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ABSTRACT 

Approaches to the attainment of reliable computer 
operation are considered in this paper. The goal is to 
assure correct execution of programs using less than 
perfect components. The discussion includes design 
methodology, fault classification, redundancy tech­
niques, reliability modeling and prediction, and ex­
amples of fault-tolerant computers. The last section 
identifies some relationships between reliability meth­
ods for hardware and for software. 

HISTORICAL PERSPECTIVE 

The problem of reliability has confronted both the 
designers and the users of computing systems since 
the building of the first computers in the 1940's. First-
generation digital computers used large numbers of 
vacuum tubes, relays, and other electromechanical de­
vices which were notably failure-prone. Various 
methods of failure detection and recovery were in­
corporated in the hardware of these machines. For 
example, duplicate arithmetic-logic units were used in 
the EDVAC and UNIVAC computers; various error-
detecting codes were used in many others, including 
RAYDAC, IBM 650, NORC, etc.1 

The advent of transistor technology in the second 
generation led to a very large improvement in com­
ponent reliability. This improvement, in turn, led to a 
deemphasis of failure detection techniques in the hard­
ware. The remaining exceptions were parity checking 
and related techniques in storage and I/O equipment. 
All failures, however, were not eliminated, and the 
absence of hardware checking led to the rapid develop-
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ment and extensive use of diagnostic programs. The 
diagnostics were employed to perform periodic check­
outs of computers and to assist maintenance specialists 
by identifying failed parts during repairs. Widespread 
use of diagnostics began in the late 1950's and has con­
tinued into the present, with microdiagnosis largely 
superseding diagnosis in the middle to late 1960's. 

Diagnosis-aided manual repair, however, proved in 
many cases to be an insufficient solution because of at 
least three reasons: (1) the unacceptability of the de­
lays and interruptions of real-time programs caused by 
manual repair action; (2) the inaccessibility of some 
systems to manual repair; and (3) the excessively high 
cost of lost time and of maintenance in many instal­
lations. 

Since the early 1960's the scope of computer applica­
tions has steadily expanded, encompassing numerous 
areas of critical importance. These applications in­
clude real-time control of communication and trans­
portation systems, manned space flights, automated 
factories and power plants. At the present, use of com­
puters is being considered for the monitoring of criti­
cally ill patients in hospitals. The reliability require­
ments for computers in such applications far exceed 
the requirements established for the computing systems 
of the 1950's and 1960's. The expected great benefits of 
computer use are balanced against the potentially 
disastrous costs of their failure. 

Another relevant development of the past decade 
has been the wide distribution of computing systems 
throughout the entire planet and their use in space. In­
stead of being concentrated in a limited number of 
population centers, computers are now performing im­
portant, and even critical tasks in many locations that 
are remote from the service and repair facilities and 
personnel. Computers have been employed in space 
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vehicles orbiting the Earth and the Moon, or traveling 
to the other planets of the solar system. In these ap­
plications fully automatic detection of faults, program 
restart, and self-repair are either absolute require­
ments, or economic necessities in order to provide re­
liable computing at an acceptable cost or risk to the 
user. 

In the most general sense, reliable computing means 
"the correct execution of a specified set of algorithms", 
and encompasses all the following elements: 

—correctness and completeness of software specifi­
cations ; 

—testing and verification (proofs) of programs; 
—elimination of hardware design errors; 
—continued correct execution of programs and pro­

tection of data in the presence of hardware 
failures; 

—protection of the computing system against error-
induced disruption or deliberate invasion of pro­
grams and data. 

Attempts to meet the requirement for reliable comput­
ing, especially when external assistance by mainte­
nance specialists is too slow, too costly, or not available, 
have utilized the two complementary approaches of 
fault-intolerance and fault-tolerance.2 These ap­
proaches are applicable to all parts of the computing 
system, including its hardware elements, micropro­
grams, system programs, and user programs. 

In the "fauH-intolerance" approach the reliability 
of computing is assured by a priori elimination of the 
causes of unreliability, i.e., of faults. This elimination 
takes place before the normal computing process, and 
the resources that are allocated to attain reliability are 
spent on perfecting the system prior to its field use. 
Since in practice it has not been possible to assure com­
plete a priori elimination of all causes of unreliability, 
the goal of fault-intolerance is to reduce the unreliabil­
ity (expressed as the probability of system failure over 
the duration of the specified computing process) or the 
unavailability to an acceptably low value. To supple­
ment this approach, manual maintenance procedures 
must be devised which return the system to an operat­
ing condition after a failure. The cost of providing 
readily available maintenance and the cost of the dis­
ruption and delay in the computing process also are 
parts of the overall cost of using the fault-intolerance 
approach. 

In the "fault-tolerance" approach the reliability of 
computing is assured by the use of protective redun­
dancy. The causes of unreliability are expected to be 
present and to induce errors during the computing 
process, but their disrupting effects are automatically 
counteracted by the redundancy. Reliable computing 
is made possible despite the remaining program and 
hardware design errors, hardware failures, and ex­
ternal interference with computer operation. The re­
sources allocated to attain reliability are spent on 

protective redundancy. The redundant parts of the sys­
tem (both hardware and software) either take part in 
the computing process or are present in a standby con­
dition, ready to act automatically to preserve its un-
disrupted continuation. In contrast, we note that the 
maintenance procedures in a fault-intolerant system 
are invoked after the computing process has been dis­
rupted, and the system remains "down" for the dura­
tion of the maintenance period. 

It is evident that the two approaches are comple­
mentary and that the resources allocated to attain the 
required reliability of computing may be divided be­
tween fault-tolerance and fault-intolerance. Experi­
ence and analysis both point to the conclusion that a 
balanced allocation of resources between the two ap­
proaches is most likely to yield the highest reliability 
of computing. An overview of past practice shows that 
fault-intolerance has been the dominant choice in both 
hardware and software in the 1950's and 1960's. In 
recent years the fault-tolerance approach has been 
making significant inroads in hardware system design; 
its application in software has remained very limited. 
The cost of redundancy has been the main argument 
against the use of fault-tolerance techniques in com­
puter systems. The evolution of component technology 
into large-scale integration, the decreasing cost of 
mass-produced hardware elements, the very high cost 
of software testing, and the increasing reliability re­
quirements all favor increasing use of fault-tolerance 
in computer systems of the future. The resistance to 
its wider use frequently originates with the practi­
tioners of the current fault-intolerance and manual 
maintenance methods. 

DESIGN METHODOLOGY FOR RELIABLY 
OPERATING COMPUTERS 

This section and the subsequent sections address the 
issue of providing undisrupted computing while using 
less than perfect hardware components. The remain­
ing aspects of reliable computing remain outside the 
scope of this paper. 

Unreliable operation is caused by imperfections in 
the physical implementation of the computer's logic 
structure. Reliability theory defines the reliability 
R(T) of a system as the probability of its correct 
operation up to the time t—T, given that the system 
was operating correctly at the starting time t= 0. Com­
puters differ from other systems because in their case 
"correct operation" means the correct execution of a 
set of programs and protection of data, rather than the 
continued functioning of a set of physical components 
of the system. It is the purpose of this section to pre­
sent those aspects of computer system design that are 
specifically directed toward the elimination or tolerance 
of imperfections (called "faults") in the components of 
the system. It is to be noted that we discuss correct 
execution of a given set of programs and do not include 
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the questions of correctness of the programs, complete­
ness of their specification, and of accuracy of the 
algorithms, which remain separate fields of study. 

The architects and the users originate the sets of 
programs and data, the definitions of required opera­
tions, the time limits for program execution, and the 
storage requirements. The objective of the designer 
is to raise the reliability (i.e., the probability of correct 
execution of these programs) or availability to an ac­
ceptably high value, given that operational favlts may 
occur during execution. Such faults are caused by 
three classes of physical events that affect the hard­
ware of the system: 

—permanent failures of hardware components; 
—intermittent malfunctions of components; 

O Y r o r n a l in+ovfoT'onr 'o wi+Ti o n m n n f o v r»npvn f i n n 

As discussed previously, two complementary ap­
proaches have been employed to attain satisfactory 
reliability. Fault-intolerance is the approach that aims 
to reduce the probability of occurrence of the first fault 
during a specified time interval to an acceptably low 
value. In the "pure" fault-intolerance approach the 
system is designed without redundancy, and every 
component of the system must function correctly in 
order to assure correct program execution. The pro­
cedures which lead to the attainment of reliable "fault-
intolerant" systems are: 

—the most reliable components are acquired within 
the existing cost and performance constraints; 

—proven techniques are employed for the intercon­
nection of components and assembly of subsys­
tems ; 

—the system is packaged to screen out the expected 
forms of external interference; 

—quantitative prediction of system reliability is 
made using known or predicted failure rates for 
the components and interconnections. 

In the "purely" fault-intolerant (i.e., non-redundant) 
design, the probability of fault-free hardware opera­
tion is equated to the probability of correct program 
execution. Such a design is characterized by the deci­
sion to invest all the reliability resources into procure­
ment of high-reliability components and refinement of 
assembly and packaging techniques. An alternative 
to the "purely" fault-intolerant approach is offered by 
the use of various forms of redundancy to attain fault-
tolerance.3 This approach increases reliability by the 
use of design techniques that allow faults to occur with­
out disrupting the continued correct execution of the 
programs. Fault-tolerance does not entirely eliminate 
the need for reliable components; instead, it offers the 
option to allocate part of the reliability resources to the 
inclusion of redundancy. The goal of a fault-tolerant 
design is either a reliability (or availability) prediction 
that cannot be attained by the purely fault-intolerant 
design, or a reliability (or availability) prediction that 

matches the purely fault-intolerant design at a lower 
overall cost of implementation. 

A fault-tolerant computer system must possess the 
following attributes :4 

—Its description includes a set of components (hard­
ware) and a set of programs (software). 

—It is either initially free of design faults or it is 
protected against their disruptive effects during 
program execution. 

—It executes the set of programs correctlv in the 
presence of operational faults. 

The first attribute stresses the fact that the ability 
of a computer to continue operating correctly in the 
presence of operational faults depends not only on the 
properties of the hardware, but also on the nature of 
the software, including both the system programs and 
the user programs. For example, the ability to recover 
from the errors caused by transient faults frequently 
depends on special restart features incorporated in the 
system software as well as on proper partitioning and 
state vector storage of user programs. 

The second attribute requires that design faults 
should be eliminated from both hardware and soft­
ware prior to the initiation of the computing process. 
As an alternative, protective features for the detection 
and circumvention of design faults in both hardware 
and software must be incorporated to make the system 
fault-tolerant. Design faults are caused by errors made 
during the translation of the original specifications into 
operational forms, that is, into assemblies of com­
ponents and of machine language instructions. They 
are eliminated by validation of the hardware and soft­
ware designs prior to their operational use. Since 
complete a priori verification cannot yet be assured, 
computers need protective provisions to detect and cir­
cumvent abnormal conditions encountered during op­
eration which may be symptoms of remaining design 
faults. A completely fault-tolerant operation is at­
tained either when all design faults are eliminated 
from the system, or when complete protection against 
remaining design faults is incorporated. 

The third attribute of a fault-tolerant computer 
postulates correct execution of the entire set of pro­
grams in the presence of operational faults. Program 
errors that are caused by faults in the hardware can 
be avoided or corrected by means of protective redun­
dancy. Protective redundancy may be introduced in 
three forms: 

—additional hardware (hardware redundancy) ; 
—additional software (software redundancy) ; 
—repetition of operations (time redundancy). 

These redundant features would not be needed in a 
fault-free computer; that is, their deletion does not 
affect computer performance in the absence of opera­
tional faults. Given that the faults will occur in the 
hardware, the redundant features provide a fault-
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tolerant computing system which carries out its pro­
grams correctly in the presence of operational faults. 
Partial fault-tolerance (also called "fail-soft opera­
tion" or "graceful degradation") occurs when opera­
tion continues, but one or more programs are not cor­
rectly executed in the specified time. 

Research results and design experience lead us to 
suggest that the introduction of protective redundancy 
can be accomplished by following a systematic pro­
cedure:4 

(1) Performance requirements are established and 
system architecture is specified with the initial 
assumption that operational faults will not oc­
cur (the "fault-intolerant" design). 

(2) Classes of operational faults that are to be 
tolerated in the design are identified, and the 
extent of tolerance is specified for each class of 
faults. 

(3) Cost-effective methods of protective redundancy 
(time, hardware, software) are chosen to cover 
every class of faults identified above, and system 
architecture is modified to incorporate the re­
dundancy. 

(4) Analytic or experimental techniques are em­
ployed to estimate the extent of fault-tolerance 
that is provided by the protective redundancy. 

(5) Checkout methods are devised to test all re­
dundancy features. Where applicable, fault-
tolerance is extended to effect automatic mainte­
nance of peripheral systems that are connected 
to or controlled by the computer. 

Design experience has shown that several iterations 
of (3) and (4) may be necessary to arrive at a satis­
factory fault-tolerant system architecture. The follow-
in0- sections discuss the technicues for the iTTTDlemsnts-
tion of (2) to (5) and illustrate their use in recent 
computer systems and in proposed designs. 

CLASSES OF OPERATIONAL FAULTS 

An operational fault is the deviation of one or more 
logic variables in the computer hardware from their 
design-specified values. Faults are caused by failures, 
which are physical changes in the hardware of the 
computer. Hardware failures are of three types: 
"solid" component failures, "intermittent" component 
malfunctions, and externally caused interference with 
the operation of the computer. The immediate symp­
tom of any hardware failure is a fault. The fault often 
causes an error in the program being executed by the 
computer: either an instruction is not executed cor­
rectly, or an incorrect result is computed. Both types 
of errors may be caused at once by some faults. 

A systematic approach to the choice of redundancy 
techniques in computer design begins with a classifica­
tion of faults and identification of those classes which 
are expected to occur in the system being designed. 

Three useful dimensions for the classification of faults 
are: ' 

—duration: transient (intermittent) vs. permanent 
(solid) : 

—extent: local (single) vs. distributed (related 
multiple) ; 

—value: determinate ("stuck") vs. indeterminate 
(variable). 

In the design methodology the "permanent vs. tran­
sient" classification appears to be most fundamental 
because the two classes usually need different recovery 
methods. A program restart is sufficient to correct 
errors caused by transient faults, while replacement or 
reconfiguration of hardware is needed to eliminate 
permanent faults from the system. The classifications 
according to extent and according to value are applica­
ble to both transient and permanent faults. 

The extent of a fault specifies how many logic varia­
bles in the hardware are simultaneously affected by the 
fault which is due to a single failure event. Local 
(single) faults are those that affect only single logic 
variables, while distributed (related multiple) faults 
are those that affect two or more variables, one module, 
or an entire system. The physical proximity of logic 
elements in contemporary MSI and LSI circuitry has 
made distributed faults much more likely than in the 
discrete component designs of the past. Distributed 
faults are also caused by single failures of some critical 
central elements in a computer system, for example: 
clocks, power supplies, data buses, switches for com­
puter reconfiguration, etc. 

The value of a fault is determinate when the logic 
values affected by the fault assume a constant value 
("stuck on 0" or "stuck on 1") during its entire dura­
tion. The fault vaiue is indeterminate when it varies 
between "0" and " 1 " , but not in accord with design 
specifications, during the duration of the fault. 

It is important to observe that a precise description 
of fault extent and fault value can only be made at the 
source of the fault, that is, at the point at which the 
hardware failure event has actually taken place. The 
introduction of one or more faulty logic variables into 
the computing process will often lead to different or 
more extensive fault symptoms downstream from the 
point of failure. For example, a "stuck on 1" local 
determinate fault on the input to a two-input "Exclu-
sive-Or" gate will cause the output variable of the gate 
to appear as a local indeterminate fault. Furthermore, 
if this output is supplied as an input to several other 
gates, the set of output variables of these gates will 
appear as a distributed indeterminate fault. 

Ambiguity is avoided when the term "fault" is re­
stricted to the change in logic variable (s) at the 
point of the actual hardware failure. The fault-caused 
changes of logic variables which are observed (because 
of faulty inputs) on the outputs of correctly function­
ing logic elements are symptoms of the fault and will 
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be called errors. This distinction establishes a cause-
effect sequence as follows: 

(1) The failure which is a physical event, causes a 
fault, which is a change of logic variable (s) at 
the point of failure. 

(2) The fault, in turn, supplies incorrect input (s) to 
the computing process and causes an error to be 
produced by subsequent operation of failure-
free logic circuits. 

The preceding discussion makes it evident that the 
detectability of a fault depends not only on its type, 
but also on the distance (in terms of computing opera­
tions) from the point at which the fault occurs to the 
point at which checking (fault-detection) is performed. 
A local determinate fault may cause an extensive error 
pattern to appear at a point that is several computing 
steps (in time, space, or both) removed from the fault 
itself. 

METHODS OF PROTECTIVE REDUNDANCY 

The key to successful application of protective re­
dundancy is the systematic and balanced selection of 
suitable methods of its three forms: hardware (addi­
tional components), software (special programs), and 
time (repetition of operations). This section reviews 
the basic methods of these forms of redundancy. 

Hardware redundancy 

Hardware redundancy includes the components that 
have been introduced into the system in order to pro­
vide fault-tolerance. As long as faults do not occur, all 
these components can be deleted without diminishing 
the computing power of the system. The techniques 
of introducing hardware redundancy may be divided 
(on the basis of terminal activity of modules) into two 
categories: static redundancy and dynamic redun­
dancy.5 

The static redundancy method is also known as 
"masking" redundancy, since the redundant compo­
nents are employed to mask the effect of hardware 
failures within a given hardware module, and the 
terminal activity of the module remains unaffected as 
long as the protection is effective. The static tech­
nique is applicable against both transient and perma­
nent faults. All redundant copies of an element are 
permanently connected and receive power. Component 
failures and logic faults are masked by the presence 
of other copies of the same element. The fault masking 
occurs instantaneously and automatically; however, if 
the fault is not susceptible to masking and causes an 
error, a delayed recovery is not provided. 

The original study of the use of static redundancy 
at the logic element level is due to John von Neumann.6 

He considered transient malfunctions of individual 

logic gates and showed that arbitrarily high reliability 
would be attained with high orders of redundancy. 
Moore and Shannon7 applied the static redundancy 
principle to relay contact networks. In practical ap­
plications the order of redundancy has to be as low as 
possible in order to make the cost acceptable to the 
user. Two forms of static redundancy have been used 
in practice: replication of individual electronic com­
ponents in the Orbiting Astronomical Observatory 
and triple modular redundancy (TMR) with voting in 
the SATURN IV and V guidance computers.8 Several 
other variants of static redundancy have been studied 
but were not employed in practice because of excessive 
cost or the need for practically unrealizable special 
components. It is essential to note that static redun­
dancy is based on the assumption that failures of the 
individual copies are independent. When related fail­
ures take place, the protection by redundancy is lost. 
For this reason static redundancy (especially at the 
component level) is not applicable within integrated 
circuit packages, in which individual components are 
in close proximity and failure phenomena frequently 
affect several adjacent components. 

In the dynamic redundancy approach fault-caused 
errors are allowed to appear at the terminals of a 
module. Fault-tolerance is implemented by two con­
secutive actions. First, the presence of a fault is de­
tected, then a recovery action either eliminates the 
fault, or corrects the error. If human assistance is 
completely eliminated, dynamic redundancy (usually 
with software support) results in self-repair of a com­
puter system. Limited, that is human- and software-
assisted, use of dynamic redundancy techniques in com­
puter hardware has been very extensive.1 ^5 The most 
common example is the use of parity to detect errors in 
data transmission and storage. Important early ex­
amples of extensive dynamic redundancy with software 
and human support are the ESS systems.9-10 Probably 
the first operational computer with full self-repair pro­
visions is the JPL-STAR computer.11 

The application of dynamic redundancy to a com­
puter architecture requires that a number of decisions 
should be made in the functional design stage. The 
design choices include: level of modularization, fault-
detection hardware, type of recovery action, "hard­
core" protection, forms of intermodule communication, 
validation of inputs, and interfaces with system soft­
ware.2 The use of dynamic redundancy has been some­
what inhibited because of the need for an early com­
mitment to it in the hardware design process. In 
contrast, static redundancy (and software redundancy, 
as well) can be applied to an existing non-redundant 
design. 

Software redundancy 

Software redundancy includes all additional pro­
grams, program segments, instructions, and micro-
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instructions which would not be needed in a fault-free 
computer.2 They provide either fault-detection or re­
covery in fault-tolerant computer systems, very fre­
quently in conjunction with dynamic hardware re­
dundancy. Three major forms of software redundancy 
are: 

—multiple storage of critical programs and data; 
—test and diagnostic programs at various program 

and microprogram levels; 
—fault-tolerance features of the executive program 

which implement program restarts and interface 
with the dynamic hardware redundancy. 

Combinations of all three forms are found in most 
modern fault-tolerant computers. 

Compared to hardware redundancy, an advantage 
of software is the ability to superimpose fault-tolerance 
features after the hardware has been designed. This 
allows the design of fault-tolerant systems using 
non-fault-tolerant 'off-the-shelf hardware. Another 
advantage is the relatively easier modification and re­
finement of these software features after their intro­
duction into the system. The main disadvantage of 
software redundancy is the difficulty of assuring that 
the software features will be able to function correctly 
after the occurrence of a fault and that they will be 
invoked sufficiently early, that is, before the fault-
caused errors have irrevocably disrupted the programs 
or mutilated the data base. Other disadvantages in­
clude the relatively high cost of generating the required 
software, the storage requirements, including the need 
to tolerate failures of memories holding the software, 
and the difficulty of estimating and proving the com­
pleteness or the adequacy of the software redundancy 
features It must be stressed that dynamic hardware 
redundancy and software redundancy are not mutually 
exclusive in practice.12 A system with all-out emphasis 
on self-contained dynamic hardware techniques still 
needs cooperation from the executive program to com­
plete some recovery actions. Conversely, an all-soft­
ware controlled fault-tolerant system has high risks 
of excessive delays in initiating recovery without at 
least some hardware methods for fault-detection. It 
also needs redundant storage modules and hardware 
protection of critical decision-making logic. Combina­
tions of software and hardware redundancy are em­
ployed in most fault-tolerant systems, but they differ 
in the choice of the point in the detection and recovery 
sequence at which software takes over control.9'11-14 

Time (execution) redundancy 

This form of redundancy consists of repeating or 
acknowledging machine operations at various levels: 
micro-operations, single instructions, program seg­
ments, or entire programs. It is usually employed to­
gether with dynamic hardware and software redun­

dancy techniques. Two distinct goals of time redun­
dancy are: 

—fault detection by means of repeated execution or 
acknowledgments • 

—recovery by program restarts or operation retries 
after fault detection or reconfiguration has oc­
curred. 

The repeated execution of a program is probably the 
oldest form of fault detection. While suitable to detect 
errors due to transient faults, it is limited by the fact 
that consistent errors will be produced by permanent 
faults, and comparison will fail to reveal the same 
error in the results. The use of retransmission and of 
other forms of acknowledgments ("handshakes") has 
been extensively used in general purpose systems, 
especially for error detection in secondary storage, 
channels, and I/O devices.13'22 

Another common use of time redundancy is found 
in the identification and correction of errors caused 
by transient faults, and in program restarts after a 
hardware reconfiguration.2 This is accomplished by the 
repetition after error-detection or 'rollback' of single 
instructions, segments of programs, or entire pro­
grams. While single-instruction retries are transparent 
to the programmer, longer rollbacks require program­
ming constraints as well as protected storage for the 
rollback address and for the state vector, including 
its double-buffering. "Singular" events in a computer 
are program-controlled events which should not be 
repeated as part of a program rollback operation, for 
example, real-time output commands which initiate ir­
reversible actions in the system under computer 
control. The potential damage makes it imperative 
that the provision for handling of singular events 
should be incorporated in rollback procedures.1---1 

Checkout and extension of fault-tolerance features 

The introduction of redundancy poses the problem 
of verifying that the redundant parts are ready to be 
used when faults occur. Implementation of checkout 
encounters difficulties in systems with static hardware 
redundancy, especially in component-redundant sys­
tems.7'8 Dynamically redundant systems are inherently 
better suited for redundancy checkouts, since they 
possess extensive fault-detection and permit sequential 
switching-in of spare modules to be tested.31 One criti­
cal requirement of checkout is the systematic verifica­
tion that all fault-indicating signals are operational. 
Self-checking logic15 is suitable for this purpose. In 
software-controlled fault-tolerance this function is car­
ried out by a special fault-signal-test instruction.16 

The techniques of fault-tolerance can be systemati­
cally extended beyond the boundaries of the fault-
tolerant computer to effect automatic maintenance of 
various peripheral systems which communicate with 
the computer. The methodology of extending fault-
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tolerance consists of the development of fault-tolerant 
interfaces, introduction of fault-detection methods in 
the systems outside the computer, and programming of 
recovery sequences to be executed by the computer. A 
case study of the application of these techniques in a 
spacecraft system is presented in Reference 17. In 
commercial general purpose systems, the reverse pro­
cess has taken place. Because of the relatively high 
unreliability of peripheral mechanical devices, fault-
lv}±\51 c i l i t / O u C g c u i <*!/ 1.1.1G p e l I p l l G X CllO <A11U. Vlliy 1«*LC1 WClS 

brought into the CPU and main memory.28 

FAULT-TOLERANT SYSTEMS 

The currently existing and proposed fault-tolerant 
computer systems may be conveniently classified ac­
cording to the method used to control the recovery. 
Hardware-controlled systems use dedicated hardware 
which collects fault indications and initiates recovery. 
While recovery control may be transferred to software 
after its operability has been assured, it is completed 
automatically (without external aid). Software-con­
trolled systems depend on special programs to interpret 
fault indications and to carry out the automatic re­
covery procedures. Manually-controlled systems re­
quire the participation of a maintenance operator in the 
completion of recovery; they are not fault-tolerant in 
the full sense of the word, although they may employ 
many fault-tolerance techniques. 

Hardware-controlled recovery 

This approach depends on special hardware to carry 
out fault detection and to control the initial recovery 
procedure. After the procedure has established the 
existence of an operational software system, the com­
pletion of recovery is usually transferred to software 
control. It is evident that further software systems 
may be superimposed on the hardware-controlled de­
sign, leading to a multilevel recovery procedure. A 
special case of hardware-controlled recovery is found 
in statically-redundant systems in which faults are 
masked by redundant hardware, and are totally in­
visible to the software. Two examples of such systems 
are the OAO data processor which used component re­
dundancy and the CPU of the SATURN V guidance 
computer, which used TMR protection.8 A separate 
software-controlled recovery system is needed in stati­
cally-redundant systems if they are to continue operat­
ing in reconfigured mode after the first fault that 
escapes the masking effect and affects the software. 

Dynamically redundant systems usually depend on 
a dedicated hardware module that gathers fault signals 
and initiates recovery. Different uses of duplexing and 
hardware-controlled switchover techniques are found 
in the memory, power supply, and peripheral units of 
SATURN V computer in combination with a TMR-pro-

tected serial CPU unit.8 Separate fault-detection and 
switchover-control units were used for every functional 
unit. Probably the first operational computer with 
fully hardware-controlled dynamic redundancy was 
the experimental JPL-STAR computer.11 Intended for 
self-contained multiyear space missions, this computer 
employs a special Test-And-Repair-Processor (TARP) 
module to control recovery and self-repair. Software 
assistance is invoked only to perform memory copying 
and to resume standard operation after self-repair.14 

The French MECRA computer is another early experi­
mental design.18 A few other hardware-controlled sys­
tem designs that have not reached operation have 
been described in recent literature.12'16 

The principal advantage of hardware-controlled re­
covery systems lies in their independence of the opera­
tion of any software immediately after the fault has 
occurred. The recovery process is transferred to soft­
ware only after its ability to operate has been assured. 
The relatively late appearance of such systems may be 
attributed to the need to introduce the recovery module 
into the design at its inception, thus requiring an early 
commitment to the hardware-controlled approach. 

Software-controlled recovery 

In contrast to the previous class, the software-con-
trohed systems depend on special software to initiate 
recovery action upon the detection of a fault. Fault 
signals are obtained by both hardware and software 
methods, for example: parity checkers, comparators, 
power level monitors, test programs, reasonableness 
checks, etc. The main limitation of these systems is 
the need for the recovery software to remain opera­
tional in the presence of faults, since recovery cannot 
otherwise be initiated. 

A significant advantage of this approach is that 
existing 'off-the-shelf hardware system modules may 
be used to assemble fault-tolerant organizations. These 
modules contain various forms of hardware fault-detec­
tion, which usually are supplemented by further soft­
ware methods. For this reason software-controlled sys­
tems have appeared earlier and are currently being 
used in numerous applications requiring high reliabil­
ity and availability. While every modern operating 
system incorporates some recovery features, the pres­
ent paper will be limited to selected illustrations of 
historically important and advanced systems. 

An important early design of the 1950's with com­
plete duplication and extensive recovery provisions was 
the SAGE system.19 The IBM System/360 architecture 
contains very complete provisions for multi-system 
operation in order to attain high availability, recon­
figuration, and fail-soft operation,21 An early example 
of a multi-system which includes further extensions of 
the System/360 design is the IBM 9020 multiprocessing 
system for air traffic control applications.13 Note­
worthy are the operational error analysis program and 
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the diagnostic monitor of the 9020. The recent IBM 
System/370 hardware incorporates automatic retry of 
CPU operations, error coding to correct single-bit 
errors in processor and control storage, and I/O retry 
facilities. The software provides recovery management 
support routines, I/O and channel error recovery, 
checkpoint/restart facilities, microdiagnostics and on­
line diagnostics of I/O device errors.22 An interesting 
illustration of extensive use of backup storage and dy­
namic reconfiguration in a general-purpose time-shared 
system is found in the MIT Multics System.23 Another 
experimental system for high-availability performance 
in an interactive time-shared environment is PRIME.24 

The Pluribus is a minicomputer/multiprocessor system 
with extensive fault-tolerance provisions which serves 
as a switching node in the ARPA Network.20 

Another direction of software controlled system de­
velopment is in aerospace applications. The principal 
illustrations of this approach are the SIFT design,2* 
the RCS system,26 and the C.S. Draper Laboratory 
modular system.27 One more area of application which 
requires fault-tolerant operation and very high avail­
ability for several years of continuous operation is the 
control of electronic switching systems for telephone 
exchanges. These systems usually employ manual re­
pair by replacement of a failed part as the last (off­
line) step of the recovery procedure, while maintaining 
normal operation by means of the remaining system 
modules. A well documented illustration is found in 
the ESS systems of Bell Laboratories.910 ESS systems 
employ a variety of hardware techniques (duplication, 
matching, error codes, function monitors) and special 
software (check routines, diagnostics, audits) as well 
as software and hardware emergency procedures when 
normal recovery action does not succeed. 

Fault-tolerant memories and processors 

Besides the complete systems discussed above, sig­
nificant efforts have been carried out in providing 
fault-tolerance for storage subsystems. This is espe­
cially true for secondary and mass storage which has 
been characterized by relatively low reliability in the 
past. Representative error coding applications include 
the use of codes for error control in data communica­
tions, magnetic tape units, disc files, primary random 
access storage, and a photo-digital mass store.28 Single-
error correcting codes are used in the control storage 
of ESS No. 1 and the main and control storage of IBM 
System/370 computers.922 Error-correcting codes have 
been shown to provide a very effective method for fault-
tolerance in the storage medium, and remaining prob­
lems are concentrated in providing fault-tolerance in 
the memory access and readout circuitry. 

Recent studies have considered the problem of fault-
tolerance in associative memories and processors.29 In 
general, processor fault-tolerance has been provided 
by duplication and reconfiguration at the system level. 

Some investigations have been conducted in the use of 
arithmetic error codes as the means for error-detection 
for processor faults30 and an experimental processor 
has been designed and constructed for the JPL-STAR 
computer.11 The increasing availability of micropro­
cessors makes further emphasis on duplication very 
likely, although error-detecting codes remain a con­
venient method for the identification of the faulty 
processor in a disagreeing pair. 

RELIABILITY MODELING AND PREDICTION 

The initial choice of redundancy techniques requires 
verification that the redundant system possesses the ex­
pected fault-tolerance. Insufficiencies of the original 
design may be uncovered, and the design can be refined 
by changes or additions of various forms of redun­
dancy. The process is repeated until a fully satisfac­
tory design is attained. The principal quantitative 
measures are reliability31-32 (with respect to permanent 
faults), survivability4'37 (with respect to transient 
faults), and availability.32 Two approaches to the pre­
diction of fault-tolerance are: 

—the analytic approach, in which fault-tolerance 
measures of the system are obtained from a mathe­
matical model of the system, and 

—the experimental approach, in which faults are 
inserted either into a simulated model of a system, 
or into a prototype of the actual hardware, and 
fault-tolerance measures are estimated from sta­
tistical data. 

A quantitative reliability prediction for the com­
puter being designed requires numerical failure rates 
for the components. When technologies which are 
under development are to be used, the failure rates for 
currently used components need to be extrapolated to 
the new choice of component technology. It is im­
portant to recognize that different failure rates or 
distributions may apply to failures causing distributed 
faults. The principal measure of fault tolerance with 
respect to permanent faults is the reliability R(t), 
which is a function of the failure rates and directly 
predicts only the probability of hardware survival. 
Fault-tolerance is attained only if correct program 
execution is maintained by the surviving hardware; for 
this reason transient faults must also be considered. A 
very common quantitative measure has been the MTBF 
(mean time between failures), defined as MTBF = 

/ R(t) dt. Given the non-redundant reliability R(i) 

= e~Xf, we have MTBF=1/A, and the comparison of the 
MTBFs directly compares the total failure rates (A) 
of the competing systems. When redundancy is intro­
duced, the reliability function R(t) is a polynomial 
in e~xt and the R(t) curves of systems being compared 
may have crossover points. Then the area under the 
R(t) curve does not indicate which system is better at 
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a given time, and the MTBF may become a misleading 
measure. Given a fixed 'mission time' T, the compari­
son of two or more systems requires only the values of 
R(T) in order to select the best system. If a fixed mis­
sion time is not available, the time interval during 
which the reliability remains above a given value serves 
as a convenient comparison measure.31 

It is essential to note that reliability modeling re­
mains useful even if definite numerical failure rates 
and mission times are not available, since it permits the 
comparison of many alternate designs using normaliza­
tion with respect to the (failure rate x mission time) 
product XT. 

Reliability models 

The class of static reliability models is suitable for 
the reliability prediction of systems with static hard­
ware redundancy. The non-redundant system or its ele­
ment is usually assumed to have the reliability R(t) 
= e~xt. The redundant elements are assumed to be 
permanently connected, and to fail statistically inde­
pendently. They have the same failure rate and are 
instantaneously available to perform the masking of a 
failure with unity probability of success. Under tVese 
assumptions, the reliability of a redundant system is 
obtained as the sum of the reliabilities of all distinct 
configurations (including none or some failed parts) 
that do not lead to system failure. For example, given 
the simplex (one system) reliability R, the reliability 
of a duplicated system is R(duplex) =R2 + 2R(1—R). 
In general, reliability models of static redundancy are 
found in standard handbooks and textbooks of reliabil­
ity theory and are used for reliability analysis of vari­
ous physical systems.32 

Dynamic redundancy requires the consecutive ac­
tions of fault detection and recovery in order to utilize 
redundant parts. The use of static reliability models 
for the dynamic case is equivalent to assuming unity 
probability of success of both actions; for this reason, 
very high reliabilities can be predicted as the number 
of spares is increased. It was recognized early in the 
studies of dynamic redundancy that imperfect detec­
tion and recovery may leave some spares unused.33 The 
effect of such imperfections was formalized in the re­
liability model through the concept of "coverage", de­
fined as the conditional probability of successful re= 
covery, given that a fault has occurred.31 

In general, the dynamic model31-34-35 must represent 
the complete complexity of the proposed fault-tolerant 
system, including (1) differing failure rates for 
powered and unpowered modules; (2) number of 
spares of each module; (3) imperfect fault detection 
and recovery; (4) method of "hard core" protection; 
(5) existing intra-module fault tolerance; (6) extent 
and value of the faults; (7) duration and distribution 
of expected transient faults. Recent work has con­
sidered repairable systems3" and models that include 

transient as well as permanent faults.37-38 The principal 
objective of further study remains the development 
of models that integrate the characteristics of both 
hardware and software and consider both permanent 
and transient faults. 

Analytic models of dynamically redundant systems 
are complex because of the number of different param­
eters that may be varied in the search for a balanced 
design. A very useful tool for reliability prediction is 
an interactive computer program which permits a 
ready variation of the important parameters of the 
redundant system for on-line design refinement. A 
pioneering effort in automated reliability modeling was 
the REL program, written in the APL language to pre­
dict system reliability for a given mission time when 
the system parameters have been specified.31 Recent 
efforts to arrive at general and computationally effi­
cient models have resulted in further APL programs.38 

Experimental reliability prediction 

Two approaches to experimental prediction of re­
liability are simulation and experimentation with a 
hardware prototype. While their use is more costly 
and time-consuming, the experimental methods are 
essential when the available analytic models do not ade­
quately represent the complex structure of the system 
or the nature of the expected faults. 

An accurate description of the system and char­
acterization of the faults are the principal prerequisites 
when simulation is employed to derive the fault-toler­
ance estimates for the computer.26 This approach has 
been extensively employed in reliability prediction for 
the redundant SATURN V guidance computer.8-39 The 
use of hardware prototypes requires a large invest­
ment of effort in constructing the prototype, but avoids 
the inaccuracies which may occur in postulating the 
fault effects in a simulated model of the system. Two 
examples of use of hardware prototypes are: the 
switching system ESS No. 1 for which a catalog of 
fault symptoms was compiled by using a hardware 
model,9 and the experimental fault-tolerant JPL-STAR 
computer.11 In the JPL-STAR computer an electronic 
"black box" was used to inject faults of adjustable 
duration and extent at selected points in the hardware 
of the system. Another example of the experimental 
approach is the OAO processor8 in which a component-
redundant system was completely disassembled to de­
termine the number of failed components after 3000 
hours of operation. 

A recent simulation and analysis system to analyze 
the behavior of faulty circuits is the LAMP (Logic 
Analyzer for Maintenance Planning) system.40 In ad­
dition, LAMP also performs logic design verification, 
generates fault-detection tests, evaluates diagnostics, 
and produces trouble-location manuals. LAMP ex­
emplifies the current trend toward multipurpose simu­
lation systems in digital system design. 
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RELATIONSHIPS WITH THE SOFTWARE 
RELIABILITY PROBLEM 

Discussion of the attributes of a fault-tolerant sys­
tem included the goal that one of the two conditions 
should be satisfied with respect to design faults: 

—the hardware and software should be free of de­
sign faults prior to the start of the computing 
process; or 

—the system should contain complete provisions to 
detect and to circumvent the effects of hardware 
and software design faults during the computing 
process. 

This means that the software of a fault-tolerant system 
must either be perfect (i.e., fault-free) or fault-tolerant 
in the same sense as the fault-tolerant hardware. The 
basic difference between the two is that operational 
faults in hardware occur after the start of the com­
puting process, while design faults in software (and 
hardware, as well) are present at the start, but become 
disruptive only at a later time. However, software 
modifications and corrections of discovered design 
faults occasionally lead to new design faults and there­
fore the discoveries of software design faults may be 
expected throughout the useful life of any large soft­
ware system, similar to the occurrence of operational 
hardware faults. This practically verified observation 
establishes the relationship between the methodologies 
for dealing with operational faults and design faults: 
the methods of protective redundancy that have proven 
successful in hardware fault-tolerance may be trans­
ferable to provide fault-tolerance of a software system 
as well. 

An overview of the procedures currently used to 
attain software reliability shows that the "fault-intol­
erance" approach of perfecting the software prior to 
its regular use has been the accepted practice of im­
proving software reliability. Three aspects of rele­
vance of fault-tolerance can be identified:41 

—the contribution of hardware fault-tolerant sys­
tems in assuring reliable computing; 

—the common aspects of fault-tolerance that are 
equally applicable to hardware and software; 

—the transfer of fault-tolerance techniques and ex­
perience from hardware to software, considering: 

—the applicability to software; 
—the potential advantages of software fault-

tolerance ; 
—the cost of its use, compared against the tra­

ditional fault-intolerance techniques. 

The immediate advantage to a software system 
which results from the existence of a fault-tolerant 
hardware design is the protection of the software 
against disruptions caused by operational faults. In 
the case of a fault, the fault-tolerant features execute 
the corrective action in the hardware and restart the 

software, usually at a programmer-specified restart 
point,14 although in some cases there is a single-instruc­
tion restart procedure which is transparent to the 
programmer.27 The cost of utilizing the fault-tolerance 
features to achieve software protection consists of the 
programming constraints that must be observed to 
make automatic hardware initiated restarts of the 
programs possible. The advantages, in addition to the 
protection itself, also include the ability to distinguish, 
with a very high probability of success, whether a sys­
tem crash was hardware-caused or not. Furthermore, 
a direct extension of the fault-tolerance techniques may 
be utilized to provide hardware-controlled protection 
of software and the data base against deliberate at­
tempts to disrupt its operation and to access privileged 
information. 

An area in which a common ground exists for hard­
ware and software reliability efforts is the analytic 
modeling and quantitative prediction of system reli­
ability.31 The recent work on software reliability 
models42-43 indicates the possibility of mutual reinforce­
ment of research that would lead to the development 
of analytical models for the total system reliability, 
including both the hardware and software aspects. A 
second common area is design verification, in which 
the rapidly evolving techniques of program testing and 
proving have obvious applications to the problem of 
verifying hardware designs. 

Finally, we consider the transfer to software of 
those protective redundancy techniques that have been 
successfully used in hardware system design. In the 
static approach, the same computation is carried out 
by two or more independently written programs.41'44 

The dynamic approach uses an analog of standby spar­
ing with fault detection and switching of software 
modules.40 While the cost aspect of both statically and 
dynamically fault-tolerant software remains to be ex­
plored, the continued use of 'pure' fault-intolerance 
for software reliability cannot be justified by tradition 
alone. It is hoped that the success of fault-tolerant 
hardware will stimulate further studies of the merits 
of fault-tolerance and redundancy in computer soft­
ware. 
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