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ABSTRACT 

This paper proposes a high-level, application-independ­
ent framework for the construction of distributed 
systems within a resource sharing computer network. 
The framework generalizes design techniques in use 
within the ARPA Computer Network. It eliminates 
the need for application-specific communication pro­
tocols and support software, thus easing the task of 
the applications programmer and so encouraging the 
sharing of resources. The framework consists of a net­
work-wide protocol for invoking arbitrary named func­
tions in a remote process, and machine-dependent sys­
tem software that interfaces one applications program 
to another via the protocol. The protocol provides 
mechanisms for supplying arguments to remote func­
tions and for retrieving their results; it also defines a 
small number of standard data types from which all 
arguments and results must be modeled. The paper 
further proposes that remote functions be thought of 
as remotely callable subroutines or procedures. This 
model would enable the framework to more gracefully 
extend the local programming environment to embrace 
modules on other machines. 

THE GOAL, RESOURCE SHARING 

The principal goal of all resource-sharing computer 
networks, including the now international ARPA Net­
work (the ARPANET), is to usefully interconnect 
geographically distributed hardware, software, and 
human resources.1 Achieving this goal requires the 
design and implementation of various levels of support 
software within each constituent computer, and the 
specification of network-wide "protocols" (that is, con­
ventions regarding the format and the relative timing 
of network messages) governing their interaction. This 
paper outlines an alternative to the approach that 
ARPANET system builders have been taking since 
work in this area began in 1970, and suggests a strategy 
for modeling distributed systems within any large com­
puter network. 

* The work reported here was supported by the Advanced Re­
search Projects Agency of the Department of Defense, and by 
the Rome Air Development Center of the Air Force. 

The first section of this paper describes the prevail­
ing ARPANET protocol strategy, which involves speci­
fying a family of application-dependent protocols with 
a network-wide inter-process communication facility 
as their common foundation. In the second section, 
the application-independent command/response disci­
pline that characterizes this protocol family is identi­
fied and its isolation as a separate protocol proposed. 
Such isolation would reduce the work of the appli­
cations programmer by allowing the software that 
implements the protocol to be factored out of each ap­
plications program and supplied as a single, installa­
tion-maintained module. The final section of this paper 
proposes an extensible model for this class of network 
interaction that in itself would even further encourage 
the use of network resources. 

THE CURRENT SOFTWARE APPROACH TO 
RESOURCE SHARING 

Function-oriented protocols 

The current ARPANET software approach to facil­
itating resource sharing has been detailed elsewhere in 
the literature.23'4 Briefly, it involves defining a Host-
Host Protocol by which the operating systems of the 
various "host" computers cooperate to support a net­
work-wide inter-process communication (IPC) facility, 
and then various function-oriented protocols by which 
processes deliver and receive specific services via IPC. 
Each function-oriented protocol regulates the dialog 
between a resident "server process" providing the serv­
ice, and a "user process" seeking the service on behalf 
of a user (the terms "user" and "user process" will be 
used consistently throughout this paper to distinguish 
the human user from the computer process acting on 
his behalf). 

The current Host-Host Protocol has been in service 
since 1970. Since its initial design and implementation, 
a variety of deficiencies have been recognized and sev­
eral alternative protocols suggested.5-6 Although im­
provements at this level would surely have a positive 
effect upon Network resource sharing, the present 
paper simply assumes the existence of some form of 
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IPC and focuses attention upon higher level protocol 
design issues. 

Each of the function-oriented protocols mentioned 
in this paper constitutes the official ARPANET pro­
tocol ior its respective application uomam anu is there­
fore implemented at nearly all of the 75 host installa­
tions that now comprise the Network. It is primarily 
upon this widely implemented protocol family (and the 
philosophy it represents) that the present paper 
focuses. Needless to say, other important resource-
sharing tools have also been constructed within 
the ARPANET. The Resource-Sharing Executive 
(RSEXEC), designed and implemented by Bolt, 
Beranek and Newman, Inc.,7 provides an excellent 
example of such work. 

Experience with and limitations of hands-on 
resource sharing 

The oldest and still by far the most heavily used 
function-oriented protocol is the Telecommunications 
Network protocol (TELNET),8 which effectively at­
taches a terminal on one computer to an interactive 
time-sharing system on another, and allows a user to 
interact with the remote system via the terminal as 
if he were one of its local users. 

As depicted in Figure 1, TELNET specifies the 
means by which a user process monitoring the user's 
terminal is interconnected, via an IPC communication 
channel, with a server process with access to the target 
time-sharing system. TELNET also legislates a stan­
dard character set in which the user's commands and 
the system's responses are to be represented in trans­
mission between machines. The syntax and semantics 
of these interchanges, however, vary from one system 
to another and are unregulated by the protocol; the 
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Figure 1—Interfacing a remote terminal to a local time-sharing 
system via the TELNET Protocol 

user and server processes simply shuttle characters be­
tween the human user and the target system. 

Although the hands-on use of remote resources that 
TELNET makes possible is a natural and highly visible 
+ r\vm rtT w n c i / M i w n n o n n v i W A " n n i r r t w n l l-i-*v* i 4- rt 4-1 **>•*-» c« rtrtTT/»»rtlTT 
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reduce its long-term utility: 
(1) It forces upon the user all of the trappings of 

the resource's own system. 
To exploit a remote resource, the user must 

leave the familiar working environment pro­
vided by his local system and enter an alien one 
with its own peculiar system structure (login, 
logout, and subsystem entry and exit proce­
dures) and command language discipline (com­
mand recognition and completion conventions, 
editing characters, and so on). Hands-on re­
source sharing thus fails to provide the user 
with the kind of organized and consistent work­
shop he requires to work effectively.9 

(2) It provides no basis for bootstrapping new com­
posite resources from existing ones. 

Because the network access discipline imposed 
by each resource is a human-engineered com­
mand language, rather than a machine-oriented 
communication protocol, it is virtually impossi­
ble for one resource to programatically draw 
upon the services of others. Doing so would re­
quire that the program deal successfully with 
complicated echoing and feedback character­
istics; unstructured, even unsolicited system 
responses; and so forth. Hands-on resource 
sharing thus does nothing to provide an environ­
ment in which existing resources can be used as 
building blocks to construct new, more powerful 
ones. 

These inherent limitations of hands-on resource 
sharing are removed by a protocol that simplifies and 
standardizes the dialog between user and server proc­
esses. Given such a protocol, the various remote re­
sources upon which a user might wish to draw can 
indeed be made to appear as a single, coherent work­
shop by interposing between him and them a command 
language interpreter that transforms his commands 
into the appropriate protocol utterances.10'11 The con­
struction of composite resources also becomes feasible, 
since each resource is accessible by means of a machine-
oriented protocol and can thus be readily employed by 
other processes within the network. 

Standardizing the inter-machine dialog in specific 
application areas 

After the TELNET protocol had been designed and 
widely implemented within the ARPANET, work be­
gan on a family of function-oriented protocols designed 
for use by programs, rather than human users. Each 
such protocol standardizes the inter-machine dialog in 
a particular application area. While TELNET dictates 
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only the manner in which user and server processes are 
interconnected via the IPC facility, and the character 
set in which the two processes communicate once con­
nected, each member of this family specifies in addition 
the syntax and semantics of the commands and re­
sponses that comprise their dialog. 

Protocols within this family necessarily differ in 
substance, each specifying its own application-specific 
command set. The File Transfer Protocol (FTP),12 

for example, specifies commands for manipulating files, 
and the Remote Job Entry Protocol (RJE)13 specifies 
commands for manipulating batch jobs. Protocols 
throughout the family are, however, similar in form, 
each successive family member having simply inherited 
the physical features of its predecessors. Thus FTP 
and RJE enforce the same conventions for formulating 
commands and responses. 

This common command/response discipline requires 
that commands and responses have the following re­
spective formats: 

command-name < S P > parameter <CRLF> 

response-number < S P > text <CRLF> 

Each command invoked by the user process is identi­
fied by NAME and is allowed a single PARAMETER. 
Each response generated by the server process contains 
a three-digit decimal response NUMBER (to be inter­
preted by the user process) and explanatory TEXT 
(for presentation, if necessary, to the user). Response 
numbers are assigned in such a way that, for example, 
positive and negative acknowledgments can be easily 
distinguished by the user process. 

FTP contains, among others, the following com­
mands (each listed with one of its possible responses) 
for retrieving, appending to, replacing, and deleting 
files, respectively, within the server process file 
system: 

Command 

RETR <SP> filename 
<CRLF> 

APPE < S P > filename 
<CRLF> 

STOR < S P > filename 
<CRLF> 

DELE < S P > filename 
<CRLF> 

Response 

250 < S P > Beginning 
transfer. <CRLF> 

400 < S P > Not imple­
mented. <CRLF> 

453 <SP> Directory 
overflow. <CRLF> 

450 <SP> File not 
found. <CRLF> 

The first three commands serve only to initiate the 
transfer of a file from one machine to another. The 
transfer itself occurs on a separate IPC channel and 
is governed by what amounts to a separate protocol. 

Since the general command format admits but a 
single parameter, multiparameter operations must be 
implemented as sequences of commands. Thus two 
commands are required to rename a file: 

Command Response 
RNFR < S P > oldname 200 < S P > Next parameter. 

<CRLF> <CRLF> 

RNTO < S P > newname 253 < S P > File renamed. 
<CRLF> <CRLF> 

A COMMAND/RESPONSE PROTOCOL, THE BASIS 
FOR AN ALTERNATIVE APPROACH 

The importance of factoring out the command/ 
response discipline 

That FTP, RJE, and the other protocols within this 
family share a common command/response discipline 
is a fact not formally recognized within the protocol 
literature, and each new protocol document describes 
it in detail, as if for the first time. Nowhere are these 
conventions codified in isolation from the various con­
texts in which they find use, being viewed as a neces­
sary but relatively unimportant facet of each function-
oriented protocol. "This common command/response 
discipline has thus gone unrecognized as the important, 
application-independent protocol that it is." 

This oversight has had two important negative 
effects upon the growth of resource sharing within the 
ARPANET: 

(1) It has allowed the command/response discipline 
to remain crude. 

As already noted, operations that require 
more than a single parameter are consistently 
implemented as two or more separate com­
mands, each of which requires a response and 
thus incurs the overhead of a full round-trip 
network delay. Furthermore, there are no 
standards for encoding parameter types other 
than character strings, nor is there provision 
for returning results in a command response. 

(2) It has placed upon the applications programmer 
the burden of implementing the network "run­
time environment (RTE)" that enables him to 
access remote processes at the desired, func­
tional level. 

Before he can address remote processes in 
terms like the following: 

execute function DELE with argument TEXT-
FILE on machine X 

the applications programmer must first con­
struct (as he invariably does in every program 
he writes) a module that provides the desired 
program interface while implementing the 
agreed upon command/response discipline. This 
run-time environment contains the code re­
quired to properly format outgoing commands, 
to interface with the IPC facility, and to parse 
incoming responses. Because the system pro­
vides only the IPC facility as a foundation, the 
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applications programmer is deterred from using 
remote resources by the amount of specialized 
knowledge and software that must first be 
acquired. 

If, on the other hand, the command/response 
discipline were formalized as a separate proto­
col, its use in subsequent function-oriented pro­
tocols could rightly be anticipated by the systems 
programmer, and a single run-time environment 
constructed for use throughout an installation 
(in the worst case, one implementation per pro­
gramming language per machine might be re­
quired) . This module could then be placed in a 
library and, as depicted in Figure 2, link loaded 
with (or otherwise made available to) each new 
applications program, thereby greatly simpli­
fying its use of remote resources. 

Furthermore, since enhancements to it would 
pay dividends to every applications program 
employing its services, the run-time environ­
ment would gradually be augmented to provide 
additional new services to the programmer. 

The thesis of the present paper is that one of the 
keys to facilitating network resource sharing lies in 
(1) isolating as a separate protocol the command/re­
sponse discipline common to a large class of applica­
tions protocols; (2) making this new, application-
independent protocol flexible and efficient; and (3) 
constructing at each installation a RTE that employs 
it to give the applications programmer easy and high-
level access to remote resources. 

Specifications for the command/response protocol 

Having argued the value of a command/response 
protocol (hereafter termed the Protocol) as the foun­
dation for a large class of applications protocols, there 
remains the task of suggesting the form that the Pro­
tocol might take. There are eight requirements. First, 
it must reproduce the capabilities of the discipline it 
replaces: 

COMPUTER 1 COMPUTER 2 

IPC CHANNEL 

Figure 2- -Interfacing distant applications programs via their 
run-time environments 

(1) Permit invocation of arbitrary, named com­
mands (or functions) implemented by the re­
mote process. 

(2) Permit command outcomes to be reported in a 
way that aids both the program invoking the 
command and the user under whose control it 
may be executing. 

Second, the Protocol should remove the known defi­
ciencies of its predecessor, that is: 

(3) Allow an arbitrary number of parameters to 
be supplied as arguments to a single command. 

(4) Provide representations for a variety of pa­
rameter types, including but not limited to char­
acter strings. 

(5) Permit commands to return parameters as re­
sults as well as accept them as arguments. 

And, finally, the Protocol should provide whatever ad­
ditional capabilities are required by the more complex 
distributed systems whose creation the Protocol seeks 
to encourage. Although others may later be identified, 
the three capabilities below are recognized now to be 
important: 

(6) Permit the server process to invoke commands 
in the user process, that is, eliminate entirely 
the often inappropriate user/server distinction, 
and allow each process to invoke commands in 
the other. 

In the workshop environment alluded to ear­
lier, for example, the user process is the com­
mand language interpreter and the server proc­
ess is any of the software tools available to 
the user. While most commands are issued by 
the interpreter and addressed to the tool, occa­
sionally the tool must invoke commands in the 
interpreter or in another tool. A graphical text 
editor, for example, must invoke commands 
within the interpreter to update the user's dis­
play screen after an editing operation. 

(7) Permit a process to accept two or more com­
mands for concurrent execution. 

The text editor may wish to permit the user 
to initiate a long formatting operation with one 
command and yet continue to issue additional, 
shorter commands before there is a response to 
the first. 

(8) Allow the process issuing a command to sup­
press the response the command would other­
wise elicit. 

This feature would permit network traffic to 
be reduced in those cases in which the process 
invoking the command deems a response un­
necessary. Commands that always succeed but 
never return results are obvious candidates for 
this kind of treatment. 
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A formulation of the protocol that meets these 
specifications 

The eight requirements listed above are met by a 
protocol in which the following two messages are de­
fined: 

message-type = COMMAND [tid] command-name 
arguments 

message-type = RESPONSE tid outcome 
results 

Here and in subsequent protocol descriptions, elements 
enclosed in square brackets are optional. 

The first message invokes the command whose 
NAME is specified using the ARGUMENTS provided. 
The second is issued in eventual response to the first 
and returns the OUTCOME and RESULTS of the com­
pleted command. Whenever OUTCOME indicates that 
a command has failed, the command's RESULTS are 
required to be an error number and diagnostic message, 
the former to help the invoking program determine 
what to do next, the latter for possible presentation to 
the user. The protocol thus provides a framework for 
reporting errors, while leaving to the applications pro­
gram the tasks of assigning error numbers and com­
posing the text of error messages. 

There are several elements of the Protocol that are 
absent from the existing command/response discipline: 

(1) RESULTS, in fulfillment of Requirement 5. 
(2) A MESSAGE TYPE that distinguishes com­

mands from responses, arising from Require­
ment 6. 

In the existing discipline, this distinction is 
implicit, since user and server processes receive 
only responses and commands, respectively. 

(3) An optional transaction identifier TID by which 
a command and its response are associated, 
arising from Requirements 7 and 8. 

The presence of a transaction identifier in a 
command implies the necessity of a response 
echoing the identifier; and no two concurrently 
outstanding commands may bear the same iden­
tifier. 

Requirements 3 and 4—the ability to transmit an 
arbitrary number of parameters of various types with 
each command or response—are most economically and 
effectively met by defining a small set of primitive 
"data types" (for example, booleans, integers, char­
acter strings) from which concrete parameters can be 
modeled, and a "transmission format" in which such 
parameters can be encoded. Appendix A suggests a 
set of data types suitable for a large class of applica­
tions; Appendix B defines some possible transmission 
formats. 

The protocol description given above is, of course, 
purely symbolic. Appendix C explores one possible 
encoding of the Protocol in detail. 

Summarizing the arguments advanced so far 

The author trusts that little of what has been pre­
sented thus far will be considered controversial by the 
reader. The following principal arguments have been 
made: 

(1) The more effective forms of resource sharing 
depend upon remote resources being usefully 
accessible to other programs, not just to human 
users, 

(2) Application-dependent protocols providing such 
access using the current approach leave to the 
applications programmer the task of construct­
ing the additional layer of software (above the 
IPC facility provided by the system) required 
to make remote resources accessible at the func­
tional level, thus discouraging their use. 

(3) A single, resource-independent protocol provid­
ing flexible and efficient access at the functional 
level to arbitrary remote resources can be de­
vised. 

(4) This protocol would make possible the construc­
tion at each installation of an application-inde­
pendent, network run-time environment making 
remote resources accessible at the functional 
level and thus encouraging their use by the 
applications programmer. 

A protocol as simple as that suggested here has great 
potential for stimulating the sharing of resources 
within a computer network. First, it would reduce the 
cost of adapting existing resources for network use 
by eliminating the need for the design, documentation, 
and implementation of specialized delivery protocols. 
Second, it would encourage the use of remote resources 
by eliminating the need for application-specific inter­
face software. And finally, it would encourage the con­
struction of new resources built expressly for remote 
access, because of the ease with which they could be 
offered and used within the network software market­
place. 

A HIGH-LEVEL MODEL OF THE NETWORK 
ENVIRONMENT 

The importance of the model imposed by the protocol 

The Protocol proposed above imposes upon the appli­
cations programmer a particular model of the network 
environment. In a heterogeneous computer network, 
nearly every protocol intended for general implementa­
tion has this effect, since it idealizes a class of opera­
tions that have concrete but slightly different equiva­
lents in each system. Thus the ARPANET'S TELNET 
Protocol alluded to earlier, for example, specifies a Net­
work Virtual Terminal that attempts to provide a best 
fit to the many real terminals in use around the Net­
work. 
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As now formulated, the Protocol models a remote 
resource as an interactive program with a simple, 
rigidly specified command language. This model fol­
lows naturally from the fact that the function-oriented 
protocols from which the Protocol was extracted were 
necessitated by the complexity and diversity of user-
oriented command languages. The Protocol may thus 
legitimately be viewed as a vehicle for providing, as an 
adjunct to the sophisticated command languages al­
ready available to users, a family of simple command 
languages that can readily be employed by programs. 

While the command/response model is a natural one, 
others are possible. A remote resource might also be 
modeled as a process that services and replies to re­
quests it receives from other computer processes. This 
request/reply model would emphasize the fact that the 
Protocol is a vehicle for inter-process communication 
and that no human user is directly involved. 

Substituting the request/reply model for the com­
mand/response model requires only cosmetic changes 
to the Protocol: 

message-type = REQUEST [tid] op-code 
arguments 

message-type = RE PLY tid outcome 
results 

In the formulation above, the terms "REQUEST", 
"REPLY", and "op-code" have simply been substituted 
for "COMMAND", "RESPONSE", and "command-
name", respectively. 

The choice of model need affect neither the content 
of the Protocol nor the behavior of the processes whose 
dialog it governs. Use of the word "command" in the 
command/response model, for example, is not meant 
to imply that the remote process can be coerced into 
action. Whatever model is adopted, a process has com­
plete freedom to reject an incoming remote request 
that it is incapable of or unwilling to fulfill. 

But even though it has no substantive effect upon 
the Protocol, the selection of a model—command/ 
response, request/reply, and so on—is an important 
task because it determines the way in which both 
applications and systems programmers perceive the 
network environment. If the network environment is 
made to appear foreign to him, the applications pro­
grammer may be discouraged from using it. The choice 
of model also constrains the kind and range of protocol 
extensions that are likely to occur to the systems pro­
grammer; one model may suggest a rich set of useful 
extensions, another lead nowhere (or worse still, in the 
wrong direction). 

In this final section of the paper, the author suggests 
a network model (hereafter termed the Model) that he 
believes will both encourage the use of remote resources 
by the applications programmer and suggest to the 
systems programmer a wide variety of useful Protocol 
extensions. Unlike the substance of the Protocol, how­

ever, the Model has already proven quite controversial 
within the ARPANET community. 

Modeling resources as collections of procedures 

Ideally, the goal of both the Protocol and its accom­
panying RTE is to make remote resources as easy to 
use as local ones. Since local resources usually take 
the form of resident and/or library subroutines, the 
possibility of modeling remote commands as "proce­
dures" immediately suggests itself. The Model is fur­
ther confirmed by the similarity that exists between 
local procedures and the remote commands to which 
the Protocol provides access. Both carry out arbitrarily 
complex, named operations on behalf of the requesting 
program (the caller) ; are governed by arguments sup­
plied by the caller; and return to it results that re­
flect the outcome of the operation. The procedure call 
model thus acknowledges that, in a network environ­
ment, programs must sometimes call subroutines in 
machines other than their own. 

Like the request/reply model already described, the 
procedure call model requires only cosmetic changes to 
the Protocol: 

message-type = CALL [tid] procedure-name 
arguments 

message-type = RETURN tid outcome 
results 

In this third formulation, the terms "CALL", "RE­
TURN", and "procedure-name" have been substituted 
for "COMMAND", "RESPONSE", and "command-
name", respectively. And in this form, the Protocol 
might aptly be designated a "procedure call protocol 
(PCP)". 

"The procedure call model would elevate the task of 
creating applications protocols to that of defining pro­
cedures and their calling sequences. It would also pro­
vide the foundation for a true distributed programming 
system (DPS) that encourages and facilitates the work 
of the applications programmer by gracefully extend­
ing the local programming environment, via the RTE, 
to embrace modules on other machines." This integra­
tion of local and network programming environments 
can even be carried as far as modifying compilers to 
provide minor variants of their normal procedure-
calling constructs for addressing remote procedures 
(for which calls to the appropriate RTE primitives 
would be dropped out). 

Finally, the Model is one that can be naturally ex­
tended in a variety of ways (for example, coroutine 
linkages and signals) to further enhance the distrib­
uted programming environment. 

Clarifying the procedure call model 

Although in many ways it accurately portrays the 
class of network interactions with which this paper 
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deals, the Model suggested above may in other respects 
tend to mislead the applications programmer. The 
Model must therefore be clarified: 

(1) Local procedure calls are cheap; remote proce­
dure calls are not. 

Local procedure calls are often effected by 
means of a single machine instruction and are 
therefore relatively inexpensive. Remote pro­
cedure calls, on the other hand, would be effected 
by means of" a primitive provided by the local 
RTE and require an exchange of messages via 
IPC. 

Because of this cost differential, the applica­
tions programmer must exercise discretion in 
his use of remote resources, even though the 
mechanics of their use will have been oreatlv 
simplified by the RTE. Like virtual memory, 
the procedure call model offers great conve­
nience, and therefore power, in exchange for 
reasonable alertness to the possibilities of abuse. 

(2) Conventional programs usually have a single 
locus of control; distributed programs need not. 

Conventional programs are usually imple­
mented as a single process with exactly one locus 
of control. A procedure call, therefore, tradition­
ally implies a transfer of control from caller to 
callee. Distributed systems, on the other hand, 
are implemented as two or more processes, each 
of which is capable of independent execution. 
In this new environment, a remote procedure 
call need not suspend the caller, which is capable 
of continuing execution in parallel with the 
called procedure. 

The RTE can therefore be expected to pro­
vide, for convenience, two modes of remote pro­
cedure invocation: a blocking mode that sus­
pends the caller until the procedure returns; and 
a non-blocking mode that releases the caller as 
soon as the CALL message has been sent or 
queued. Most conventional operating systems 
already provide such a mode choice for I/O 
operations. For non-blocking calls, the RTE 
must also, of course, either arrange to asyn­
chronously notify the program when the call is 
complete, or provide an additional primitive by 
which the applications program can periodically 
test for that condition. 

Finally, the applications programmer must recognize 
that by no means all useful forms of network com­
munication are effectively modeled as procedure calls. 
The lower level IPC facility that remains directly ac­
cessible to him must therefore be employed in those 
applications for which the procedure call model is in­
appropriate and RTE-provided primitives simply will 
not do. 

SOME EXPECTATIONS 

Both the Procedure Call Protocol and its associated 
Run-Time Environment have great potential for facili­
tating the work of the network programmer; only a 
small percentage of that potential has been discussed 
in the present paper. Upon the foundation provided 
by PCP can be erected higher level application-inde­
pendent protocol layers that further enhance the dis­
tributed ^rocrammin0" environment b v Tovidin0* even 
more powerful capabilities (see Appendix D). 

As the importance of the RTE becomes fully evident, 
additional tasks will gradually be assigned to it, in­
cluding perhaps those of: 

(1) Converting parameters between the format em-
r»lr»vorl i n f o v n i i l l v Tvtr fVio o n n l i V o t i r m a r»vnnrvnm 

and that imposed by the Protocol. 
(2) Automatically selecting the most appropriate 

inter-process transmission format on the basis 
of the two machines' word sizes. 

(3) Automatically substituting for network IPC a 
more efficient form of communication when both 
processes reside on the same machine. 

The RTE will eventually offer the programmer a wide 
variety of application-independent, network-program­
ming conveniences, and so, by means of the Protocol, 
become an increasingly powerful distributed-system-
building tool. 
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specification implemented for Tenex. The Tenex RTE 
provides a superset of the capabilities presented in the 
body of this paper and Appendices A through C as well 
as those alluded to in Appendix D. 
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APPENDIX A—SUGGESTED DATA TYPES 

The Protocol requires that every parameter or "data 
object" be represented by one of several primitive data 
types defined by the Model. The set of data types below 
is sufficient to conveniently model a large class of data 
objects, but since the need for additional data types 
(for example, floating-point numbers) will surely 
arise, the set must remain open-ended. Throughout the 
descriptions below, N is confined to the range [0, 
2**15-1]: 

LIST: A list is an ordered sequence of N data 
objects called "elements". A LIST may contain other 
LISTs as elements, and can therefore be employed 
to construct arbitrarily complex composite data 
objects. 

CHARSTR: A character string is an ordered 
sequence of N ASCII characters, and conveniently 
models a variety of textual entities, from short user 
names to whole paragraphs of text. 

BITSTR: A bit string is an ordered sequence of 
N bits and, therefore, provides a means for repre­
senting arbitrary binary data (for example, the con­
tents of a word of memory). 

INTEGER: An integer is a fixed-point number 
in the range [-2**31, 2**31-1], and conveniently 
models various kinds of numerical data, including 
time intervals, distances, and so on. 

INDEX: An index is an integer in the range [1, 
2**15-1]. As its name and value range suggest, an 
INDEX can be used to address a particular bit or 
character within a string, or element within a list. 
INDEXes have other uses as well, including the 
modeling of handles or identifiers for open files, 
created processes, and the like. Also, because of their 
restricted range, INDEXes are more compact in 
transmission than INTEGERS (see Appendix B). 

BOOLEAN: A boolean represents a single bit of 
information, and has either the value true or false. 

EMPTY: An empty is a valueless place holder 
within a LIST or parameter list. 

APPENDIX B—SUGGESTED TRANSMISSION 
FORMATS 

Parameters must be encoded in a standard transmis­
sion format before they can be sent from one process 
to another via the Protocol. An effective strategy is to 
define several formats and select the most appropriate 
one at run-time, adding to the Protocol a mechanism 
for format negotiation. Format negotiation would be 
another responsibility of the RTE and could thus be 
made completely invisible to the applications program. 

Suggested below are two transmission formats. The 
first is a 36-bit binary format for use between 36-bit 



Network-Based Resource Sharing 569 

machines, the second an 8-bit binary, "universal" for­
mat for use between dissimilar machines. Data objects 
are fully typed in each format to enable the RTE to 
automatically decode and internalize incoming param­
eters should it be desired to provide this service to 
the applications program. 

PCPB36, For Use Between 36-Bit Machines 

Bits 0-13 Unused (zero) 
Bits 14-17 Data type 

EMPTY - 1 INTEGER =4 LIST = 7 
BOOLEAN = 2 BITSTR =5 
INDEX =3 CHARSTR =6 

Bits 18-20 Unused (zero) 
Bits 21-35 Value or length N 

EMPTY unused (zero) 
BOOLEAN 14 zero-bits + 1-bit value (TRUE = 

1/FALSE = 0) 
INDEX unsigned value 
INTEGER unused (zero) 
BITSTR unsigned bit count N 
CHARSTR unsigned character count N 
LIST unsigned element count N 

Bits 36- Value 

EMPTY unused (nonexistent^ 
BOOLEAN unused (nonexistent) 
INDEX unused (nonexistent) 
INTEGER two's complement full-word value 
BITSTR bit string + zero padding to word 

r\r\i-iTI /I Q I«TT 

CHARSTR ASCII string + zero padding to word 
boundary 

LIST element data objects 

PCPB8, For Use Between Dissimilar Machines 

Byte 0 Data type 

EMPTY =1 INTEGER =4 LIST=7 
BOOLEAN =2 BITSTR =5 
INDEX =3 CHARSTR =6 

Bytes 1- Value 

EMPTY 
BOOLEAN 

INDEX 
INTEGER 
BITSTR 

CHARSTR 

LIST 

unused (nonexistent) 
7 zero-bits + 1-bit value (TRUE = 

1/FALSE = 0) 
2-byte unsigned value 
4-byte two's complement value 
2-byte unsigned bit count N + bit 

string + zero padding to byte 
boundary 

2-byte unsigned character count N + 
ASCII string 

2-byte element count N + element 
data objects 

APPENDIX C—A DETAILED ENCODING OF 
THE PROCEDURE CALL PROTOCOL 

Although the data types and transmission formats 
detailed in the previous appendixes serve primarily as 
vehicles for representing the arguments and results of 
remote procedures, they can just as readily and effec­
tively be employed to represent the commands and 
responses by which those parameters are transmitted. 

Taking this approach^ one might model each of the 
two Protocol messages as a PCP data object, specifi­
cally a LIST whose first element is an INDEX mes­
sage type. The following concise statement of the 
Protocol then results: 

LIST (CALL, tid, procedure, arguments) 
INDEX = 1 INDEX/ 

EMPTY CHARSTR LIST 

LIST (RETURN, tid, outcome, results) 
INDEX = 2 INDEX BOOLEAN LIST 

The RESULTS of an unsuccessful procedure would be 
represented as follows: 

LIST (error, diagnostic) 
INDEX CHARSTR 

APPENDIX D—A LOOK AT SOME POSSIBLE 
EXTENSIONS TO THE MODEL 

The result of the distributed-system-building strategy 
proposed in the body of this paper and the preceding 
appendices is depicted in Figure 3. At the core of 
each process is the inter-process communication facil­
ity provided by the operating system, which effects 
the transmission of arbitrary binary data between 
distant processes. Surrounding this core are conven­
tions regarding first the format in which a few, primi­
tive types of data objects are encoded in binary for 
IPC, and then the formats of several composite data 
objects (that is, messages) whose transmission either 
invokes or acknowledges the previous invocation of a 
remote procedure. Immediately above lies an open-
ended protocol layer in which an arbitrary number of 
enhancements to the distributed programming envi­
ronment can be implemented. Encapsulating these 
various protocol layers is the installation-provided run­
time environment, which delivers DPS services to the 
applications program according to machine- and pos­
sibly programming-language-dependent conventions. 

The Protocol proposed in the present paper recog­
nizes only the most fundamental aspects of remote 
procedure calling. It permits the caller to identify the 
procedure to be called, supply the necessary arguments, 
determine the outcome of the procedure, and recover 
its results. In a second paper,19 the author proposes 
some extensions to this simple procedure call model, 
and attempts to identify other common forms of 
inter-process interaction whose standardization would 
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RUN-TIME 
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TRANSMISSION 
FORMATS 
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ADDITIONAL 
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TO OTHER 
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INTERNAL INTERFACE 

APPLICATIONS PROGRAM 

Figure 3—Software and protocol layers comprising a process 
within the distributed programming system 

enhance the distributed programming environment. 
Included among the topics discussed are: 

(1) Coroutine linkages and other forms of commu-
H X V U t l U l i 

i-Vsî  r»£ll1fvi* 
i c;tai u i c ^,C*IL^I. cm. it i/cuxc;^* 

(2) 

(3) 

(4) 

(5) 

Propagation of notices and requests up the 
thread of control that results from nested pro­
cedure calls. 
Standard mechanisms for remotely reading or 
writing system-global data objects within an­
other program. 
Access controls for collections of related pro­
cedures. 
A standard means for creating and initializing 
processes, that is, for establishing contact with 
and logging into a remote machine, identifying 
the program to be executed, and so forth. This 
facility would permit arbitrarily complex proc­
ess hierarchies to be created. 
A mechanism for introducing processes to one 
another, that is, for superimposing more gen­
eral communication paths upon the process 
hierarchy. 

These and other extensions can all find a place in the 
open-ended protocol layer of Figure 3. The particular 
extensions explored in Reference 19 are offered not as 
dogma but rather as a means of suggesting the possi­
bilities and stimulating further research. 

(6) 




