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ABSTRACT 

In this paper we present a technique, called Extended-
Parity Checking, for the design of error-detecting circuits 
for combinational logic networks. Its concept is derived 
from the conventional parity checking technique, which is 
applicable only for odd number of errors, yet it can detect 
errors of any degree. A structural model, called the fanout-
graph, is introduced which contains a minimum number of 
nodes sufficient to determine the fundamental causes of 
multiple errors in a circuit. Output functions are then 
expressed in a special form, called the Fanout-Observed 
Output Function (FOOF), which facilitate the analysis of 
errors. Based on this information and certain circuit param­
eters, a set of design methods are presented for producing 
self-checking circuits. Among them, one deals with the 
addition of external leads by augmenting some of the fanout 
nodes in the original circuit, while others involve duplicat­
ing or checking independently parts of the logic. 

INTRODUCTION 

The implementation of a self checking system requires 
appropriate error detecting circuitry. This circuit should 
generate an error signal whenever an output error occurs. 
This signal can be used to stop computation, signal manual 
repair work, or initiate a reconfiguration process. 

Shown in Figure 1 is a general model of a self-checking 
system. It consists of two circuits, namely C and D. C is 
the operating circuit being checked, having input X and 
output F, both vector-valued. D is a single-output circuit, 
called the error detecting circuit (or logic), whose output, 
denoted by e, is the required error signal (subject to timing 
control). Y is a set of internal signals of C which, depending 
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on circuit constraints, may or may not be available to D. 
Under our present investigation both C and D are assumed 
to be acyclic combinational circuits. 

The simplest form for a self-checking system is complete 
duplication in which D properly contains C. In this case, a 
redundancy ratio of more than 2:1 is expected. Depending 
on the particular function which C implements, and its 
structure, some other techniques exist which may some­
times yield a smaller redundancy ratio.7 

This paper deals with the design of checking circuits. Our 
goal is to try to achieve a redundancy ratio of less than or 
equal to 2:1. The technique we are going to investigate is 
called Extended-Parity Checking (EPC). Its concept is 
derived from the conventional parity checking scheme. It is 
well-known that parity checking will fail in case of an even 
number of errors occurring on the circuit outputs. The 
EPC on the other hand, will not have this deficiency. 

FAULT ANALYSIS AND ERROR DETECTABILITY 

Let f:{0, l}"-^{0, 1} be a single-output Boolean switching 
function over the set of variables X={x!, x2, . . . , xn}. A 
multi-output Boolean switching function is denoted by 
F:{0, l}n-K0, l}m and consists of m single-output functions, 
i.e., F=(f i , f2, . . . , fm) where f ^ f ^ , . . . , xn) for i = l , 
2, . . . , m. Let C be a combinational circuit which realizes 
F. The set of input lines {xl5 x2, . . . , xn} are called 
primary inputs (PI) and the set of outputs {ft, f2, . . . , fn} 
are called primary outputs (PO). We denote an input vector 
to C by Xi=(Xi, x2, . . . , xn) and the corresponding output 
vector by FJ=(f1, f2, . . . , fm). 

Let Xj represent the binary input vector whose decimal 
value is i, e.g. X3=(00--011) and set x={Xi|i=0, 
1 2 n -1} . By F(Xk) we mean the value of F for input 
X=X k . 

We assume circuits are made up of single-output gate 
elements such as AND, NAND, OR, NOR, etc. Below are 
some basic definitions concerning circuit topology. 
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Figure 1—General model of a self-checking system 

Every PI, PO and gate is a node, called a signal node 
(SN). (We do not differentiate between a gate and its 
output.) 
A node is an internal node (IN) if it is neither a PI nor 
a PO nor a node directly connected to a PO. 
Thefanout value T„ of a node a is equal to the number 
of nodes to which it fans out. 
A node a is called afanout node (FN), if T „ ^ 2 . 
A signal path is a sequence of nodes of the form 
a1a2 . . . an, where n^2 and a,-! is an input to a^. A 
path is simple if ra.= l for i=2, 3, . . . , n - 1 . 
A reconvergent node (RN) is a node having some pair 
of inputs which are the terminal nodes of paths having 
a common source node (a FN). 
A limited fanout-free (LFF) circuit is a circuit in 
which the only FN's are Pi 's. 

In order to simplify the presentation of our results we 
assume that all circuits being dealt with contain no redun­
dancy. The general case which includes redundancy is dealt 
with in Reference 8. 

In our work we will assume a single permanent stuck-at 
fault model. 

Let C be an irredundant combinational circuit realizing 
the switching function F, and let ^={8t, 82, . . . , 8P} be a 
set of faults associated with C. Then we denote the circuit 
C containing fault 8) by C\ where C°(=C) represents the 
fault-free circuit. Cj realizes the function Fj(X)=(fij(X), 
f2

j(X), . . . , f„j(X)). If F j(Xk)*F°(Xk), then fault 8, is de­
tectable by input Xk . 

Let H = A x x be the set of all fault-input pairs. Then the 
error indicators Ajfi(Xk) and AjF(Xk) are defined as follows. 
For each h jk=(8j, Xk)EH we have 

AVI(Xk)=f,1(Xk)ef1
0(Xk), 

for i= 1,2, , m, and 

AF(Xk)=F(Xk)0F°(Xk) 

= (Ajf1(Xk), Ajf2(Xk), . . . , Ajfm(Xk)). 

If A jF(Xk)=(0, 0, . . . , O)=0 then ^ is not detected by Xk , 
otherwise it is. The norm |AjF(Xk)| is said to be the 
Hamming weight of the vector AjF(Xk), and equals the 
number of l's in the vector. 

Suppose that |A jF(Xk)|=q, q = l , 2, 3, or n(4^n^m). 

Then we say there is a single-error, double-error, triple-
error, or n-bit error on the circuit output respectively. We 
call " q " the degree of the output error. 

Suppose we append to C an associated error detecting 
circuit D having the following property. If an error in the 
output of C occurs, the output of D, called the error signal 
and denoted by e, will be set to 1; otherwise its value will 
be 0. Hence e= 1 indicates the detection of an output error 
in C, and the fault which caused this error is thus detected. 

We will be concerned with the design of D. 
Let x(8j) be the set of inputs which detect Sj in C, 

i.e. AjF(Xi)9
t0 for each Xjex(8j). Since C is irredundant 

Let x' be a subset of x(85) such that for each Xj£x \ if 8j 

(a) If x'=x(8j) then 8j is said to be totally checked. 
(b) If x' = (P, then 8j is said to be unchecked, and 
(c) If <pCx'Cx(8j) then 83 is said to be conditionally 

checked. 

If all 8j are totally checked then C is said to be totally 
checked, and if some faults in C are totally checked while 
others are conditionally checked then C is said to be 
conditionally checked. If some faults are unchecked, then C 
is said to be partially checked. 

The combined circuit (C, D) forms a self-checking system 
which in turn is subject to faults. Our error detecting 
criteria is defined as follows. For each h j kGH'=A'xx, 
where A' is the set of faults associated with the new circuit 
(C, D), we require 

(1 ifq^O, or D has a fault 
to 1 otherwise. 

(2.1) 

We assume that the fault e s-a-0 fault and any fault 
equivalent to it in D is not included in A'. The problem of 
detecting output faults in a checker is discussed in Refer­
ence 3. 

The general form of our forced parity checking system is 
shown in Figure 2. Here we augment C with the logic c 
having outputs c^, a2, . . . , a x . c is designed such that any 
single fault in C or c causes an odd number of outputs from 
(C, c) to be in error. P is a circuit which implements the 
parity function defined by the expression 

(I, f0® (,?,«•) 
The outputs of P and P' are then compared by T' to see if 
an error has occurred. 

ALGEBRAIC STUDY OF CIRCUIT OUTPUT ERRORS 

In a multi-output combinational circuit there is the possi­
bility of several output lines being jointly dependent on one 
signal. If a fault causes an error on that signal then multiple 
errors may occur on the outputs. 

Assume under condition h jk=(Sj, Xk) that fp and fq are in 
error, and that 85 occurs at signal a, i.e. 8j corresponds to a 
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Figure 2—A forced-parity checking system 

s-a-1 or a s-a-0. Then (p, q) is said to be the output error 
location of a double-error, and a is the location of the fault. 
If for condition hjk output lines flx, fl2, . . . , flq are in error, 
then (lx, 12, . . . , lq) is said to be the output error location 
and it consists of the following set of double-error loca­
tions: {(la, l„) |a<b; la, lb^jli, 12, . . . , lq}}. The number of 
output lines in error, their indices, and the output error 
pattern, are a few parameters one needs to know before an 
error detecting circuit can be implemented. 

In a parity checking system, multiple errors of odd 
degree (q odd) can always be detected. It is those of even 
degree which will fail to be detected. We will first consider 
the case for q=2, since it is the simplest. We will then show 
how to extend the results to q=4, 6, . . . , etc. 

An error is said to be located when the output lines in 
error are identified. One way of locating all possible double-
exrois i n a circuit is. to ejaumerate all .pairs... of;. outputs, This 
can be done for each fault which may exist in the circuit. 
Depending on the circuit structure, not all output pairs and 
faults need to be considered. Note, for example, that under 
the single fault assumption no multiple errors can exist in a 
fanout-free circuit. 

no other node /3, jS^a, such that /3Ea (note that a PI can 
never be a PN). a is called a prime fanout node (PFN) if it 
is also a fanout node. 

In the circuit of Figure 3, nodes a2, a3, and a4 are the 
only three PFN's. The four primary outputs are PN's only. 

Theorem I: The set of all PFN's form a minimum set of 
nodes where faults associated with these nodes are suffi­
cient to cause all multiple-output errors in a circuit. Q 

If all PFN's in a circuit can be identified, then the 
location of all possible double-errors can be made more 
easily and efficiently. In addition, the design of error 
detecting circuits, as we will see in the next section, 
depends heavily on this information. One method of identi­
fying all the PFN's of a circuit is through a structural 
modeling process of Ko.8 In this process, the final circuit 
model is represented by a directed graph G showing all the 
PFN's of the circuit. We call this graph G the fanout-graph 
for the circuit C and it has the following properties: 

1. Every node in G is a prime node in C and G contains 
the complete set of prime nodes of C. 

2. There are as many disjoint subgraphs in G as there are 
disjoint sub-circuits in C (assume Pi's can be shared). 

3. All nodes in G are singular if C is fanout-free or 
limited fanout-free. 

From these properties and Theorem 1 we immediately 
conclude that no multiple-output errors can occur in C if C 
is fanout-free or limited fanout-free. The fanout graph 
shown in Figure 4 is obtained by applying the structural 
modeling process to the circuit of Figure 4. 

Analyzing circuit output errors using the boolean difference 

The Boolean difference of a switching function f=f(xx, 
x2, . . . , xn) with respect to Xj is defined as 

df 
j — l ( X ! , X 2 , . . . , X , , . . . , XnJ 

I ( X i , X ? , . . . , X j , . . . , X^J 

and can be written as 

df 
dXi 

— h ( X j , x 2 , . . . , X j _ ! , X j + 1 , . . . , x n ) . 

Structural modeling and graph theoretic results 

Consider two nodes in C, say a and j8. If every path from 
node /3 to every PO includes a (a can itself be a PO), then a 
is said to be essential to j8, and this is denoted by aEj8. In 
this case, if a fault in /3 causes an error in the signal at a 
when X, is applied, then one can always assume there is a 
fault labeled " a s-a-d" occurring at this time. Thus, it is 
sufficient to deal with double errors due to faults occurring 
at a and we can ignore double errors due to faults at /3. 

A node a is called a prime node (PN) in C if there exists Figure 3—Example Circuit 
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© 
Figure 4—Fanout graph obtained by applying structural modeling process to 

the circuit of Figure 3 

The Boolean difference of f with respect to an internal 
signal a rather than a primary input can be derived as 
follows. Write the output function f in the form f=g(a, X) 
where a=a(X). Thus a becomes an explicit variable of f. 
Then 

df 
da 

dg(a, X) 
d« 

=g(O,X)0g(l,X). 

In general, let f=g(a1? X) and ai=/3i(a1+1, X) for i = l , 
2, . . . , n - l . T h e n 

df 
dan 

df 
da. 

da t 

da2 dan 
(3.1) 

Equation (3.1) is called the Boolean difference chain or the 
partial Boolean difference. Two important properties about 
the Boolean difference are that df/dd=df/da and df/da= 
df/da. Note that: (a) if df/da=0, then an error in a will not 
cause an error in f; (b) if df/da=l, then an error in a will 
always cause an error in f; and (c) if df/da=h(X) then an 
error in a will cause an error in f if and only if h(X)=l. 
Thus df/da actually defines an error function whose value 
will be used in determining whether or not an error can be 

sensitized to the output. Let Wja=dfj/da be the error 
function of the output fj with respect to a. We define a 
pairwise error function wij

a=wi
a-Wja as the logical product 

of two error functions. Three cases exist. 

Case 1. If Wjja=0 then an error in a will cause either a 
single-error or no error on the output pair fj and 

Case 2. If Wya=l then an error in a will always cause a 
double-error on the output pair fj and fj. 

Case 3. If wij
a:=h(X) then an error in a will cause a 

double-error on the output pair fj and fj if and 
only if h(X)=l. 

Example I: Consider the circuit of Figure 3. Its fanout 
graph is shown in Figure 4. From Theorem 1, only the three 
PFN's namely a2 , a3 , and a4 need be considered for 
possible causes of multiple errors. Since f4 is a singular 
node, it can be ignored. For the remaining three terminating 
nodes we express their output functions in terms of the 
PFN's, i.e., 

fi = a 2+a 3=d 2d 3 

f2 = a 2+a 4=d 2d 4=d 2a 3 

Since m = l=3, there exist a total of U j x3=9 pairwise 

error functions. Among them, 4 are trivial. For instance, fj 
is not a function of a4 , hence w"2 and w?3 must be 0. The 5 
non-trivial ones are 

Wi2=d3-a3=0 

w,,= a , ' l=a? 

w12=a2-a2=a2 

; W 2 3 = W 2 3 

Thus when d 2=Xi+x 2=l, multiple errors can occur when­
ever there is an error in a3 or a4 . The error in a3 or a4 can 
either be a fault in the node itself, or it can be caused by 
some other fault in a preceding node. In this example, 
since Wi|=w"3=w2 |, an error in a3 can cause all three 
output pairs simultaneously to be in error leaving a net 
result of a triple-error. Note that an error in a2 can never 
cause any double-error because wf/=0 for all l ^ i , j ^ 4 . 

A simple analysis reveals that a double-error 01<-»10 will 
occur on the outputs fj and f2 whenever there is an error in 
a3 and the input condition is one which causes a 2=0. A 
different type of double-error, namely 00<-» 11 can be found 
in the circuit for the output pair ft and f3. We call "01<-»10" 
and "00*->ll" error patterns. Theorem 2 in the next section 
will be devoted to determining such error patterns. 

In general, for q>2 a q-bit error can be considered as a 

group of k double-errors where k= (3) • Once all pairwise 

double-errors are located, multiple errors of higher degree 
can also be located. In order to do this, we introduce the 
notation of an error-graph. It is a non-directed graph such 
as the one shown in Figure 5(a). In this graph, every node is 
a terminating node of a fanout-graph. A link is entered into 
the graph if the pairwise error function of two outputs is not 
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indicate multiple e r r o r s under 
different sets of input conditions 

Figure 5—Fanout-graphs and error-graphs of two circuits 

zero. Thus a link actually indicates the possibility of a 
double-error on its two end-nodes. We use different marks 
on the links to represent double-errors under different sets 
of input conditions. A closed triangle of identically marked 
links represents a possible triple-error. 

For the graph of Figure 5(a) we have three pairwise 
double-errors. They are indicated by the three links repre­
senting w12 = ab, w13=ab, and w23=b. By rewriting w23 as 
the sum of two product terms ab and ab and using two 
distinct links, the resultant graph, shown in Figure 5(b), 
indicates a triple-error plus one double-error. This ob­
viously will enable us to predict circuit output errors more 

precisely. Shown in Figure 5(c) is a second graph which 
shows five pairwise double-errors. By applying the same 
technique, only two triple-errors can be found in the final 
graph. With the addition of an extra output f4 (as compared 
with the first circuit), this circuit becomes free of any 
multiple error of even degree. Therefore, this circuit can be 
parity checked without any further work. 

Fanout-observed output functions 

Given a circuit C, let a be a prime fanout node in C. If for 
some output f there exists at least one path between a and 
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f, then the output function of f derived after making a cut at 
node a (or treating a as a PI) can be expressed as follows: 

f(a, X)=A(X)a+B(X)a+C(X). (3.2) 

We call Equation (3.2) the Fanout-Observed Output Func­
tion (FOOF) of f with respect to a. The Boolean switching 
functions A(X), B(X), and C(X) are called the Boolean 
coefficients of f(a, X). If A(X)=B(X), then f is independent 
of a. For f to be dependent on a, at least one of the two 
coefficients A(X) and B(X) must not be zero. A shorthand 
form of the above equation is 

f=Aa+Bd+C. 

By denoting ax=a and a°=d, two special forms of the 
FOOF can be written as follows: 

1. f=aa u +b 

2. f=aa u 0b 

(3.3) 

(3.4) 

where uE{0, 1}; a and b are arbitrary switching functions 
independent of a. 

We call Equation (3.3) the +-form and Equation (3.4) the 
(B-form of the FOOF. In the +-form, f is unate in a. In the 
deform, both a and d can appear in a minimal normal form 
expression for f unless the Boolean coefficient b has a 
constant value. 

Lemma 1: If no linear gate or reconvergent fanout exists 
between a and f, then f can be expressed by a FOOF of the 
+-form only. • 

Consider a FOOF f(a, X) where d f ( ^ X ) + 0. There must 

exist at least one input XkEx such that 
df(a, X) 

da 
= 1. 

x=xk 

When this condition is satisfied, a will be sensitized to the 
output. The value of f under this condition will be f(a, Xk). 
Let 

7= |x* df(a, X) 
da :=xk J 

(3.5) 

be a non-empty set of all inputs under which a can be 
sensitized to the output. Set 

Z f={f(a,Xk) |XkeY f}. 

Then Zf is the non-empty set of all possible switching 
functions realized by f when sensitized by a. Note that Zf is 
undefined if Y f=0, or equivalently df/da=0. 

Lemma 2: ZfC{a, a}. f j 

For the next theorem we need the following definitions. 
Let f and g be two FOOF's with respect to a, 

where 3—3=- =£0. We define 
da da 

Yfg= x k e x da da 
= 1 =Y fnYg 

^=xk J 

and 

Lemma 3: ZfgC{0, a, a}, f j 

Theorem 2: Let f(a, X) and g(a, X) be the two FOOF's of a 
pair of outputs f and g. Then an error in a will cause a 
01<-»10 error pattern if and only if Zfg={0}. It will cause a 
00<H> 1 1 error pattern if and only if ZfgC{a, a}, f j 

Now we will define the "variance" of a FOOF. The 
uniqueness of a double-error pattern can be determined by 
the variance of two FOOF's. 

A FOOF f(a, X) is said to be a-invariant if Zf={a} or {a}. 
A FOOF f(a, X) is said to be a-variant if Zf—{a, a}. 

A pair of outputs is said to have a unique double-error 
pattern if all possible double-errors associated with the 
outputs are of either 01<->10 pattern or 00<-»ll pattern but 
not both. 

Lemma 4: Any FOOF of the +-form is a-invariant. f j 

Theorem 3: A pair of outputs have a unique double-error 
pattern if both FOOF's are a-invariant (assume error in a 
only). • 

Corollary I: In a non-reconvergent fanout circuit, if no 
linear gates are in the circuit, then all double-errors have a 
unique error pattern, f j 

In the remainder of this section we will discuss some 
equivalent forms of FOOF's. An a-augmented function will 
then be introduced and an augmented parity function will 
be investigated. These results will aid us in the design of 
error detecting circuitry. Their application can be found in 
the next section. 

Lemma 5: If f=aa u +b, then f= 3 - a u + b . n 
da L-' 

Lemma 6: For #e{+, 0} , if f=aa u#b then 

f=|^aueb. a 

Theorem 4: Any FOOF of the form f=aa u#b can be ex­
pressed in one of the following two forms: 

1. f = ^ - a u # b 
da 

2. f= 
df 
^a«eb. a 

We now define an a-augmented function as a Boolean 
switching function of the form Q(a, X)=w(X)au where w(X) 
is an arbitrary switching function (for our application, w(X) 
is an error function). Note that Q(a, X) is also a FOOF of a 
special form. This function can be implemented to augment 
a prime fanout node a of a circuit such that a q-bit output 
error (q even) can be transformed into a (q+ l)-bit error. 

Consider the case when there exist two outputs f and g in 
a circuit C, where f=aa u #b and g=ca u #d are the two 

associated FOOF's. The pairwise error function is df dg 
da da 

Z fg={f(a,Xk)-g(a,Xk)|Xk£Y fg}. 

Suppose - p - " p *0 , then let Q= (3~*3~) au be an a-aug­

mented function. Under any input XkEYfg, an error in a 

will cause a double-error on the two outputs f and g. 



Design of Seif-Checking Multi-Output Combinational Circuits 717 

Since 
d£ 
da x=xk 

= 1, the output Q will also be in error. The 

net result is a triple-error on the outputs f, g, and Q. The 
parity function for these three outputs is P=f©g©Q and is 
called the augmented parity function. 

Lemma 7: P= 
\da da/ ebed. • 

It is seen that both P and Q contain the terms 3— and -f-. 
da da 

In the implementation of P and Q, if 3—and j can be 
da da 

built once and shared by both P and Q, then a saving in the 
hardware can be achieved. Provision must be made that a 
fault in the node 3— or 3 ^ must not cause any double-error 

da da 
on the outputs P and Q. Otherwise, it cannot be detected. 

Let £}= 3—and y= 3 ^ be the two nodes of interest. We 
da da 

require wPQ
/i=WpQ

>=0 where w's are the pairwise error 
functions for P and Q. 

Theorem 5: wP 
B0. • 

EXTENDED-PARITY CHECKING 

In this section we will show how to apply the preceding 
theory to the design of checking circuits. 

Forced-parity methods 

Two methods will now be presented in which additional 
hardware is introduced. By using these methods one can be 
assured that the output error of a circuit will always be of 
odd degree. In this case, a parity checker alone is sufficient 
to detect all output errors. This approach is invalid if 
certain PFN's of a circuit are inaccessible. However, it can 
serve as a design guide in the initial layout of self-checking 
circuitry. 

Famrat ttegeireratton 

Given a circuit C, let a be a PFN of C. The fanout value 
ra can be interpreted in two ways. One is the actual number 
of fanouts of a in C. The other one is the outdegree of a as 
it appears in the fanout-graph for C. Unless otherwise 
indicated we will use the latter definition. 

Now consider a circuit C whose fanout-graph G is shown 
in Figure 6(a). The only PFN is a and Ta=2. It has two 
associated outputs f; and fj. Assume an error in a can cause 
a double-error on the two outputs. In order to eliminate this 
double-error, we can remove either one of the two branches 
afj or afj from G. The resultant graph G' with afj removed 
is shown in Figure 6(b). In G', a is no longer a prime node 
(since f4E«) and hence can be deleted. The final graph G" is 
shown in Figure 6(c). Since G" is a singular graph, no 
multiple errors can occur on the outputs. 

The removing of the branch afj from G corresponds to a 

*Of' 
*o 

^ 0 O** 
(a) G 

.cT -o 
^> 

o 

O' 
O' 

ô  
(b) G' 

(c) G " 

Figure 6—Fanout-graphs for a circuit before and after fanout degeneration 

degeneration in the number of fanouts of a in C. This can 
be accomplished by constructing a new signal a ' to replace 
one or moret of the fanout signals of a. Here a ' is logically 
identical to, yet structurally independent of a. In other 
words, if C(a) and C(a') are two sub-circuits whose outputs 
are a and a' respectively, we have a=a' with or without 
some commonly shared components. A check for new 
multiple errors must be made, unless C(a') is a duplicate of 
C(a) and is fed only by Pi 's. The new circuit, labeled C, 
can be parity checked. Note that for G" to be singular does 
not necessarily imply C is fanout-free. This method is 
essentially a resynthesis procedure since no new output 
leads are formed. 

The method can be greatiy enhanced if, instead of 
completely removing a PFN a from G, a is allowed to stay 
in G so long as an error in a cannot cause any multiple 
error of even degree in C. Consider a circuit whose fanout-
graph G is shown in Figure 7(a). The error characteristics of 
this circuit are represented by a Venn diagram shown in 
Figure 7(b). In this diagram each element Ys, Yj or Yk is a 
set of input n-tuples defined by Equation (3.5). There are 
two possible double-errors in the circuit as are indicated by 
their intersection Yik and Y jk. By removing the set Yk from 
this diagram, all double-errors can be eliminated. The 
removal of Yk corresponds to the deletion of a directed 
branch afk from G. So we conclude that only one signal 
a ' needs to be generated. This signal a' will be used to 
implement fk. The result is a reduction in ra from 3 to 2, 
and the resulting circuit will be free of any multiple errors. 

t fj can be a reconvergent node. 
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Shown in Figure 7(c) is the change in the error-graph for 
this circuit. Since there is a close resemblance between the 
Venn diagram representation and the error-graph, we will 
use the latter as a working model in our future applications. 

For the circuit just presented, the decision on removing 
afk is obvious. For more complicated problems a general 
procedure is required in order to select pairs (ctfj) to be 
removed from G. One such heuristic procedure is given in 
Ko [8], and for brevity, will not be presented here. 

Once a node has gone through the degeneration process 

the fanout-graph is simplified accordingly, and the process 
is repeated for another PFN. Since each iteration of this 
process removes a PFN from G, this procedure will termi­
nate when the final graph reaches a singular graph. 

Fanout augmentation 

Contrary to the previous method, the Fanout Augmenta­
tion method does not require any duplication of the fanout 

O f i 

*OfJ 

(a) 

"O 
«'0- O 
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> 

(b) 

The Venn Diagrams 

Ofi 

c> 
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(c) 

NOTE: 

The E r ro r -Graphs 

and —•—•—•— indicate double-e r rors 

under different sets of input conditions 
Figure 7—Graphic results showing net changes in a fanout degeneration process 



signals. Instead, a line is tapped off on a fanout node which 
after some gating logic is sent to a parity checker. The new 
output signal, say a will perform the function of 
transforming any multiple error of even degree into odd 
degree as long as it is caused by an error in a. 

Consider the fanout-graph of Figure 6(a). Instead of 
removing the branch afj from G, we want to add a new 
branch aa to G such that the double-error on fi and fj can 
be transformed into a triple-error on fi5 fj and a. The 
transformation can be achieved by implementing an a-
augmented function a(a, X)=Vfii(X)-au where wu (the error 
function) will be our gating function. Since da/da=wu, an 
error in a will also cause a to be in error whenever Wjj=l 
under some input in Y^. 

We will now show how this method will affect the fanout-
graph and error-graph of a circuit. Consider the circuit 
whose fanout-graph is shown in Figure 7(a). In this circuit, 
there exist two possible double-errors on the output pairs 
(fi, fk) and (fj,fk). By implementing a new signal 
«-(w ik+w jk)-o!u, each double-error can be transformed into 
a triple error. The resultant graphs showing these changes 
can be found in Figure 8. 

^. x̂Tv-.» a fanout-graph G. I f B ^ j a f ^ , 
afu, . . . , af,M} where fjl? l ^ i ^ M , is a terminating node 
Theorem 6: Given 
afh, . . . 
G,then 

in 

az (I, w'K?,wi) •au where Wi=-j-~- D (4-1) da 

Theorem 7: Let a be a PFN in G and Ba={aa1 , 
aa2, • • • , aaM} be the set of all M directed branches 
whose starting-node is a, and end-nodes are a i5 l< i<M. 
Associated with each node a, is a set N ; consisting of all 
terminating nodes having a path from c^. We will allow the 
case where Ni={aJ and call a ^ a legitimate path. If 
NinNj=0 for all i ^ j , and if every PFN in G is to be 
processed by the augmentation technique, then 

M 

© w 
i = l 

wnere w ( = > T ^ 
t £ N : a « 

')•(?, W ') ' (4.2) 

Oh 
•O 'J 

-O'x 

*o° 

Note that if every node a s , l< i<M is a terminating node, 
then Wi=Wi. In this case, Equation (4.1) and Equation (4.2) 
are the same. 

Line sensing techniques 

Under circumstances when circuit constraints or other 
factors prohibit the use of forced-parity techniques, the 
Line Sensing techniques should be investigated since they 
may provide a good result. In this section we will discuss 
two methods which do not require accessing to the PFN's. 

Conditional line sensing 

In the fanout degeneration method, if a branch af, is 
removed from G, we need to build a new signal a' to 
replace the line(s) being cut in C. In this method we will 
build the same a' (or its complement), not for replacement 
but for comparison. Consider the example of Figure 6 
where Ba={afj, afj}. Suppose f4 is a-invariant and we 
decide to sense fj. Under input conditions such that Wj=l 
we will have Zi={a} or {a}. Since Zs contains only a single 
element, we can associate with fs a switching function au 

and call it the function realized by fj under Wi= 1. Let a' =au 

and it can be used to compare with the "line" f; under the 
"condition" of Wi = l. Shown in Figure 9(a) is such a 
scheme, and we call it the Conditional Line Sensing 
method. In this method, an Exclusive-OR gate is used to 
compare fj with au(X). Its output is then gated by the 
switching function Wj(X). The final output is an error signal 
€i which will be set to 1 whenever an error in a causes an 
error on f, independent of whether or not fj is in error. Let 
ep be the output of a parity checker checking on all the 
outputs. Then e=ep+ej will be our overall error signal for 
the circuit. Note that an error of f, caused by some other 
source may or may not set e s=l. That is why ft should also 
be included in the parity checking. 

cT(X)-

I 1 

J d? 

Mx> 1 fZl 

^E> 
L. J 

(a) 

3 = ( w i k + w j k ) a 

Figure 8—The resultant graphs for Figure 7 after a fanout augmentation 
process 

a (X). © 
Figure 9—Conditional line sensing 
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Mathematically, we have 

e^WiCfiSa") 

A special situation is Wj=l in which case 

e,=fieau. 

Its implementation is shown in Figure 9(b). 
It should be pointed out that the gating function Wj can 

actually be replaced by the pairwise error function wu . 
When this is done, €j will be set to 1 whenever a double-
error occurs on the outputs fj and f3. Thus what is unde­
tected by the parity checker (ep=0) will now be detected by 
the line sensing mechanism (^ = 1) and the result is e= l . For 
the graph of Figure 7 a gating function of w ik+w jk will also 
be appropriate if fk is a-invariant. In any event, one should 
select that implementation which is of least cost. 

Now let us consider the case when an output function £ 
is a-variant. Since ZjC{a:, a}, au alone will no longer be 
sufficient to serve as a reference signal. In order to solve 
this problem, we express £ in the general form 
f i=Aa+Ba+C. The error function wt is readily found to be 
( A 0 B ) C = A B C + A B C = W 1 + W 2 , where W ^ A B C , and 

W2=ABC. It is seen that when W ^ l , f, will be equal to a, 
and when W 2 =l , f4 will be equal to d. So clearly we can 
write the following equation: 

€,=W1(f,ea)+W2(f,0Q!). 

Again, all the previous arguments will still hold for each 
term in 6j. 

For any circuit, if more than one ej is generated, then e 
should be set as follows: 

e=ep+ £ (4.3) 

Unconditional line sensing 

In this method the input condition plays no important 
role in the design. First of all, the double-error patterns of a 
pair of outputs (fi5 fj) have to be determined. If it has a 
unique double-error pattern then before duplicating a line 
fi, we first perform a functional mapping on f; and fj as 
follows: 

1. If (fj, fj) has a unique 00<-»ll pattern, then let gs be a 
function defined by any one of the following expres­
sions: 

(a) fj (d) fj 

(b) fj+fj (e) fj-fj 

(C) fj-fj (f) fi+fj 

2. If (fj, fj) has a unique 01-^10 pattern, then define gs to 
be any one of the following: 

(a) fj 

(b) fj+fj 

(c) fi-fj 

(d) fj 

(e) fj-fj 

(f) fi+fi 

f. 

f 
J 

1 

2 • • • 
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The criterion in selecting one of the expressions in each 

Fisure 10—Unconditional Hn^ sensino 

group as gj is based on the cost of implementing such a 
function. Once gj is selected, we can implement a compari­
son scheme such as the one shown in Figure 10. Let Gj be a 
circuit which realizes gj and is implemented using only the 
signal Pi's as inputs. We construct another circuit Gj' 
which realizes the same function gj but its inputs are now 
taken directly from fj and fj. Call its output gj'. We can 
perform the following comparison 

ei = gj(X)egi'(fi,fj) 

using only one Exclusive-OR gate. We call this method the 
Unconditional Line Sensing method since the function of Wj 
is no longer involved. 

In this method, unless gs is chosen to be fj or fi5 all the 
outputs are still required to be sent to a parity checker. On 
the other hand, if gj equals fj or fj, then f4 can be excluded 
from the parity checking. In this case, a partial duplication 
is implied. For the case when a pair of outputs do not have 
a unique double-error pattern, we require g; to be either fj 
or fj. As was mentioned before, if more than one €j is 
generated, then Equation (4.3) will have to be used. 

As a final note we would like to point out that this 
method can be extended to include the case of setting gj=aj 
if a PFN ctj is accessible. We call this method the Fanout 
Duplication method. 

In conclusion, these methods have been used to design 
checking circuits for a number of functional devices as well 
as random logic. Examples and conclusions dealing with 
the suitability of specific techniques of different types of 
logic circuits, such as iterative arrays can be found in 
Reference 8. 
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