
A microprocessor architecture for
digital device implementation*

by THOMAS L. BOARDMAN, JR.
University of Colorado
Boulder, Colorado

ABSTRACT

A microprocessor based architecture for the implementa­
tion of digital logic devices is presented. The architecture
facilitates replacement of portions of the hard-wired logic
chains within the device with groups of microinstructions
called kernels. Multiple modules of a device may share the
processor simplifying interface problems such as buffering,
interlocking, and sequencing. This greatly reduces overall
package count, power consumption, system complexity,
and therefore system debug time and cost while improving
system flexibility with the programmable control store. A
three dimensional graphics display processorforthe Tektronix
4014 terminal, built using Intel 3000-series microprocessor
elements, is discussed demonstrating the viability and bene­
fits of this architecture. Such processor elements permit
approximately 250,000 twenty microinstruction kernels to
be executed in place of hard-wired logic per second.

INTRODUCTION

The control of basic digital logic functions such as sequenc­
ing, data flow, and arithmetic unit operation by bits in a
programmable control store is at least as old as the EDSAC
11(495$). Until reeerrtJv however, th» mcroprogramming
of logic functions served largely to improve system design
flexibility, not to reduce size, power consumption, cost, or
improve performance. The development of microprocessors
using MSI and LSI technologies has provided these addi­
tional benefits and therefore significantly affected the digi­
tal logic design process.1

Initial utilization of these microprocessors,2-4 centered
around the Intel 8080 and similar hundred thousand instruc­
tion per second processors, was characterized by replace­
ment of large sections of digital logic with serial execution
of stored programs interfaced to the outside world and
internal SSI logic. Such utilization made products such as
calculators, point of sale terminals, adaptive traffic control
systems, etc. economically feasible and will undoubtedly

* This report was prepared as a result of work performed under NASA
Contract No. NAS1-14101 while the author was in residence at ICASE,
NASA Langley Research Center, Hampton, VA 23665

continue to represent a major part of the intelligent device
market. They are, however, limited to applications requir­
ing at most several thousand operations per second since
each operation must be implemented as a series of machine
instructions.

Recent bipolar LSI technology has produced processors
such as the Intel 3000 and AM2900 series devices which are
capable of executing several million instructions per sec­
ond. These processors, while capable of handling orders of
magnitude faster applications, are multi-package systems
and therefore are not necessarily as cost or performance
effective. In addition, since their multipurpose nature de­
mands many internal logic levels between input and output,
they can never completely duplicate the performance char­
acteristics of SSI logic.

This paper describes an architecture for the interconnec­
tion of such bipolar microprocessors and SSI logic which
can provide major logic function unit replacement for low
speed-requirement operations, minor function replacement
for higher speed-requirements, and direct logic execution of
time-critical operations. Examples of these modes include
matrix multiplication every several milliseconds (hundreds
of instructions), multiple-bit shift or buffer push/pop every
several microseconds (several instructions), and bit seriali­
zation for disk transfers (hardwired logic).

SYSTEM ARCHITECTURE

The microprocessor system referenced herein as an ex­
ample of the architecture being presented was designed to
support eight independent logic devices such as disk units,
communication lines, CRT's, and multiply-divide units. It
was implemented using Intel 3000 series microprocessor
elements with a sixteen-bit word size (eight two-bit arith­
metic unit slices) and a sixty-bit microinstruction word. Use
of Intel components and these specific field sizes should not
be considered characteristics or requirements of the basic
architecture.

Whether it be along communication lines or wires etched
in a single circuit board, signals must be bussed between
the processor and the various devices of which it is a part.
The seventy bus lines required by this implementation are
shown in Figure 1. Thirteen lines are used for power

201

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1499402.1499439&domain=pdf&date_stamp=1977-06-13

202 National Computer Conference, 1977

POWER AND REQUESTS DEVICE ABUS
TIMING SELECT CONTROL (DEVICE DATA)

Figure 1—System bus structure

BBUS
(MEMORY)

C O CARRY CONTROL

(7) NEXT ADDRESS FUNCTION

(16) MASK INPUT TO PROCESSOR

(7) ARITHMETIC UNIT FUNCTION

(1<0 DEVICE CONTROL

(3) DEVICE SELECT

(1) INTERRUPT DISABLE

(1) ARITHMETIC UNIT DISABLE

(1) BRANCH ON CARRY IN

(1) BRANCH ON CARRY OUT

(2) MEMORY CONTROL

(1) ZERO PROCESSOR INPUTS

Figure 3—Microinstruction fields

distribution and timing signals which are described below.
Three lines specify which one of the eight devices is being
selected by a particular instruction. The following eight
lines allow the devices to request (interrupt) the processor
for execution of specific groups of logic-replacement mi­
croinstructions. The interrupt structure, which makes the
processor appear as a dedicated slave to each device, is
also described below. The following fourteen bus lines are
used to control the devices by initiating transfers to and
from the processor and operations at the various points in
the device logic chain. The next sixteen bits provide a
bidirectional data bus for inputs to and outputs from the
processor. Finally, the scratchpad read-write memory asso­
ciated with the processor and thereby available to all
devices is addressed and accessed over a second bidirec­
tional bus.

As with most bipolar microprocessors, the arithmetic and
processor (next address calculation) functions are per­
formed by separate chips within the Intel 3000 family.
Figure 2 shows the specific configuration of these chips.
Figure 3 lists the various fields which make up the sixty-bit
microinstruction. Many of these are specific to the 3000-
series elements and will not be described in detail. Others
will be referenced in the more detailed description of the
processor implementation which follows.

PROCESSOR-DEVICE COMMUNICATION

Communication between the microprocessor and each of
the devices, which occurs across the seventy-line bus
described above, is controlled by the timing signals shown
in Figure 4. The system is driven by a single twenty
megahertz CLOCK to insure that the devices and processor
remain synchronized.

An individual microinstruction begins execution with the
leading edge of the CPU CLOCK. This initiates the next
address calculation in the processor chip requiring approxi­
mately fifty nanoseconds. Once the address is calculated, it
is presented to the (60-bit wide) microinstruction memory
and the instruction is fetched. This requires sixty nanosec­
onds for the memory used in this implementation. At the
same time, the bidirectional busses are switched to provide
input from the devices and scratchpad memory to the
arithmetic unit bit-slices. As the instruction is being
fetched, an END CYCLE pulse is sent out terminating
execution of the previous instruction. Although all devices
receive this signal, it means only that they must relinquish
the bus and access to the processor. Internal logic chains
and interaction with their external devices may continue.

Once fetched, a portion of the microinstruction is
LATCHED to permit overlapping of this instruction with
the next instruction fetch. The remainder of the instruction
is presented to the processor elements directly and to the
devices over the bus as indicated in Figure 1. The new

MICROINSTRUCTION

MEMORY

ARITHMETIC UNITS

(2-BIT SLICES)

~ DEVICE REQUESTS

20 MHZ CLOCK

BUS DIRECTION

BEGIN CYCLE

p 500 - NANOSECONDS *f MEMORY TIME"

Figure 2—Microprocessor configuration Figure 4—Microprocessor timing

Microprocessor Architecture 203

instruction is then initiated with the BEGIN CYCLE pulse
causing a specific device indicated in the instruction word
to be selected. If requested by the appropriate control bits,
the device immediately places data on the bus as input to
the arithmetic units. After a settling time, the falling edge of
the CPU CLOCK initiates execution of the microinstruc­
tion specified in the instruction word. As indicated, the
arithmetic unit has access to both device data and memory
data for that execution.

After approximately fifty nanoseconds, the results of the
arithmetic unit execution are sent to the device selected and
to memory as the BUS DIRECTION is reversed. If this is a
memory reference instruction, the cycle is extended until
the memory signals that it is complete. Otherwise, the CPU
CLOCK rises immediately and the microinstruction execu­
tion process is repeated beginning with the next address
calculation.

Notice that the device can specify input to the arithmetic
unit, wait for it to be processed, read the result, and
perhaps read a resulting value from memory (since the
bidirectional busses again reverse) before the END CYCLE
pulse terminates the instruction. This represents a signifi­
cant characteristic of the architecture since most processors
permit only read device, or write device, or access memory
on a single cycle. In the class of interfacing problems for
which this architecture was intended: read, process, and
write operations are very common.

SYSTEM INTERRUPT STRUCTURE

The previous section described the event sequence for
the execution of a single instruction. Since the next address
opcode is part of each microinstruction (Figure 3), sequen­
tial execution of instructions is unnecessary. Groups of
microinstructions required to perform a specific function
can, however, be thought of as logically sequential kernels.
These kernels perform operations for the digital devices to
which the processor is connected ranging from single in­
struction shift operations to complex operations such as a
matrix multiplication requiring scores of instructions.

To maximize the usefulness of the microprocessor to the
individual devices, execution of these kernels must be
possible at any point in a device's logic chain. The hard­
ware interrupt structure provides this capability. In parallel
with the execution of each instruction, the interrupt logic
shown in Figure 5 monitors requests coming across the bus
from all (eight) devices. At the point in the execution cycle
immediately after the processor has computed the next
address, the highest priority request is compared against
the priority (number) of the device currently selected. If the
requesting device is of higher priority, the computed next
address is optionally stored in scratchpad memory and an
instruction dedicated to handling interrupts from the re­
questing device is fetched.

The fetched interrupt handling instruction causes the
contents of a scratchpad memory location (interrupt vector)
dedicated to the interrupting device to be read, and
branches to an instruction common to all device interrupt

(MEM)—fc-CPU JUMP D I S . I

JMP 0 , 1 5 M A S K — • M A R DCTL READ DIS.I /

DEVICE SELECTED

liL
DEVICE :

INTERRUPTING"

DEVICE

REQUEST

n_h_n_ ,

•©

Figure 5—Interrupt structure

handling. This second instruction copies the value read,
which is the microprogram address to be executed next for
that device, into the processor so that it can be used as the
next address executed, as depicted in Figure 5. Processing
(kernel execution) for the interrupting device begins on the
third instruction after the interrupt was received.

Any kernel can include instructions to change the con­
tents of the interrupt vector and therefore point to a new
kernel to be executed following the next interrupt from its
device. This allows the processor to perform widely varied
tasks for a device at different points in its logic chain. Since
each microinstruction includes fourteen device control bits
(Figure 3), the processor can provide not only logic simula­
tion but also sequencing of the logic chains within the
device.

Return from interrupts is handled by the same logic and
procedure by which they are initiated. The end of each
interrupt processing kernel is a branch to a NOP instruction
of lowest priority. Execution of this NOP is immediately
interrupted by the previously interrupted kernel, its inter­
rupt vector is read* and that value becomes the next
address executed.

It was mentioned above that the next address calculated
immediately before an interrupt (return address) is option­
ally stored in the interrupt vector for that device. If the
option is not invoked (as specified by a bit in the microin­
struction word shown in Figure 3), the address is not stored
and the return procedure will reinitiate execution at the
point previously set in this vector address. This will typi­
cally cause re-execution of some instructions. It allows,
however, general purpose arithmetic unit registers to be
used without fear of their being altered between execution
of instructions within a kernel since those instructions will
be re-executed if an interrupt does occur. This represents
another significant characteristic of the architecture as it
reduces both microprogram size and save-restore time.
Conventional register-save schemes are inappropriate due
to the relatively small register complement in microproces­
sors, the high interrupt rate (virtually all kernels are exe-

204 National Computer Conference, 1977

cuted in response to device requests), and the relatively
small size of most kernels.

An interrupt disable bit is included in the microinstruc­
tion word for time-critical sequences of instructions. In
addition, the priority scheme protects higher speed devices
from being delayed by slower ones. Generally, however, it
is expected that hard-wired logic will be used to implement
time-critical functions utilizing the ease in switching be­
tween logic and microinstruction kernels inherent in this
architecture.

SPECIFIC IMPLEMENTATION CHARACTERISTICS

Although specific details of the implementation are not
critical to the microprocessor architecture presented herein,
they are discussed briefly as one example of its utilization.
Intel 3000 series components were used to build a prototype
system to serve as a display controller for the Tektronix
4014 graphics terminal. Devices connected to the processor
include an interface to the 4014, a floppy disk controller, a
serial interface to a host computer, and a multiply-divide
unit. The system is capable of receiving segmented images
over a serial communication line from a host computer,
massaging this display data into a compact form, storing it
on the disk unit, and displaying the images with three-
dimensional translation, rotation, and scaling in both the
store and refresh modes of the 4014. Functions performed
by the microinstruction kernels ranged from single instruc­
tion read character and store in memory to using the
multiply-divide unit to multiply four by four matrices for
coordinate transformation.

Idiosyncracies of the Intel 3000 components permitted a
bit in the microinstruction word, shown in Figure 3, which
disables the arithmetic units so that non-destructive tests
may be performed. In addition, deficiencies in the condi­
tional branch characteristics required bits specifying branch
on carry-in and carry-out.

ADVANTAGES OF THIS ARCHITECTURE

The computer architecture described in the previous
sections is intended to provide an approach to simplifying
digital logic unit design. Its major feature is the incorpora­
tion of a high speed microprocessor to replace portions of
the digital logic chain with sequences of programmable
microinstructions. When properly applied, this will reduce
the package count, wiring complexity, power consumption,
and therefore overall system cost.

In applications where timing characteristics permit, mul­
tiple devices can draw on a single microprocessor for logic
replacement. In addition to the obvious cost and complex­
ity reduction benefits, this significantly simplifies the intra-
device communication problems. Scratchpad memory can
serve as a buffer to mask the effects of differing device
speeds. Internal processor registers can be used to maintain
a single copy of interlock and device communication con­
trols. Perhaps most significant, the serial nature of the

microprocessor can reduce device race-condition conflicts
and serve to isolate the devices for debugging.

Naturally, the usefulness of including a microprocessor in
a digital design will depend on the extent to which it can
perform logic functions required by the design. Arithmetic
and shift operations, common within these processor ele­
ments, easily replace hard-wired logic causing significant
reduction of space consuming data path wiring. Temporary
storage of data and control information, simplified by the
processor's internal registers and scratchpad memory, is
another candidate for logic replacement. In addition, the
processor's ability to control the device sequencing using
device control bits and updating the interrupt vector to
point to different kernels (states) can significantly increase
design flexibility and reduce re-wiring during the debug
process.

A final advantage involves simplification of the hard­
wired logic debugging. Since, within this architecture, the
processor kernels are interacting with the device at various
states in the logic chain, test programs can be written to
repetitively active isolated portions of the logic. This allows
modular debugging and provides repetitive signals neces­
sary for good oscilloscope traces.

A NOTE ON SPEED

In the preceding sections, specific timing characteristics
have been avoided as they do not directly affect the
architecture presented. The microprocessor system imple­
mented as an example has a basic instruction time of 300-
nanoseconds with an additional 200-nanoseconds required
for memory reference instructions. That speed limitation is
largely due to characteristics of the Intel 3000 elements and
implies a minimum interrupt service time of one microsec­
ond. (This includes one memory reference instruction to
read the vector address, one non-memory reference in­
struction branch to the kernel, and execution of the first
instruction in the kernel.) This example could therefore
sustain megacycle request bursts and approximately 250,-
000 processor requests per second assuming ten to twenty
instruction kernels. This seems adequate for most logic
systems, and has proven so for the graphics display proces­
sor application.

The real timing issue, however, is not absolute speed but
rather the relative speed of the processor compared to
available hard-wired logic. Assuming equivalent technolo­
gies, the speed difference will depend on the overhead in
gate levels necessary to provide multiple functions within
the microprocessors. Evidence suggests1 that this speed
reduction (or processor complexity) factor is fifteen to
twenty. The microprocessor architecture described herein
is oriented toward interleaving kernel execution and hard­
wired logic. The speed factor implies that the processor will
be usable for those functions in the logic chain where the
design timing requirement is at least twenty times siower
than the basic logic time necessary to perform the function.

Microprocessor Architecture 205

SUMMARY

A microprocessor-based system architecture has been pre­
sented for the design of digital devices. It is centered
around the interconnection of the microprocessor and digi­
tal devices in such a way that various portions of the digital
logic chain can be replaced with sequences of microinstruc­
tions. Where multiple devices are augmented with a single
processor, the architecture provides a very convenient
interface between them. A prototype graphics display con­
troller was built using Intel 3000 series microprocessor

elements which has demonstrated the viability of the archi­
tecture for realistic digital design problems.

REFERENCES

1. Rattner, J., J. C. Cornet and M. E. Holt, Jr., "Bipolar LSI Computing
Elements Usher in New Era of Digital Design," Electronics, September
1974, pp. 89-96.

2. Bailey, S. J., "Microprocessor: Candidate for Distributed Computing
Control," Control Engineering, Vol. 21, No. 3, March 1974, pp. 40—44.

3. Hoff, M. E., Jr., "New LSI Components," 6th IEEE Computer Society
International Conference Digest, December 1972, pp. 141-143.

4. Weissberger, A. J., "Distributed Function Microprocessor Architec­
ture," Computer Design, November 1974.

