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ABSTRACT 

A microprocessor based architecture for the implementa­
tion of digital logic devices is presented. The architecture 
facilitates replacement of portions of the hard-wired logic 
chains within the device with groups of microinstructions 
called kernels. Multiple modules of a device may share the 
processor simplifying interface problems such as buffering, 
interlocking, and sequencing. This greatly reduces overall 
package count, power consumption, system complexity, 
and therefore system debug time and cost while improving 
system flexibility with the programmable control store. A 
three dimensional graphics display processorforthe Tektronix 
4014 terminal, built using Intel 3000-series microprocessor 
elements, is discussed demonstrating the viability and bene­
fits of this architecture. Such processor elements permit 
approximately 250,000 twenty microinstruction kernels to 
be executed in place of hard-wired logic per second. 

INTRODUCTION 

The control of basic digital logic functions such as sequenc­
ing, data flow, and arithmetic unit operation by bits in a 
programmable control store is at least as old as the EDSAC 
11(495$). Until reeerrtJv however, th» mcroprogramming 
of logic functions served largely to improve system design 
flexibility, not to reduce size, power consumption, cost, or 
improve performance. The development of microprocessors 
using MSI and LSI technologies has provided these addi­
tional benefits and therefore significantly affected the digi­
tal logic design process.1 

Initial utilization of these microprocessors,2-4 centered 
around the Intel 8080 and similar hundred thousand instruc­
tion per second processors, was characterized by replace­
ment of large sections of digital logic with serial execution 
of stored programs interfaced to the outside world and 
internal SSI logic. Such utilization made products such as 
calculators, point of sale terminals, adaptive traffic control 
systems, etc. economically feasible and will undoubtedly 

* This report was prepared as a result of work performed under NASA 
Contract No. NAS1-14101 while the author was in residence at ICASE, 
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continue to represent a major part of the intelligent device 
market. They are, however, limited to applications requir­
ing at most several thousand operations per second since 
each operation must be implemented as a series of machine 
instructions. 

Recent bipolar LSI technology has produced processors 
such as the Intel 3000 and AM2900 series devices which are 
capable of executing several million instructions per sec­
ond. These processors, while capable of handling orders of 
magnitude faster applications, are multi-package systems 
and therefore are not necessarily as cost or performance 
effective. In addition, since their multipurpose nature de­
mands many internal logic levels between input and output, 
they can never completely duplicate the performance char­
acteristics of SSI logic. 

This paper describes an architecture for the interconnec­
tion of such bipolar microprocessors and SSI logic which 
can provide major logic function unit replacement for low 
speed-requirement operations, minor function replacement 
for higher speed-requirements, and direct logic execution of 
time-critical operations. Examples of these modes include 
matrix multiplication every several milliseconds (hundreds 
of instructions), multiple-bit shift or buffer push/pop every 
several microseconds (several instructions), and bit seriali­
zation for disk transfers (hardwired logic). 

SYSTEM ARCHITECTURE 

The microprocessor system referenced herein as an ex­
ample of the architecture being presented was designed to 
support eight independent logic devices such as disk units, 
communication lines, CRT's, and multiply-divide units. It 
was implemented using Intel 3000 series microprocessor 
elements with a sixteen-bit word size (eight two-bit arith­
metic unit slices) and a sixty-bit microinstruction word. Use 
of Intel components and these specific field sizes should not 
be considered characteristics or requirements of the basic 
architecture. 

Whether it be along communication lines or wires etched 
in a single circuit board, signals must be bussed between 
the processor and the various devices of which it is a part. 
The seventy bus lines required by this implementation are 
shown in Figure 1. Thirteen lines are used for power 

201 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1499402.1499439&domain=pdf&date_stamp=1977-06-13


202 National Computer Conference, 1977 

POWER AND REQUESTS DEVICE ABUS 
TIMING SELECT CONTROL (DEVICE DATA) 

Figure 1—System bus structure 
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Figure 3—Microinstruction fields 

distribution and timing signals which are described below. 
Three lines specify which one of the eight devices is being 
selected by a particular instruction. The following eight 
lines allow the devices to request (interrupt) the processor 
for execution of specific groups of logic-replacement mi­
croinstructions. The interrupt structure, which makes the 
processor appear as a dedicated slave to each device, is 
also described below. The following fourteen bus lines are 
used to control the devices by initiating transfers to and 
from the processor and operations at the various points in 
the device logic chain. The next sixteen bits provide a 
bidirectional data bus for inputs to and outputs from the 
processor. Finally, the scratchpad read-write memory asso­
ciated with the processor and thereby available to all 
devices is addressed and accessed over a second bidirec­
tional bus. 

As with most bipolar microprocessors, the arithmetic and 
processor (next address calculation) functions are per­
formed by separate chips within the Intel 3000 family. 
Figure 2 shows the specific configuration of these chips. 
Figure 3 lists the various fields which make up the sixty-bit 
microinstruction. Many of these are specific to the 3000-
series elements and will not be described in detail. Others 
will be referenced in the more detailed description of the 
processor implementation which follows. 

PROCESSOR-DEVICE COMMUNICATION 

Communication between the microprocessor and each of 
the devices, which occurs across the seventy-line bus 
described above, is controlled by the timing signals shown 
in Figure 4. The system is driven by a single twenty 
megahertz CLOCK to insure that the devices and processor 
remain synchronized. 

An individual microinstruction begins execution with the 
leading edge of the CPU CLOCK. This initiates the next 
address calculation in the processor chip requiring approxi­
mately fifty nanoseconds. Once the address is calculated, it 
is presented to the (60-bit wide) microinstruction memory 
and the instruction is fetched. This requires sixty nanosec­
onds for the memory used in this implementation. At the 
same time, the bidirectional busses are switched to provide 
input from the devices and scratchpad memory to the 
arithmetic unit bit-slices. As the instruction is being 
fetched, an END CYCLE pulse is sent out terminating 
execution of the previous instruction. Although all devices 
receive this signal, it means only that they must relinquish 
the bus and access to the processor. Internal logic chains 
and interaction with their external devices may continue. 

Once fetched, a portion of the microinstruction is 
LATCHED to permit overlapping of this instruction with 
the next instruction fetch. The remainder of the instruction 
is presented to the processor elements directly and to the 
devices over the bus as indicated in Figure 1. The new 
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Figure 2—Microprocessor configuration Figure 4—Microprocessor timing 



Microprocessor Architecture 203 

instruction is then initiated with the BEGIN CYCLE pulse 
causing a specific device indicated in the instruction word 
to be selected. If requested by the appropriate control bits, 
the device immediately places data on the bus as input to 
the arithmetic units. After a settling time, the falling edge of 
the CPU CLOCK initiates execution of the microinstruc­
tion specified in the instruction word. As indicated, the 
arithmetic unit has access to both device data and memory 
data for that execution. 

After approximately fifty nanoseconds, the results of the 
arithmetic unit execution are sent to the device selected and 
to memory as the BUS DIRECTION is reversed. If this is a 
memory reference instruction, the cycle is extended until 
the memory signals that it is complete. Otherwise, the CPU 
CLOCK rises immediately and the microinstruction execu­
tion process is repeated beginning with the next address 
calculation. 

Notice that the device can specify input to the arithmetic 
unit, wait for it to be processed, read the result, and 
perhaps read a resulting value from memory (since the 
bidirectional busses again reverse) before the END CYCLE 
pulse terminates the instruction. This represents a signifi­
cant characteristic of the architecture since most processors 
permit only read device, or write device, or access memory 
on a single cycle. In the class of interfacing problems for 
which this architecture was intended: read, process, and 
write operations are very common. 

SYSTEM INTERRUPT STRUCTURE 

The previous section described the event sequence for 
the execution of a single instruction. Since the next address 
opcode is part of each microinstruction (Figure 3), sequen­
tial execution of instructions is unnecessary. Groups of 
microinstructions required to perform a specific function 
can, however, be thought of as logically sequential kernels. 
These kernels perform operations for the digital devices to 
which the processor is connected ranging from single in­
struction shift operations to complex operations such as a 
matrix multiplication requiring scores of instructions. 

To maximize the usefulness of the microprocessor to the 
individual devices, execution of these kernels must be 
possible at any point in a device's logic chain. The hard­
ware interrupt structure provides this capability. In parallel 
with the execution of each instruction, the interrupt logic 
shown in Figure 5 monitors requests coming across the bus 
from all (eight) devices. At the point in the execution cycle 
immediately after the processor has computed the next 
address, the highest priority request is compared against 
the priority (number) of the device currently selected. If the 
requesting device is of higher priority, the computed next 
address is optionally stored in scratchpad memory and an 
instruction dedicated to handling interrupts from the re­
questing device is fetched. 

The fetched interrupt handling instruction causes the 
contents of a scratchpad memory location (interrupt vector) 
dedicated to the interrupting device to be read, and 
branches to an instruction common to all device interrupt 

(MEM)—fc-CPU JUMP D I S . I 

JMP 0 , 1 5 M A S K — • M A R DCTL READ DIS.I / 

DEVICE SELECTED 

liL 
DEVICE : 

INTERRUPTING" 

DEVICE 

REQUEST 

n_h_n_ , 

•© 

Figure 5—Interrupt structure 

handling. This second instruction copies the value read, 
which is the microprogram address to be executed next for 
that device, into the processor so that it can be used as the 
next address executed, as depicted in Figure 5. Processing 
(kernel execution) for the interrupting device begins on the 
third instruction after the interrupt was received. 

Any kernel can include instructions to change the con­
tents of the interrupt vector and therefore point to a new 
kernel to be executed following the next interrupt from its 
device. This allows the processor to perform widely varied 
tasks for a device at different points in its logic chain. Since 
each microinstruction includes fourteen device control bits 
(Figure 3), the processor can provide not only logic simula­
tion but also sequencing of the logic chains within the 
device. 

Return from interrupts is handled by the same logic and 
procedure by which they are initiated. The end of each 
interrupt processing kernel is a branch to a NOP instruction 
of lowest priority. Execution of this NOP is immediately 
interrupted by the previously interrupted kernel, its inter­
rupt vector is read* and that value becomes the next 
address executed. 

It was mentioned above that the next address calculated 
immediately before an interrupt (return address) is option­
ally stored in the interrupt vector for that device. If the 
option is not invoked (as specified by a bit in the microin­
struction word shown in Figure 3), the address is not stored 
and the return procedure will reinitiate execution at the 
point previously set in this vector address. This will typi­
cally cause re-execution of some instructions. It allows, 
however, general purpose arithmetic unit registers to be 
used without fear of their being altered between execution 
of instructions within a kernel since those instructions will 
be re-executed if an interrupt does occur. This represents 
another significant characteristic of the architecture as it 
reduces both microprogram size and save-restore time. 
Conventional register-save schemes are inappropriate due 
to the relatively small register complement in microproces­
sors, the high interrupt rate (virtually all kernels are exe-
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cuted in response to device requests), and the relatively 
small size of most kernels. 

An interrupt disable bit is included in the microinstruc­
tion word for time-critical sequences of instructions. In 
addition, the priority scheme protects higher speed devices 
from being delayed by slower ones. Generally, however, it 
is expected that hard-wired logic will be used to implement 
time-critical functions utilizing the ease in switching be­
tween logic and microinstruction kernels inherent in this 
architecture. 

SPECIFIC IMPLEMENTATION CHARACTERISTICS 

Although specific details of the implementation are not 
critical to the microprocessor architecture presented herein, 
they are discussed briefly as one example of its utilization. 
Intel 3000 series components were used to build a prototype 
system to serve as a display controller for the Tektronix 
4014 graphics terminal. Devices connected to the processor 
include an interface to the 4014, a floppy disk controller, a 
serial interface to a host computer, and a multiply-divide 
unit. The system is capable of receiving segmented images 
over a serial communication line from a host computer, 
massaging this display data into a compact form, storing it 
on the disk unit, and displaying the images with three-
dimensional translation, rotation, and scaling in both the 
store and refresh modes of the 4014. Functions performed 
by the microinstruction kernels ranged from single instruc­
tion read character and store in memory to using the 
multiply-divide unit to multiply four by four matrices for 
coordinate transformation. 

Idiosyncracies of the Intel 3000 components permitted a 
bit in the microinstruction word, shown in Figure 3, which 
disables the arithmetic units so that non-destructive tests 
may be performed. In addition, deficiencies in the condi­
tional branch characteristics required bits specifying branch 
on carry-in and carry-out. 

ADVANTAGES OF THIS ARCHITECTURE 

The computer architecture described in the previous 
sections is intended to provide an approach to simplifying 
digital logic unit design. Its major feature is the incorpora­
tion of a high speed microprocessor to replace portions of 
the digital logic chain with sequences of programmable 
microinstructions. When properly applied, this will reduce 
the package count, wiring complexity, power consumption, 
and therefore overall system cost. 

In applications where timing characteristics permit, mul­
tiple devices can draw on a single microprocessor for logic 
replacement. In addition to the obvious cost and complex­
ity reduction benefits, this significantly simplifies the intra-
device communication problems. Scratchpad memory can 
serve as a buffer to mask the effects of differing device 
speeds. Internal processor registers can be used to maintain 
a single copy of interlock and device communication con­
trols. Perhaps most significant, the serial nature of the 

microprocessor can reduce device race-condition conflicts 
and serve to isolate the devices for debugging. 

Naturally, the usefulness of including a microprocessor in 
a digital design will depend on the extent to which it can 
perform logic functions required by the design. Arithmetic 
and shift operations, common within these processor ele­
ments, easily replace hard-wired logic causing significant 
reduction of space consuming data path wiring. Temporary 
storage of data and control information, simplified by the 
processor's internal registers and scratchpad memory, is 
another candidate for logic replacement. In addition, the 
processor's ability to control the device sequencing using 
device control bits and updating the interrupt vector to 
point to different kernels (states) can significantly increase 
design flexibility and reduce re-wiring during the debug 
process. 

A final advantage involves simplification of the hard­
wired logic debugging. Since, within this architecture, the 
processor kernels are interacting with the device at various 
states in the logic chain, test programs can be written to 
repetitively active isolated portions of the logic. This allows 
modular debugging and provides repetitive signals neces­
sary for good oscilloscope traces. 

A NOTE ON SPEED 

In the preceding sections, specific timing characteristics 
have been avoided as they do not directly affect the 
architecture presented. The microprocessor system imple­
mented as an example has a basic instruction time of 300-
nanoseconds with an additional 200-nanoseconds required 
for memory reference instructions. That speed limitation is 
largely due to characteristics of the Intel 3000 elements and 
implies a minimum interrupt service time of one microsec­
ond. (This includes one memory reference instruction to 
read the vector address, one non-memory reference in­
struction branch to the kernel, and execution of the first 
instruction in the kernel.) This example could therefore 
sustain megacycle request bursts and approximately 250,-
000 processor requests per second assuming ten to twenty 
instruction kernels. This seems adequate for most logic 
systems, and has proven so for the graphics display proces­
sor application. 

The real timing issue, however, is not absolute speed but 
rather the relative speed of the processor compared to 
available hard-wired logic. Assuming equivalent technolo­
gies, the speed difference will depend on the overhead in 
gate levels necessary to provide multiple functions within 
the microprocessors. Evidence suggests1 that this speed 
reduction (or processor complexity) factor is fifteen to 
twenty. The microprocessor architecture described herein 
is oriented toward interleaving kernel execution and hard­
wired logic. The speed factor implies that the processor will 
be usable for those functions in the logic chain where the 
design timing requirement is at least twenty times siower 
than the basic logic time necessary to perform the function. 
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SUMMARY 

A microprocessor-based system architecture has been pre­
sented for the design of digital devices. It is centered 
around the interconnection of the microprocessor and digi­
tal devices in such a way that various portions of the digital 
logic chain can be replaced with sequences of microinstruc­
tions. Where multiple devices are augmented with a single 
processor, the architecture provides a very convenient 
interface between them. A prototype graphics display con­
troller was built using Intel 3000 series microprocessor 

elements which has demonstrated the viability of the archi­
tecture for realistic digital design problems. 
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