
What's different about tactical executive systems

by WILLIAM G. PHILLIPS

Radio Corporation of America
Moorestown, New Jersey

The program for a computerized command-and-control
system is generally a combination of critically time-con­
strained real-time tasks, which directly control the tacti-
calntLts'sTOTreTrerroTi^^
support the system. This computer program structure is
the basis for determining the allocation of the total avail­
able processing time for a complete mission cycle.

TIMING ALLOCATION

Since tactical command-and-control systems (Figure 1)
are triggered by a series of predictable and non-predicta­
ble events, the computer-program task allocations must
be designed for complete flexibility within the total avail­
able processing time period. In the case of predictable
event triggers, the design may be simple to the extent of
repetitive processing of a single chain of tasks, called a
"thread." In the case of unpredictable event triggers, such
as special-threat target detections, the design must be
more complex to the point of interleaving threads. The
process of interleaving threads presents an interesting
timing problem within this type of system because of the
requirement that a real-time thread must complete its
processing in a predefined critical time period. This time
period is frequently a function of the design requirements
of the interfacing tactical equipment,
equipment.

Figure 2 illustrates a processing sequence where the
triggering events are predictably separated and therefore
the thread allocations (P*) and their respective critical
time periods (Qt) are predictably separated. The slots
which occur between threads (Rt) are available for proc­
essing of non-real time tasks. The real-time tasks (qtJ), as
individual items, must all satisfy their individual time
allocations within their respective critical time thread
period Qt. This timing constraint can be represented by
the following inequality:

Q,>T,t(Qu) (1)

where t(qij) is the time allocation associated with task qu.
If the non-real-time tasks are also time constrained to a

fixed completion period (Tp), then the general equation

for timing allocation within a complete processing
sequence (Tp) is:

which describes the inequality to be satisfied by the
combination of real-time and non-real time tasks over the
total available processing period, Tp. This period repre­
sents a complete cycle of tactical events, such as radar-
track processing, weapons assignment and firing, and
special-threat target processing. The critical time-thread
period (Qt) of Ineq. 1 represents intervals of tactical
events, such as radar-target detection, weapons designa­
tion, and special-threat target-assignment processing.

This time allocation can also be easily applied to non-
tactical systems, which frequently allocate a range of time
(QL), in equal quantums, to a group of application tasks.
Any unused time (RL) between the actual completion of a
quantum period cycle, i.e. all process state tasks have
completed their respective quantum period of execution
(Pi), and the beginning of period QL-\-l is allocated to
system background processing such as on-line fault anal­
ysis or some accounting procedures.

The major difference between the two types of systems
is the criticality of satisfying Qt in inequality (1). Non-
tactical systems most frequently are responsible for the
scheduling and processing of a group of non-related
homogeneous tasks, which are not critically dependent
upon when they initiate or complete processing. That is,
the tasks will not have failed their intended purpose if
they complete processing two or three seconds later than
if they had been run in a "ba tch" environment. This
philosophy can also be applied to some real-time systems,
such as a communications network which, while a two or
three second delay would postpone the completion or ini­
tiation of a call, it would not cause the system to fail its
intended "mission" of initiating and completing phone
calls in sufficient time to be compatible with human reac­
tion speed. Tactical systems, on the other hand, are con­
strained in time by high speed device interface require­
ments which frequently must be satisfied within toler­
ances no greater than a few milliseconds. Any perturba­
tion to tactical task scheduling could cause these toler­
ances to be violated, thereby possibly causing the

811

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1499586.1499770&domain=pdf&date_stamp=1973-06-04

812 National Computer Conference, 1973

r TACTICAL COMPUTER SYSTEM

— ^ j _ —

1
1
1
1
L_

1

>

RADAR

, ,

'

I

i

•

WEAPONS

i

' •
COMPUTER

PERIPHERALS

i

a

DISPLAY

ii

"

Figure 1—Command and control computer program complex

intended mission to degrade or fail. The degree of impact
due to mission failure (criticality) is far greater in a tacti­
cal system primarily because of the direct relationship
between mission success and human lives.

An added perturbation to the system-timing allocation
is the introduction of the executive program tasks that
support the scheduling and dispatching of the system
tasks. This additional allocation can be represented by
expanding Ineq. 2:

Tp>Z[t(qu)+t(eij)]+'£[t(ri>)+t{elk)] (3)

where t(eu,ik, is the time allocation associated with task
eif or eik and t(rik) is the time allocation associated with
task r,*.

This general inequality must be satisfied for timing
allocation over the period Tp; it includes the real-time
task times, t(qu); the non-real time task times, t(rik); and
the executive task times, t(eu) and t(eik). We can also
expand Ineq. 1 for the critical-thread periods (Q,-) to
include the executive tasks:

Q/2>(<7u)+*(ew) (4)
ij

It is apparent from Inequalities 3 and 4 that there are
many unknowns: in addition to ascertaining the process-

. ,
Pi

s "v.

% QI2 ".3

m.

R

_ •P

1 p 2 R 2
1 1

q 2 . q22 "23 "31

- « 3 •<

P3
 R 3

1 1

q32 q33

|,

q4.

- Q 4 M

P4 R 4
1 1

"42 "43

Total avallabie process

Allocation of Critical

TIME

time for a rnission cycle

e period within which real-time threat P.

sting of a processing sequence of rea l - t i

sting of a processing sequence of non-rea

ing-time allocations for the real-time and non-real-time
tasks, we must also determine the time expenditures of
the executive tasks. This is further complicated by the
fact that executive-task durations may vary because of
the varying types of services to be performed (such as I /O
scheduling), the type of real-time task scheduling (i.e.,
immediate with or without messages, time delayed, etc.),
and the scheduling queue backlogs. Until all of these
unknowns are determined, or at least closely predicted.
Inequalities 3 and 4 cannot be credibly satisfied.

A practical solution to this problem is to arbitrarily
allocate a budget of a fixed percentage of the total availa­
ble processing time (Tp) to the executive tasks 2£(eu) and
Xt(eik). A more precise procedure is to further allocate a
fixed percentage of the available critical-thread period Qt

to the executive tasks 2f(e^). A typical allocation, at the
beginning of system development, is 10 to 15 percent for
both of these periods. As the development progresses and
the task timings become more defined, the terms of the
inequalities must be adjusted. This, in fact, is an excel­
lent method of ensuring that the task design is meeting its
timing allocations; for if the inequalities fail to be satis­
fied, the system integrity is compromised, and the system
must be redesigned.

Real-time command and control systems differ in
complexity. A simple system, with predictably sequenced
trigger events, has its real-time-thread critical periods
(Qt) allocated somewhat as in Figure 2, with the required
condition that the following inequality be satisfied:

TP>Z<?« (5)

However, some systems are more complex because of
unpredictable sequences of trigger events. These types of
systems frequently require that real-time threads overlap
each other, but that each thread must still complete proc­
essing in its allocated critical period, as illustrated in
Figure 3. This figure shows the critical real-time periods,
Qh overlapping the non-real time tasks, Rt, naturally
being delayed until the completion of all real-time
threads. This allocation permits us to then concentrate on
the critical real-time periods, Qi} and to process the low
level, Rh tasks, in a background mode, if and when time
is available during Tp. This overlapping (interleaving)
process is described by the following inequalities:

&>Z*(g«)+e/+£'(g)

(6)

(7)

Figure 2—Processing time allocation non-interleaved

where et represents the total fixed executive overhead
time allocated for the period, Qit and t(q) represents the
tasks interleaved in Qt.

This type of complex system requires that the executive
program, through a scheduling mechanism, manage the
interleaving process to ensure that inequalities 3 and 7
remain satisfied during task processing. To accomplish
this, the executive-program scheduling mechanism must
be designed to manage a dynamic queue based on task

What's Different About Tactical Executive System 813

Tp

p

°2

P 2 P 3 P , B,

1 I I V \l 1

' I I "12 '21 '13 '22 '23 '31 '41 '32 '42 "43 '44 r5l '52

T p < | Q j

t j . = PROCESSING TIME ALLOCATION FOR
1 EXECUTIVE TASK i j

Figure 3—Processing time allocation—interleaved

priorities and to resolve any timing conflicts between
competing tasks across threads, as described by inequal­
i ty? .

It is not unusual to encounter system requirements that
dictate that the first 4ask-jwit-h4n a thready ^(T7 (Figure 3)-—
and therefore the thread itself—shall be repetitively trig­
gered at some frequency relative to the occurrence of an
event; that is, the thread initiates a processing sequence,
Pt, (Figure 3) repeatedly at some frequency after some
initial event trigger. This may occur for three general
reasons in a command and control system:

(1) Periodic interface requirements with time-pulsed
radars or other similar equipment.

(2) Periodic interface requirements with display con­
soles, which require refreshed data.

(3) Periodic polling of interfacing equipments for input
messages.

In the case where a thread is scheduled in constant
intervals, relative to a single event (i.e., the triggering
event always occurs at the same time within each Tp

interval), the thread timing allocations in Figure 3 are
identical for each succeeding Tp interval. However, in
complex systems, the possibility exists that some periodic
threads will be scheduled some constant frequency after,
or possibly before, the occurrence of an unpredictable
event. This case will then cause the thread critical alloca­
tion times, Qt, to drift from one Tp period to another, as
illustrated in Figure 4. This drifting would also occur for
those cases where a thread was scheduled with a variable
frequency.

It is important to understand, at this point, that tacti­
cal tasks are not amenable to a multiprogramming

i °l

Q 2

03

! °4

|

Q | 0 |

Q2 1 Q2

«3 1 03

« 4 °4

Figure 4—Drifting critical time periods

scheduling technique because of their homogeneous func­
tional properties. Unlike a commercial data center envi­
ronment, where each task in the processing queue is
completely heterogeneous and consequently is not
dependent on the processing state of any other task; the
tactical system tasks, within a thread, are dependent
upon their predecessor/s to supply both data and initia­
tion triggers. This dependency is required primarily
because tactical tasks frequently interface with equip­
ments which require time tagged data from other equip­
ments. For example, it is unrealistic to execute a task
which supplies data to a display console, prior to the
completion of a predecessor task whose function was to
pre-process the data from a radar buffer.

Let us now summarize the four common types of criti­
cal real-time tasks:

(1) The dynamic task that must be scheduled strictly
according to a priority sequence.

(2) A periodic task that must be scheduled repetitively
at a fixed frequency relative to a predictable event
occurrence.

(3) A periodic task that must be scheduled repetitively
at a fixed frequency relative to an unpredictable
event occurrence.

(4) A periodic task that is scheduled repetitively at a
variable frequency relative to a predictable event
occurrence.

Since a mixture of these type tasks may be required to
complete processing within the same critical-thread
period and since each task will perform a unique tactical
function, a priority scheduling philosophy must be devel­
oped, which will ensure the hierarchy of tasks in relation
to one another. This is especially true in the case where a
periodic task, and possibly its associated thread, is unpre­
dictably triggered while a lower relative priority task is
processing. Inequality 7 represents the total time allo­
cated to a complete mix of real-time tasks over a critical
processing period, Qh assuming, of course, that random-
interrupt processing is included in the appropriate alloca­
tion; and therefore is the principal timing requirement to
be satisfied by the design of the executive scheduling
mechanism.

EXECUTIVE DESIGN APPROACH

The executive program, to satisfy the above timing
allocations, must provide efficient mechanisms for per­
forming the following functions:

Scheduling critical real-time tasks according to a
dynamically changing priority-sensitive environment.
Interleaving processing threads.
Monitoring the processing of all tasks and threads to

ensure critical time periods and total available process­
ing time periods are not violated.

814 National Computer Conference, 1973

<KL„)

q(L|2)

q(L2l>

qV
q d - ^

«K3>
Figure 5—Single-level queuing model

If a unique task program is equivalenced to each timing
allocation, qlh in Figure 3, we can state the following
general priority characteristics of threaded tasks in this
type of command and control system:

q(Ln)*q(Li2)^ • • -^q{Lin)

where q{Lu) is the priority of task qu, and

P(Li)=q(Ln)

(8)

(9)

where P(Lj) is the priority of thread P{.
Inequality 8 shows that tasks are always structured

within their respective threads in descending priority
order, independently dynamic. This priority structure
differs considerably from most non-tactical systems,
which contain tasks of different priorities within a single
thread and the execution of any specific task is a function
of both priority and associated I /O states.

The reason for the difference is, again, because of the
heterogeneous characteristics of tactical tasks versus the
homogeneous characteristics of most non-tactical systems.

As established in Eq. 9, the priority of thread P, is dic­
tated by the priority of its first task, qn. These character­
istics show that the only dynamically changing priorities
in the system are those associated with the "lead" task of

each thread; thus, a simple queuing model can be struc­
tured to satisfy this scheduling requirement. Figure 5
illustrates a standard queue structure in which the tasks,
qtj (Figure 3), are randomly dispersed and are serviced by
the executive according to their respective priorities. This
queuing model will satisfy the task-scheduling require­
ments of our system, but will not provide the executive
with an adequate mechanism to monitor the thread criti­
cal time periods for possible overrun conditions.

This dynamic process of time budget management is
probably the greatest single difference between tactical
and non-tactical computer systems. The tactical execu­
tive design must contain the capability to compensate
automatically for as many perturbations to the processing
norm as possible, while maintaining each critical thread
period, whereas the typical non-tactical executive design
logic usually will rely on an external operator to restore
system integrity. The process of automatic time budget
management contributes greatly to the sophistication of
tactical executives, especially in the area of dynamic task
queue maintenance.

An approach to provide an executive time-monitoring
capability is to structure the basic queue with time
bounds which correspond to the critical thread periods,
Qh illustrated in Figure 3. The priorities of these time
bounds could then be established according to the priori­
ties of the threads they represent, Pt (Figure 3). All of the
tasks associated with a thread, and consequently a thread
critical period, would then be contained within the corre­
sponding thread priority level in the queue, as shown in
Figure 6. This structuring is possible because of the char­
acteristics described by Eqs. 8 and 9. If we now associate
an overrun time parameter with each thread level and
with each task, it is possible to predict the probability of

RL,) ,Q,

q(S,)

q(L22)

q(L3|)

q«-42)

q(LK)

<rtL23>

q(L4l)

q(t43)

q(L2|) 0 0 0 O 0

P(L 2) ,Q 2

O o O O O O O

*4>.QS

q(L32) o o o o o

P (L 4) ,Q 4

^L44> 0 O 0 O O

q(L ln)

q(L2n)

^L
3n>

q(L4n)

PlL.J.qO,,)
Figure 6—Multiple-level queue structure

What's Different About Tactical Executive System 815

achieving the required critical period constraint of QL (Eq.
7) and Tp (Eq. 3). If an overrun occurs at the thread level
—i.e., Qt is not satisfied—the only recourse is to transfer
to some error-processing state. However, it is simple to
predict the varying probability of achieving Q, by care­
fully monitoring each intra-thread task for an overrun
condition. If a timing problem should arise, the executive
program has the capability to temporarily suspend the
interleaved Qt+j tasks (Figure 6), which are processing
within the P(LL) thread priority level, in favor of keeping
the P(Lt) tasks within their time constraint, Qt. This is a
simple process whereby the tasks, which are interleaved,
are simply moved to their normal thread priority level,
thereby allocating the entire critical period, Qh to q, tasks
only.

For example, task q41 (Figure 6) would be moved out of
the thread critical period, Q3, and into the thread critical
period, Q4, if task q3, was in a time overrun condi­
tion, which jeopardized the completion of P(L3) tasks
within the thread critical period, Q3. This methodology is
possible because of the common priority structure of
these type systems, as described in the following inequal­
ity:

q(Lt)*q(Lt+j) (10)

for a thread critical period, Q,-.
Inequality 10 states that interleaved tasks (qi+J) have a

priority less than or equal to non-interleaved tasks, ((?;),
within the same thread critical time period (Qt). This is
likely to be the case, except in the rare instances where a
high priority task may be dynamically interleaved into a
thread period, in which case the high priority task would
be processed in priority order within the thread and the
lower priority non-interleaved tasks could overrun their
critical thread period. This requires a tradeoff on the part
of the system analyst/designer of the tactical priority
structure to determine whether it is more important to
satisfy a critical thread period or immediately process a
high priority task.

Under certain circumstances, a complete thread of
tasks may require immediate processing because of the
arrival of some unpredictable high priority event. If the
priority of this event is higher than the thread priority
level of the currently processing task, the executive pro­
gram will initiate a special suspension process called
"preemption". This preemption process is not unlike a
muitiprogrammed non-tactical system's interrupt logic,
except that tactical system preemption takes place at the
thread level (i.e., an entire group of tasks is interrupted),
while most non-tactical systems interrupt at the single
task level. This thread level preemption evolves from the
functional properties associated with a tactical thread.
For example, if a currently processing thread's primary
function was to load a launcher and fire a missile, and at
the instant of load, the computer system, by virtue of
some event, decided to suspend the thread, the preempted
thread may actually be recalled to support the preempt­

ing event by reloading the launcher and firing at another
target. Thread level preemption then requires that the
tactical executive scheduling logic be capable of suspend­
ing and awakening multiple tasks simultaneously. It is
intuitively obvious from the previous scheduling queue
structure discussions that a preemption could occur as the
direct result of (1) the current processing task requesting
the scheduling of a higher-thread-level successor, or (2)
an external interrupt from a decrementing clock or an
input /output operation. The most frequent cause for
preemption is the arrival of an external interrupt from
another computer subsystem announcing "special-threat"
target detections. This event arrival will cause any proc­
essing task, and its associated thread, to be suspended
during normal executive interrupt processing, and the
appropriate higher priority event processing thread will
be placed into its appropriate priority position in the
scheduling queue. The executive will then examine the
scheduling queue in search of the highest priority pending
task (which in most cases would be the suspended task).
In this hypothetical case, however, the highest priority
pending task is the new arrival. This special case causes
the executive to preempt the previously interrupted
thread/task and save all registers and volatile data-base
contents. Processing control is then transferred to the new
candidate. The executive then increases the priority of
the preempted task to the highest within its predefined
thread level. This procedure ensures that the preempted
task is "awakened" prior to any other pending candidate
selection in its (the preempted tasks) thread priority
level.

This scheduling logic and queuing model enables the
executive program to manage the critical processing peri­
ods, tp (Eq. 3) and Q*(Eq. 7): to provide instantaneous
response to special high priority events while maintaining
the system integrity; and to permit task interleaving
between threads.

Let us now examine periodic task scheduling require­
ments which are represented by either of the following
process initiation triggers:

f ^ f i + Z ^ (ID
o r < = 1

ti = h + At (12)

Eq. 11 is the scheduling-time calculation for determining
when to begin processing predictable periodic tasks.
This is obvious because the term tx represents the first
time the task was processed and Att represents the fixed
frequency; therefore, the next processing time will al­
ways be initiated some At factor after the first process­
ing time. These types of periodic tasks are scheduled
for processing in an identical manner to non-periodic
tasks, as earlier described.

Eq. 12 represents the scheduling time required for un­
predictable periodic tasks. This is evident because the
term tt is the last time the task was processed and At

816 National Computer Conference, 1973

^ DIGITAL

"AT TIME t: P= THE THREAD LEVEL AND PRIORITY OF THE TASK
A = THE ENTRY ADDRESS TO INITIATE EXECUTION

OF THE TASK

Figure 7—Executive scheduling philosophy

is a constant time increment, therefore in the event the
last processing time tt was triggered by a random event,
this type of task would not always be scheduled in exact
At intervals relative to the first scheduled time. As men­
tioned earlier, periodic tasks may be more critical than
nonperiodic tasks, especially those represented by Eq.
12. This then requires that periodic tasks must begin
processing in relation to their relative priority, when com­
pared to all other system tasks. The executive program
could satisfy this requirement by inserting all periodic
tasks, which are ready for processing, per Eq. 11 or 12,
into the scheduling queue, according to their thread level
and priority. This technique will avoid having high pri­
ority pending tasks delayed because of lower priority
periodic tasks instantly being processed upon achieving
their respective scheduling times.

We can represent this design concept in Figure 7,
where the "periodic waiting queue" is a "holding table"
of unordered frequency dependent tasks awaiting their
scheduling times, (tt), as represented by Eqs. 11 or 12.
Periodic tasks are selected from the "periodic waiting
queue" and inserted into the scheduling queue according
to their respective thread level and priority; i.e., they will

compete for processing time with the entire set of system
tasks.

CONCLUSIONS

The performance criteria for today's sophisticated tac­
tical Command and Control systems imposes unprece­
dented requirements on the design of both the hardware
and the software which control the systems. The most cri­
tical aspects include the time tolerances associated with
the scheduling/dispatching and processing of tactical
tasks, and the dynamic attribute of an ever changing,
highly unpredictable tactical environment. The execu­
tive program, which is the nucleous of any tactical system,
must be designed to operate not only in the classical
non-tactical environment, but must additionally con­
tinually monitor the critical time periods associated with
task group (threads) processing and automatically com­
pensate, if possible, for any overruns. The executive
scheduling and dispatching mechanism must also be suf­
ficiently flexible to suspend and subsequently awaken
groups of tasks in the event of unpredictable high pri­
ority event arrivals. These dynamic attributes of a tacti­
cal executive set it apart from the typical non-tactical
executive, which operates in a well structured and fairly
predictable environment, however it is obvious that
many similarities do exist and in fact frequently out­
weigh the differences. Although most of the techniques
discussed here are not new to the computer sciences,
the method of implementation to solve the tactical prob­
lem is noteworthy. Most of the system characteristics
described in this paper are representative of the U.S.
Navy's AEGIS program presently being developed by
RCA Corporation.

REFERENCES

1. Phillips, W. G., "Executive Program Scheduling for Large Com­
mand and Control Systems," RCA Reprint No. RE 18-1-6, RCA
Engineer Magazine, Vol. 18, No. 1, pp. 55-59, July 1972.

