
Instructional computer systems for higher education

by CHARLES J. PRENNER
University of California. Berkeley
Berkeley, California

and

ALFRED Z. SPECTOR
Harvard University
Cambridge, Massachusetts

ABSTRACT

In most universities, increased instructional utilization
of computers by many departments has been the rule.
With the associated diversity of instructional require­
ments and evolving hardware capabilities, the choice
of a proper computer system for this environment has
been made more difficult. In this paper, a review of the
requirements for such a system is presented and the
alternatives are analyzed in light of these requirements.
It is shown that non-interactive systems are the least
desirable educationally and furthermore, that the eco­
nomic justification for their use is no longer as strong
as in the past. In support of this, a description of an
inexpensive interactive system currently in use at
Harvard is given.

INTRODUCTION

With an increased need for instructional computing in
higher education and tighter university budgets, edu­
cational administrators must determine which com­
puter systems provide the highest educational benefits
at the least cost. Questions of interactiveness, size and
performance must be considered. They can only be
answered by an analysis of the user community, of the
various possible alternative systems, and of the costs
Ox Liiese systems in light o± the conditions on a par­
ticular campus.

THE USER GROUPS

In order to determine the desirable attributes for an
instructional system, a survey must be made of the
various user groups and of their individual require­
ments. Unlike many systems where essentially one
class of end-user is supported, educational systems
typically must host a widely variegated user com­

munity.* It is convenient to classify the users into four
categories: (a) those who utilize the computer for
introductory programming courses, (b) users from
intermediate and advanced computer science courses,
(c) users from non-computer science courses utilizing
the computer as an instructional aid or tool, and (d)
users consisting of instructors and staff. Each group
is analyzed in turn.

Users from introductory computer science courses

This group utilizes the computer to obtain a general
unuerstanuing G±. uhe techniques OJ. computer science.
In this category are general interest students, future
computer science majors and students from the phys­
ical or quantitative social sciences. Although it is true
that the individual goals of the students may vary,
most students share the same computing requirements.
Mainly, they must all cover a large amount of in­
formation in a short time. They must also be given a
broad and balanced view of the subject matter. Finally,
because of their lack of experience, they require es­
pecially simple system conventions and a protected
environment which provides for easy detection and
correction of errors.

A ~ A ~» ~~... 4* >-*-.. nT<AJ-Aw 4-1^^4- <-<.-.-!4-n 4-*U<-t£** -«-. *-t J-L si a w*ne4- Vk£3 .tt. C U l I l p U l c r s y s t e m Llldb s u i t s l / f i c i i i r c c u s i u u b b w c

capable of supporting a suitably rich set of program­
ming languages as well as providing reasonable con­
ventions for their use. Since introductory students will
undoubtedly make many mistakes, easy debugging of
programs and clear diagnostics must be provided.
Finally, as all neophytes have difficulty in coping with
what appears to them to be convoluted conventions,
these must be held to a minimum.

* Computer aided instruction, (CAI) per se is considered to be
a different use of computers and is not considered in this paper.

171

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1499799.1499825&domain=pdf&date_stamp=1976-06-07

172 National Computer Conference, 1976

Users from non-introductory computer science courses

This group requires a wide variety of languages in
which to program and the ability to develop, debug and
test programs as quickly as possible.

For example, students in this category may have
courses in programming language design or implemen­
tation where it is necessary for them to obtain ex­
perience with the languages. Alternatively, they may
be taking a course in algorithms and have frequent
need to implement their solutions to problems. At this
stage in these students' training it is important for
them to be exposed to as many different programming
situations as possible; the computer system should not
give them a myopic view of their field of study.

Users from non-computer science courses

The members of this user group are learning both to
utilize the computer as a tool in their respective fields
by carrying out assignments which illustrate basic
methods, and also to use library packages to aid them
in their work. For example, students in this group may
be in an econometrics or statistics class where they are
performing sample regressions using library packages,
or developing their own software to do this.

This group, being diverse, may yield many require­
ments. It is composed of future mathematicians, social
and physical scientists and various kinds of appli­
cations programs are needed for their support. Thus,
this group will also require a wide class of program­
ming languages and a powerful library of applications
programs.

Usage by instructors and staff *

These users typically have enormous time demands
on them and thus require responsive, time-saving sys­
tems. It is essential for faculty to have the ability to
develop pedagogical and applications libraries quickly
and easily.

In terms of other requirements, those of this group
may be correlated with the needs of their students. If
the needs of the users in the groups described above are
met, the needs of this user group will be met as well.

There are three main requirements in an educational
computer system which can be distilled from the needs
of the four user groups described above: (1) support
for a wide variety of programming languages and ap­
plications libraries, (2) provision for quick program
development and easy debugging, and (3) simple, sen­
sible conventions.

It is important to note that no program execution

* The reader should note: that this paper is concerned only with
instructional uses of computers in the university. If it is
desirable to have the faculty and staff utilize the instructional
machine for their own research purposes, the requirements can
grow considerably.

speed requirements have been postulated. This is be­
cause repetitious and time-consuming program execu­
tions are not commonly found on the usual instructional
university machine. While it is true that some students
will utilize the computer to solve problems using library
applications programs, the tasks tend to be small since
the computer problems assigned in most courses are the
minimal sized examples which demonstrate the desired
principles or techniques.

Thus, system throughput is not critically dependent
upon program execution speed. Rather, it depends on
program development efficiency because constant pro­
gram development is the activity which best charac­
terizes the university instructional computer system.

ALTERNATIVE SYSTEMS

The needs of the various user groups may be met in
different ways. The users may be supported on a
variety of machines, each offering distinct facilities.
For example, there may be the need for some special
purpose computers to act as real-time laboratory aids
or to be used stand-alone in an operating system course.
However, the needs of most users will be supported
either on non-interactive systems (batch) or on inter­
active time-sharing systems. It is to these systems that
we next turn our attention.

Non-interactive systems

The non-interactive, or batch, machines are usually
fast and capable of executing the largest programs.
However, execution-speed/size efficiency is not obtained
without a price. Batch machines are inefficient as a tool
for program development, especially in an environment
in which a large support staff is unavailable. In addi­
tion, they are unusable in situations where interactive­
ness is a requirement. Finally, in some sense, they are
an improper model of a computer to present to the
student, especially the neophyte.

As a program development tool for those learning to
utilize computers, batch machines are very wasteful of
both machine time and more importantly, human time.
Associated with batch machines is the notorious batch
cycle. This consists of the four step process which must
be repeated numerous times while writing and debug­
ging programs: (1) the program must be written or
corrections made, (2) program (and job control cards)
or corrections must be keypunched, (3) the card deck
must be submitted and (4) the print-out must be
awaited. This cycle is especially onerous in an instruc­
tional environment because students will make large
numbers of mistakes, both conceptual and typograph­
ical. The latter mistakes are compounded by the fact
that students are not professional keypunchers. Thus,
the batch cycle will be repeated an excessive number
of times even in the course of easy program develop­
ment. This ties up both operator time, student time,

Instructional Computer Systems for Higher Education 173

and burdens the system with a constant influx of trivial
tasks.

Further problems with program development are
associated with the fact that debugging aids are neces­
sarily static on a batch machine and therefore, they are
not nearly as flexible as the dynamic aids on an inter­
active system. Again, this is an especially grave de­
ficiency in a university environment due to the large
number of errors that students will make.

±n addition, the very fact that batch machines are
non-interactive means that restrictions are placed on
the flexibility of the system. Certain kinds of computer
usage cannot occur at all and other kinds not very
easily. For example, the batch machine is not usable in
a laboratory situation where a student wishes to
quickly analyze data necessary for an ongoing experi­
ment. In other situations, it may be very desirable,
though not strictly necessary, for the user to dynam­
ically view the results of a program and be able to in­
teract continuously with it.

The final disadvantage of batch systems is a psy­
chological one. In using a batch machine, the student
must necessarily learn of the computer as a static
machine. The student sees the computer as a monolith
which can talk only at him, never to him. Undoubtedly,
this is a bad view to give to the student, especially the
introductory student who may be uncomfortable with
computers in the first place.

In summary, batch machines have the capability of
executing large programs efficiently but provide an
inadequate program development medium for students.
They are restrictive in the kinds of tasks in which they
are useful and are a poor model to present to neophytes.
It should be noted, in light of the conclusions on the
needs of the user groups, that the ability of batch sys­
tems to execute large programs efficiently is not ex­
tremely valuable on an instructional system. It is a
capability which is not necessary for this environment.

Thus, the batch computing system does not fulfill the
requirements of the user groups and is not a good
choice as the basis of an educational computing system.
This is not to say that batch machines do not have a
place on campus. In the bulk of computer usage,
efficient machine utilization is vital and batch machines
can be used effectively. However, in contexts where
there is almost constant program development and
great diversity of needs, batch computers are not suit­
able.

There has been a variant on the batch machine which
has given to the batch system some of the attributes of
interactive systems. Systems like Wylber1 have pro­
vided some degree of interactiveness and at the very
least, allow the user to dispense with key-punching. To
the extent that the system can provide interactive facil­
ities, the system can meet the requirements described
earlier.

Interactive systems

Although, interactive computing is an old concept in
educational systems,2 it is still rarely utilized.3 The
machines which are utilized for interactive computing
are very diverse and encompass great differences in
flexibility, machine cost, performance, and even inter­
activeness. Some systems have the capability of run­
ning in a batch emulation mode, while others provide no
sucn opportunity, oonie systems utilize oniy one lan­
guage while others support many diverse languages. In
this section, we classify the different types into four
categories: (1) large scale time-sharing systems, (2)
traditional mini-computer systems, (3) large mini­
computer systems and (4) networked systems.

The large scale time-sharing systems are character­
ized by many simultaneous users, relatively large size
and speed, and high flexiblity. In fact, the systems
tend to be so large that many universities have too
little computing to fully utilize a whole machine. Thus,
the system must be shared with others. This can lead
to high communication costs and other problems asso­
ciated with an environment in which there is not com­
plete control over the computing resource. However, as
will be seen, from strict performance criteria, these
machines do an excellent job of satisfying the educa­
tional requirements.

Since the large time-sharing machines are fast and
possess large address spaces, they can run the most
complex instructional programs. In addition, the large
address space allows the use of many different lan­
guage systems as well as the use of large flexible soft­
ware designed to simplify the program development
task. Furthermore, they can allow for any amount of
interactiveness including on-line editing, dynamic pro­
gram debugging, and graphics. Some systems even
provide a batch mode in which more complex, time-
consuming tasks can be run.

Of course, these machines do not have the efficiency
advantages of the batch machines in raw execution
power but as has been argued, this is wasteful in an
educational (non-research) environment. In fact, it
is argued here that even these large time-sharing
machines, like the large batch machines, have built into
them an amount of execution efficiency beyond that
which is required in the instructional environment.

Traditional mini-computer systems have tried to pro­
vide the services of their large counterparts but with
more restrictive environments and less powerful
processors. Many systems have only a single language
available, typically BASIC, and can handle between 5
and 15 users simultaneously. These machines have
many of the advantages of the large time-sharing
machines and thus satisfy some of the requirements of
the user groups. However, they are not powerful
enough to meet the flexibility requirements.

These machines are interactive and thus allow ease
of debugging, instantaneous turn-around, and quick
program type-in. However, due to both the restrictive-

1 7 4 National Computer Conference, 1976

ness of the operating systems which run on them, the
speed of the CPU and the restricted main memory size,
they cannot support languages powerful enough for
many users. For example, the "BASIC only" systems
are suited for some kinds of programming but cer­
tainly cannot fulfill the requirements for an inter­
mediate course in computer science.

Thus, these machines do not fulfill the requirements
of the user groups because of their low flexibility. They
are not a good choice for a university system.

Large scale mini-computer systems are based on the
great advances in hardware technology that have
allowed for the creation of much larger and more
powerful mini-computers. Although many of these
machines have limited processing speed and memory
restrictions, they are much more powerful than the
mini-computers which were available only a few years
ago. We contend that one or more of these machines
are sufficiently powerful to provide for almost all of the
educational computing needs for a university. Typi­
cally, each can serve between 20 and 50 users, each user
having the ability to perform a wide variety of com­
mands and utilize a wide variety of languages.

The reason that this can be achieved is that most
requests for service in the instructional environment
are trivial ones which have correspondingly little need
for raw computing power. Thus, a relatively large
number of users can be supported on a system of only
moderate power. Occasionally, some students' requests
will be beyond the power of the system. But, in the
authors' experience, the number of such requests is
typically small. For these students, alternative arrange­
ments can be made.

An approach that may be used in the future is to
connect a number of large-scale mini-computers di­
rectly to a powerful central processor in a hierarchical
network. If any of the mini-computers become over­
loaded, they may send some users' requests to the
more powerful machine to be executed. In this way,
reasonable response time can be maintained on the
small machines. In addition, the small number of users
whose computations would normally overflow the large-
scale mini-computer systems may be accommodated.4

Thus, of the time-sharing approaches, only the use of
the more traditional mini-computer based system does
not meet the requirements of the user groups. If the
university administrator is concerned with perform­
ance alone, the large scale time-sharing system would
be his choice. However, as the cost of such a system
may exceed the funds available, it may be necessary to
choose among the other alternatives.

COSTING THE VARIOUS SYSTEMS

The university administrator, after taking into con­
sideration the merits of the various kinds of computer
systems, as discussed in the previous section, must
choose between systems based on their educational cost-

effectiveness. This determination is exceptionally dif­
ficult5 and is a two part analysis. First, the cost per
standardized resource unit must be determined. Sec­
ond, the educational benefit per such unit must be
evaluated.

If educational effectiveness per unit resource is not
considered, it is possible for a computer system to ap­
pear to be less expensive than it actually is. For ex­
ample, it is easily conceivable (and even expected) that
a student may require more runs on a batch system in
order to debug and test a program than on an inter­
active system. Thus, even if the batch system were to
have a smaller cost per job executed, the overall cost
of program development could be higher.

The difficulties in determining cost per resource unit
are also considerable. The construction of a standard­
ized unit with which to compare systems is in itself a
difficult task. This can be seen to be extremely hard
when comparing batch and interactive systems. How­
ever, even on a single system, it is difficult to present
clearly the assumptions that go into the determination
of some costs.

Thus, whenever a definitive assessment of the bene­
fits and costs of a given system is made, it should be
kept in mind that the task is extraordinarily difficult
and that the results of any studies should be viewed
cautiously. Finally, explicit specification of the nu­
merous assumptions used in any study are required if
the study is to have any meaning.

The authors' experiences have been with educational
time-sharing systems. However, it has become clear to
them that even when comparing and attempting to
describe the attributes of systems in this category
alone, the number of items which must be considered
is very great with respect to the description of the
costs of a given system, and of its attributes.

For example, on interactive systems, it is common
to use connect cost per hour as the yard-stick of cost.
This is usually defined by the following fraction:

Initial Cost/Yr. + Operating Cost/Yr.
Connect Hours/Yr.

where

Initial Cost/Yr. = Hardware + Software Cost
Years of Amortization

But, it should be immediately seen that this fraction can
vary substantially, perhaps by an order of magnitude
depending upon the interpretation of the various terms.
For example, are actual yearly connect hours utilized,
or some "reasonable" figure which could be assumed to
be the maximum (or minimum) number available?
Or is the "reasonable" number of connect hours based
on raw hardware limitations or upon the maximum
number of users which can obtain some reasonable re­
sponse time? There are, of course, many more ques­
tions which could be asked.

It should also be noted that the cost from university
to university can vary greatly. Perhaps, the university
can support some percentage of the cost of the instruc-

Instructional Computer Systems for Higher Education 175

tional machine by utilizing it for some research or
some grants can be obtained to cover certain parts of
its development. Also, there can be wide variations
in the cost of the hardware from institution to institu­
tion.

Because of these difficulties, no attempt is made to
provide a detailed cost comparison of various time­
sharing systems. Unfortunately, this would be the
only way to demonstrate that large mini-computer
based systems are cost effective. But this would be
difficult, in general, since there will be instances where
circumstances particular to a given institution make a
different kind of system more cost-effective. Instead, a
detailed case study of the Harvard undergraduate
time-sharing system is presented.6'7 This system is one
in which the authors have extensive experience and one
which has been running long enough to provide com­
prehensive data. In the particular situation in which it
is used, it appears to provide for extremely inexpensive
instructional computing. It also appears likely that
there might be many comparable situations.

A LARGE MINI-COMPUTER BASED
SYSTEM EXAMINED

The present Harvard undergraduate time-sharing
system (HRSTS) is utilized in the support of the com­
puting requirements of most undergraduate courses,
some graduate courses and a limited amount of re­
search usage. Among others, courses in applied mathe­
matics, economics, mathematics, engineering, music,
and even Arabic utilize the system. The hardware used
is a Digital Equipment Corporation PDPii/45 proces­
sor,8 240K bytes of core memory, a fixed head disk for
swapping, 116 Megabytes of on-line disk storage for
files, a high speed printer, card reader, paper tape
reader/punch, 2 DEC-tape drives and about 28 termi­
nal ports.

The operating system used is a modified version of
Bell Laboratory's UNIX system.9 The language pro­
cessors currently in use on the system are 2 assemblers,
2 text editors, numerous high level languages including
BASIC, FORTRAN, C,10 PPL,11 ECL,12 and LISP as
well as a wide variety of utility programs. The user
command interpreter was specially designed for ease
of use based on past experience with other time-sharing
systems.

The system is operational 23 hours a day, 7 days a
week with periodic maintenance disturbing this sched­
ule somewhat. The load conditions vary from semester
to semester. During the first semester, PPL is used
heavily by the 400 students of Harvard's general in­
troductory computer course. During the second se­
mester, the assembler and LISP are most heavily used
due to an intensive introductory computer course for
more advanced students. During both semesters,
FORTRAN and BASIC are utilized extensively by stu­
dents dealing with numerical methods and due to con­

tinual system development, the language C is also
highly utilized.

The system is operated by one full-time administra­
tor and numerous "terminal watchers." The latter are
students who are hired by the university to act as
combination operators, programming assistants, and
systems programmers. During most of the day, they
are available. This is especially valuable for the large
number of beginning users.

±ne use u± terminal waiciieis iiignngms une u± uie
cost advantages of the university owning its own sys­
tem. The cost of the terminal watchers is low due to
the lower cost of student wages and the fact that a pay-
ment from the university to a student is really an
intra-university transfer payment which is not too
costly to the university and very beneficial to the
student.

The present operating costs for the system are
sketched in Table I. It should be noted that the budget
is inflated by four items: (1) the cost of the terminal
watchers, many of whom would not be necessary if it
were desirable to have only operators on duty during
usual hours or if such personnel could be recruited
from the teaching staffs of the courses using the sys­
tem, (2) the high cost of having rented, high speed
video display terminals, (3) the high cost of main­
tenance contracts with the various manufacturers (as
opposed to in-house maintenance), and (4) the cost of
having dial-up lines on the system. The latter cost
shows that communication costs are a very important
consideration in the overall costs of a time-sharing
system. In a different environment, the costs could be
reduced significantly.

The capital costs for the system have been amortized
over a three year basis and come to approximately
$50,000 per year. The amortization period is not based
on the life expectancy of the system for the system is
now 18 months old and there is every expectation that
it will last considerably longer than an additional 18
months.

The system usage, over the Spring and Fall semesters
of 1975, is shown in Table II. As can be seen, the total
number of connect hours utilized during the year is
43,500. It is the belief of most people associated with
the operation of that system that this number of con­
nect hours is close to the maximum that the system can
support.

Based on the actual connect hours of the year 1975,
the connect cost per hour is approximately $3.20. It

TABLE I—Approximate Operating Costs for HRSTS

Item/Description Amount
Terminal Watchers & Other Salaries $41000.
Supplies $ 5000.
Telecommunications $ 9000.
Terminal Rental $22000.
Maintenance $13000.
Total $90000.

176 National Computer Conference, 1976

TABLE II—Total Connect Hour Usage of HRSTS during 1975
by major usage category

Category

Applied Mathematics
Arabic
Biology
Chemistry
Economics
Engineering
Grad. School of Design
Independent Usage
Mathematics
Natural Sciences
Physics
Social Sciences
Statistics
Research
Sys Work/Term. Watchers
Other
Totals

* projected based on Dec. 20,

Spring

7685
99

232
1492

29
496

1028
1053
753
297

1159
346
362
336

3288
450

19105

1975 totals.

Summer

—
149
110
215

55
115

10
488

93
28

575
90
11

135
1995
1270
5339

Fall*

300
400

1100
100
200
300

1500
1000
300

8100
300
100
500
200

4000
800

19200

should be noted that this figure does not include an ex­
traordinary once-only development cost of $50,000 for
some of the system software. If the reader is concerned
with duplication cost of the system, this figure should
not be taken into account since most of the software is
now freely available to other educational institutions.

HRSTS COSTS IN PERSPECTIVE

The determination of the relation of these costs at
Harvard to real costs in other situations must neces­
sarily take into account the following consideration.

(1) Usage—The system at Harvard is highly used,
often in the very early hours of the morning. The
impact of this is substantial on the connect cost per
hour figure cited above.

(2) Communication Costs—At Harvard, there are
many dial-up lines available. If the terminals are in
one or more centralized locations on campus, the num­
ber of dial-up lines can be reduced substantially.

(3) Overhead—The costs given do not include the cost
of utilities, room space nor the de facto use of some of
the administrative structure of the Harvard Univer­
sity Science Center.

(4) Operator Attendance—The cost of operator cov­
erage could vary substantially at other installations
depending upon the availability of students to handle
this function and the amount of coverage desired. It
could conceivably be made the responsibility of teach­
ing assistants.

(5) Peripheral Hardware—Considerable peripheral
hardware exists at Harvard that might not be needed
elsewhere. However, additional items might be neces­
sary if real-time or graphics applications are desired.

(6) Application Programming Costs—These are spe­
cifically not included in the connect cost per hour figure
cited above except to the extent that they are handled
by the terminal watchers. In some situations, it might
make sense to include these costs.
(7) Amortization—The period at Harvard is three
years. It might be more reasonably set at five to seven
years.
(8) Specialized System Software—Most of the soft­
ware used at Harvard may be obtained free by other
universities. However, the development of new soft­
ware might be required for certain situations.

(9) Hardware Advances—The compatible Digital
Equipment Corporation PDP11/70 processor13 can sup­
port at least twice as many users without very great
increases in cost.

It is possible to reduce the cost per connect hour
to $0.50 per connect hour under favorable circum­
stances (no dial-up lines, operator coverage by teach­
ing assistants, local maintenance, longer amortiza­
tion, and purchased low cost terminals). Since most
environments will differ somewhat from this extreme,
the expected costs will be in the $1.00 to $3.00 range.

CONCLUSIONS

The low cost of HRSTS lies in the fact that the hard­
ware is tailored to the needs of the users. Such systems
utilizing large mini-computer systems, tend to be just
powerful enough to support the vast majority of the
users' demands. In the future, it is conceivable that a
hierarchical network based on machines of differing
power will be the logical extension of this. Easy com­
puting tasks will be serviced by the simplest and lowest
cost machines with the more diffcult tasks being passed
on to larger machines.

This division will allow the cheapest machines to be
utilized in most instances and the more complex and
expensive machines will be saved for the limited
amount of overflow. This approach will allow the bene­
fits of the largest time-sharing systems to be coupled
with the very low costs of the mini-computer based
systems.

Today, a large mini-computer based system, not
unlike Harvard's, can offer very low cost, flexible com­
puting that satisfies most requirements for an educa­
tional system. The services provided by such systems
are much more suited to the needs of the university
user community than are those provided by batch or
single language systems. Although not as powerful as
the large scale time-sharing system, they are suffi­
ciently powerful to satisfy the needs of most users.
Furthermore, such systems can be run with very low
cost, with connect costs in the $0.50 to $3.00 range.

REFERENCES
1. Fajman, R., J. Borzgelt: "Wylber: An Interactive Text

Editing and Remote Job Entry System," CACM, Vol. 16,
No. 5, May, 1973.

Instructional Computer Systems for Higher Education 177

2. Kemeny, John G. and Thomas E. Kurtz, "Dartmouth Time-
Sharing," Science, Vol. 162, No. 3850, October 11,1968.

3. McCracken, John, "Is There a FORTRAN in Your Future,"
Datamation, May, 1973.

4. Prenner, Charles J. and J. P. Buzen, Proposal For Research
on Hierarchical Computing, Ctr. for Res. in Computing
Tech., Harvard University.

5. Austin, John E., Costing Computer Aided Instruction, Ibid.
6. HRSTS Terminal Users Guide, Harvard University Science

Center, August 1975.
7. Prenner, Charles J., Using Unix in an Instructional

Environment, Proc. oi/Af-PoL/iv 1976.

8. PDPll/45 Processor Handbook, Digital Equipment Cor­
poration, 1973.

9. Ritchie, Dennis M. and Ken Thompson, "The Unix Time-
Sharing System," CACM, Vol. 17, No. 7, July 1974.

10. Ritchie, Dennis M., C Reference Manual, Bell Laboratories.
11. Taft, Edward A. and Thomas A. Standish, PPL User's

Manual, Ctr. for Res. in Computing Tech., Harvard Uni­
versity, TR 21-74.

12. Wegbreit, Ben E., "The ECL Programming System," Proc.
FJCC 1971.

13. PDPll/70 Processor Handbook, Digital Equipment Cor­
poration, 1975.

