair. These times 
do not reflect the potential throughput increase from 
concurrency. 

The single multiply and single divide operations assume 
that their operands are single precision, and produce a single 
precision result (while maintaining the range of extended). 
These operations are provided for special applications where 
multiply and divide performance is more important than loss 
of significance. 

Even though we wanted the operations to be very fast on 
the average, one tradeoff we made was to insure that the worst 
case execution times would not be significantly different from 
the best case times. In some applications the only important 
item would be the average execution time, but in real-time 
applications the whole system usually has to be designed using 
the worst case time. Floating point units that depend on slow 
software envelopes to handle special cases will be very hard to 
use in real-time applications. 

All calculations in the MC68881 are done internally to full 
IEEE extended precision. Even though we might have 
achieved marginally faster single and/or double precision 
times by including special hardware for single and double 
precision, we decided to concentrate our efforts in making 
extended precision very fast. This gives us very competitive 
times for all operand size not just single or double. 

The last major performance-related tradeoff was the deci-

TABLE I—Execution times 

Operation Clock Time (p.sec) 
(reg-reg) Cycles @ 16.67 Mhz 

Add 40 2.4 
Subtract 40 2.4 
Multiply 60 3.6 
Divide 92 5.5 
Single Mul 46 2.8 
Single Div 58 3.5 



112 National Computer Conference, 1984 

sion to support concurrent operation. Concurrency means 
that once an instruction is started in the MC68881 the 
MC68020 is free to continue executing other non-MC68881 
instructions. Thus the two processors overlap their execution, 
which increases the overall throughput of the pair. The sup­
port of concurrency did cost some silicon area and added some 
complexity, but we felt that the potential benefits outweighed 
the silicon costs. 

Functionality and User Friendliness 

Probably the biggest tradeoff we made toward functionality 
and user friendliness was the decision to support the proposed 
IEEE standard in its entirety in silicon.1 As participants in the 
standardization process we felt the accuracy and safety pro­
vided by the standard greatly outweighed the minor impact it 
had on die size and hence, cost. Many people seem needlessly 
frightened by the complexity of the standard. If all the de­
faults of the standard are selected, the user is hardly aware of 
it except that he gets better results and has fewer problems 
with his algorithms blowing up than with conventional floating 
point implementations.5 Most of the special modes are in­
cluded for the expert numerical analysts and can be ignored by 
the average user. 

Conformance to the standard involves much more than just 
conformance to the specified data formats. The standard 
specifies what operations must be supplied in a conforming 
implementation, and what accuracy is required for the oper­
ations. Further, it defines exceptions, specifies their detec­
tion, and specifies the results of exceptional operations in 
both trapping and non-trapping environments. The standard 
specifies special data types within each format (signed zeroes 
and infinities, not-a-numbers, denormalized numbers) and 
specifies the results of operations involving these special data 
types. It also specifies user selectable modes for rounding 
mode and precision. Any floating point hardware element 
that does not support all these requirements does nonconform 
to the IEEE standard. 

In addition to the functions required by the standard we 
decided to support many additional functions including a com­
plete set of transcendental functions. As with the IEEE re­
quired functions, no software envelope is required to make 
the functions work correctly. The transcendentals even do the 
argument reduction on chip. 

A slightly more efficient use of silicon would have been 
made if we had just implemented a set of primitive transcen­
dentals on the chip. All the functions we support can be de­
rived from a subset of primitives. There are perhaps a few 
hundred people in the world who know how to derive these 
correctly. It took us several years to figure it out. We didn't 
want our customers to have to go through what we did to 
become numerical experts in order to use our part, nor did we 
want to ship a large, slow software envelope with every part. 
The silicon impact was minimal, so we just put everything on 
the chip. 

Another major tradeoff we made was whether to support all 
of the data types supported by the M68000 family in addition 
to the floating point data types and conversions required by 

the standard. We decided to support all data types including 
a decimal real string type. This feature along with the fact that 
all internal operations are done to full extended precision 
makes the MC68881 very easy to use and very accurate. The 
old FORTRAN problem of mixed modes goes away when an 
MC68881 is used since all sizes and types of data can take part 
in a floating point calculation with maximum accuracy. 

As mentioned previously, we decided to support concur­
rency for performance reasons; however, we made a lot of 
minor design tradeoffs to insure that the concurrency is com­
pletely transparent to the programmer. 

Reduce Design Time and Long Term Design Cost 

As VLSI chips have gotten bigger, the time it takes to do 
the architectural design, the circuit design, and the layout has 
increased dramatically. We therefore made many tradeoffs in 
the design to reduce the design complexity. The MC68881 is 
implemented as a pseudo two-level microcode machine. It has 
a very wide control word with very little residual control.7 

Several PLAs are used for microcode address generation and 
for the coprocessor responses.4 

Nearly all the cost of implementing the IEEE standard is 
contained in several PLAs and a small amount of microcode. 
There is almost no random logic used to implement the IEEE 
standard or for that matter any of the other functionality 
improvements of the MC68881. The only time we used ran­
dom logic was in the performance paths in the execution unit 
for the basic four functions and in parts of the BIP. The 
MC68881 is the most regular non-memory VLSI micro­
processor device we have ever produced. 

As for long term design cost, we felt that no manufacturer 
could afford to make a whole family of floating point 
coprocessors—the market just isn't big enough to justify the 
cost. Because we felt this way, we were more likely to include 
extra functionality on the MC68881 so that we don't have to 
do an enhanced version later. Further, the general purpose 
coprocessor interface insures us that we won't have to do a 
new version of the MC68881 for each existing M68000 family 
member nor will we have to do a new version for any new 
family members. Therefore, we may have put more design 
effort and cost into the original MC68881 design, but we feel 
we greatly reduced the long term design cost to Motorola. 

Producibility 

The best paper design in the world is useless unless it can be 
produced cheaply in volume. Although at times we did trade­
off die size for regularity and functionality, the final die size 
is producible in the HCMOS process. And if processing im­
provements continue at the pace they have in the past, in a few 
years the MC68881 will seem like a tiny die. 

In fact, testing and package costs will dominate the device 
cost over time. To this end we will package the MC68881 in a 
64-pin DIP or 68-pin Pin-Grid-Array package. Both of these 
packages will be high volume packages. For testing, the 
MC68881 has extensive on-chip test logic to reduce test costs 
that I am not free to discuss in this paper. 



Goals and Tradeoffs—MC68881 Floating Point Coprocessor 113 

SUMMARY 

This paper has attempted to provide a glimpse into the 
thought processes of the designers of the MC68881. The 
project had more goals than the 5 mentioned and there were 
an endless number of tradeoffs made daily with only the major 
ones mentioned here. Of course, dozens of people participate 
in the design of any VLSI device from the initial marketers 
who gave us customer input to the final layout draftsmen who 
put it on silicon. Rarely were any of the decisions mentioned 
in this paper made by one or two people, but rather by groups. 

REFERENCES 

1. IEEE Computer Society Microprocessor Standards Committee Task P754. 
"A Proposed Standard for Binary, Floating Point Arithmetic, Draft 10.0." 
January 1983. A copy may be obtained now from Richard Karpinski, UCSF 

U-76, San Francisco, Calif. 94143, and ultimately from IEEE, 345 East 47th 
St., New York, NY. Draft 10.0 is a substantial revision of Draft 8.0 published 
in Computer, March, 1981. 

2. Boney, J., P. Harvey, and V. Shahan. "Floating Point Power for the M68000 
Family." Proceedings of 1983 Mini/Micro West, November 1983, Session 16, 
paper #5. 

3. Cawthron, D. and C. Huntsman. "The MC68881: Motorola's Floating-Point 
Solution." IEEE Micro, December 1983. 

4. Shahan, V. "The MC68881: The IEEE Floating Point Standard Reduced to 
One VLSI Chip." Proceedings of COMPCON, Spring 84. 

5. Kahan, W. "The Proposed IEEE Standard p754 for Floating Point Arith­
metic: What Good Is It?" Proceedings of 1983 Mini/Micro West, November 
1983, Session 16, paper #1. 

6. Zolnowsky, J. and N. Tredennick. "Design and Implementation of System 
Features for the MC68000." Proceedings of COMPCON, Fall 79, September 
1979, 
pp. 2-9. 

7. Stricter, E. and N. Tredennick. "Microprogrammed Implementation of a 
Single-Chip Microprocessor." Proceedings of the 11th Annual Workshop on 
Microprogramming (Micro-11), November 1978, pp. 8-16. 






