
A high-level framework for network-based resource sharing*

by JAMES E. WHITE
Stanford Research Institute
Menlo Park. California

ABSTRACT

This paper proposes a high-level, application-independ­
ent framework for the construction of distributed
systems within a resource sharing computer network.
The framework generalizes design techniques in use
within the ARPA Computer Network. It eliminates
the need for application-specific communication pro­
tocols and support software, thus easing the task of
the applications programmer and so encouraging the
sharing of resources. The framework consists of a net­
work-wide protocol for invoking arbitrary named func­
tions in a remote process, and machine-dependent sys­
tem software that interfaces one applications program
to another via the protocol. The protocol provides
mechanisms for supplying arguments to remote func­
tions and for retrieving their results; it also defines a
small number of standard data types from which all
arguments and results must be modeled. The paper
further proposes that remote functions be thought of
as remotely callable subroutines or procedures. This
model would enable the framework to more gracefully
extend the local programming environment to embrace
modules on other machines.

THE GOAL, RESOURCE SHARING

The principal goal of all resource-sharing computer
networks, including the now international ARPA Net­
work (the ARPANET), is to usefully interconnect
geographically distributed hardware, software, and
human resources.1 Achieving this goal requires the
design and implementation of various levels of support
software within each constituent computer, and the
specification of network-wide "protocols" (that is, con­
ventions regarding the format and the relative timing
of network messages) governing their interaction. This
paper outlines an alternative to the approach that
ARPANET system builders have been taking since
work in this area began in 1970, and suggests a strategy
for modeling distributed systems within any large com­
puter network.

* The work reported here was supported by the Advanced Re­
search Projects Agency of the Department of Defense, and by
the Rome Air Development Center of the Air Force.

The first section of this paper describes the prevail­
ing ARPANET protocol strategy, which involves speci­
fying a family of application-dependent protocols with
a network-wide inter-process communication facility
as their common foundation. In the second section,
the application-independent command/response disci­
pline that characterizes this protocol family is identi­
fied and its isolation as a separate protocol proposed.
Such isolation would reduce the work of the appli­
cations programmer by allowing the software that
implements the protocol to be factored out of each ap­
plications program and supplied as a single, installa­
tion-maintained module. The final section of this paper
proposes an extensible model for this class of network
interaction that in itself would even further encourage
the use of network resources.

THE CURRENT SOFTWARE APPROACH TO
RESOURCE SHARING

Function-oriented protocols

The current ARPANET software approach to facil­
itating resource sharing has been detailed elsewhere in
the literature.23'4 Briefly, it involves defining a Host-
Host Protocol by which the operating systems of the
various "host" computers cooperate to support a net­
work-wide inter-process communication (IPC) facility,
and then various function-oriented protocols by which
processes deliver and receive specific services via IPC.
Each function-oriented protocol regulates the dialog
between a resident "server process" providing the serv­
ice, and a "user process" seeking the service on behalf
of a user (the terms "user" and "user process" will be
used consistently throughout this paper to distinguish
the human user from the computer process acting on
his behalf).

The current Host-Host Protocol has been in service
since 1970. Since its initial design and implementation,
a variety of deficiencies have been recognized and sev­
eral alternative protocols suggested.5-6 Although im­
provements at this level would surely have a positive
effect upon Network resource sharing, the present
paper simply assumes the existence of some form of

561

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1499799.1499878&domain=pdf&date_stamp=1976-06-07

562 National Computer Conference, 1976

IPC and focuses attention upon higher level protocol
design issues.

Each of the function-oriented protocols mentioned
in this paper constitutes the official ARPANET pro­
tocol ior its respective application uomam anu is there­
fore implemented at nearly all of the 75 host installa­
tions that now comprise the Network. It is primarily
upon this widely implemented protocol family (and the
philosophy it represents) that the present paper
focuses. Needless to say, other important resource-
sharing tools have also been constructed within
the ARPANET. The Resource-Sharing Executive
(RSEXEC), designed and implemented by Bolt,
Beranek and Newman, Inc.,7 provides an excellent
example of such work.

Experience with and limitations of hands-on
resource sharing

The oldest and still by far the most heavily used
function-oriented protocol is the Telecommunications
Network protocol (TELNET),8 which effectively at­
taches a terminal on one computer to an interactive
time-sharing system on another, and allows a user to
interact with the remote system via the terminal as
if he were one of its local users.

As depicted in Figure 1, TELNET specifies the
means by which a user process monitoring the user's
terminal is interconnected, via an IPC communication
channel, with a server process with access to the target
time-sharing system. TELNET also legislates a stan­
dard character set in which the user's commands and
the system's responses are to be represented in trans­
mission between machines. The syntax and semantics
of these interchanges, however, vary from one system
to another and are unregulated by the protocol; the

COMPUTER 1 COMPUTER 2

f TERMINAL ^ \
V. HANDLER J

IPC CHANNEL

REMOTE
TERMINAL

LOCAL
TERMINAL

Figure 1—Interfacing a remote terminal to a local time-sharing
system via the TELNET Protocol

user and server processes simply shuttle characters be­
tween the human user and the target system.

Although the hands-on use of remote resources that
TELNET makes possible is a natural and highly visible
+ r\vm rtT w n c i / M i w n n o n n v i W A " n n i r r t w n l l-i-*v* i 4- rt 4-1 **>•*-» c« rtrtTT/»»rtlTT
-Lvsxiu u i i c o u u i t c o u a i u i g , o c v c i a i n u u i a u u i i o o c v c i c i j

reduce its long-term utility:
(1) It forces upon the user all of the trappings of

the resource's own system.
To exploit a remote resource, the user must

leave the familiar working environment pro­
vided by his local system and enter an alien one
with its own peculiar system structure (login,
logout, and subsystem entry and exit proce­
dures) and command language discipline (com­
mand recognition and completion conventions,
editing characters, and so on). Hands-on re­
source sharing thus fails to provide the user
with the kind of organized and consistent work­
shop he requires to work effectively.9

(2) It provides no basis for bootstrapping new com­
posite resources from existing ones.

Because the network access discipline imposed
by each resource is a human-engineered com­
mand language, rather than a machine-oriented
communication protocol, it is virtually impossi­
ble for one resource to programatically draw
upon the services of others. Doing so would re­
quire that the program deal successfully with
complicated echoing and feedback character­
istics; unstructured, even unsolicited system
responses; and so forth. Hands-on resource
sharing thus does nothing to provide an environ­
ment in which existing resources can be used as
building blocks to construct new, more powerful
ones.

These inherent limitations of hands-on resource
sharing are removed by a protocol that simplifies and
standardizes the dialog between user and server proc­
esses. Given such a protocol, the various remote re­
sources upon which a user might wish to draw can
indeed be made to appear as a single, coherent work­
shop by interposing between him and them a command
language interpreter that transforms his commands
into the appropriate protocol utterances.10'11 The con­
struction of composite resources also becomes feasible,
since each resource is accessible by means of a machine-
oriented protocol and can thus be readily employed by
other processes within the network.

Standardizing the inter-machine dialog in specific
application areas

After the TELNET protocol had been designed and
widely implemented within the ARPANET, work be­
gan on a family of function-oriented protocols designed
for use by programs, rather than human users. Each
such protocol standardizes the inter-machine dialog in
a particular application area. While TELNET dictates

Network-Based Resource Sharing 563

only the manner in which user and server processes are
interconnected via the IPC facility, and the character
set in which the two processes communicate once con­
nected, each member of this family specifies in addition
the syntax and semantics of the commands and re­
sponses that comprise their dialog.

Protocols within this family necessarily differ in
substance, each specifying its own application-specific
command set. The File Transfer Protocol (FTP),12

for example, specifies commands for manipulating files,
and the Remote Job Entry Protocol (RJE)13 specifies
commands for manipulating batch jobs. Protocols
throughout the family are, however, similar in form,
each successive family member having simply inherited
the physical features of its predecessors. Thus FTP
and RJE enforce the same conventions for formulating
commands and responses.

This common command/response discipline requires
that commands and responses have the following re­
spective formats:

command-name < S P > parameter <CRLF>

response-number < S P > text <CRLF>

Each command invoked by the user process is identi­
fied by NAME and is allowed a single PARAMETER.
Each response generated by the server process contains
a three-digit decimal response NUMBER (to be inter­
preted by the user process) and explanatory TEXT
(for presentation, if necessary, to the user). Response
numbers are assigned in such a way that, for example,
positive and negative acknowledgments can be easily
distinguished by the user process.

FTP contains, among others, the following com­
mands (each listed with one of its possible responses)
for retrieving, appending to, replacing, and deleting
files, respectively, within the server process file
system:

Command

RETR <SP> filename
<CRLF>

APPE < S P > filename
<CRLF>

STOR < S P > filename
<CRLF>

DELE < S P > filename
<CRLF>

Response

250 < S P > Beginning
transfer. <CRLF>

400 < S P > Not imple­
mented. <CRLF>

453 <SP> Directory
overflow. <CRLF>

450 <SP> File not
found. <CRLF>

The first three commands serve only to initiate the
transfer of a file from one machine to another. The
transfer itself occurs on a separate IPC channel and
is governed by what amounts to a separate protocol.

Since the general command format admits but a
single parameter, multiparameter operations must be
implemented as sequences of commands. Thus two
commands are required to rename a file:

Command Response
RNFR < S P > oldname 200 < S P > Next parameter.

<CRLF> <CRLF>

RNTO < S P > newname 253 < S P > File renamed.
<CRLF> <CRLF>

A COMMAND/RESPONSE PROTOCOL, THE BASIS
FOR AN ALTERNATIVE APPROACH

The importance of factoring out the command/
response discipline

That FTP, RJE, and the other protocols within this
family share a common command/response discipline
is a fact not formally recognized within the protocol
literature, and each new protocol document describes
it in detail, as if for the first time. Nowhere are these
conventions codified in isolation from the various con­
texts in which they find use, being viewed as a neces­
sary but relatively unimportant facet of each function-
oriented protocol. "This common command/response
discipline has thus gone unrecognized as the important,
application-independent protocol that it is."

This oversight has had two important negative
effects upon the growth of resource sharing within the
ARPANET:

(1) It has allowed the command/response discipline
to remain crude.

As already noted, operations that require
more than a single parameter are consistently
implemented as two or more separate com­
mands, each of which requires a response and
thus incurs the overhead of a full round-trip
network delay. Furthermore, there are no
standards for encoding parameter types other
than character strings, nor is there provision
for returning results in a command response.

(2) It has placed upon the applications programmer
the burden of implementing the network "run­
time environment (RTE)" that enables him to
access remote processes at the desired, func­
tional level.

Before he can address remote processes in
terms like the following:

execute function DELE with argument TEXT-
FILE on machine X

the applications programmer must first con­
struct (as he invariably does in every program
he writes) a module that provides the desired
program interface while implementing the
agreed upon command/response discipline. This
run-time environment contains the code re­
quired to properly format outgoing commands,
to interface with the IPC facility, and to parse
incoming responses. Because the system pro­
vides only the IPC facility as a foundation, the

564 National Computer Conference, 1976

applications programmer is deterred from using
remote resources by the amount of specialized
knowledge and software that must first be
acquired.

If, on the other hand, the command/response
discipline were formalized as a separate proto­
col, its use in subsequent function-oriented pro­
tocols could rightly be anticipated by the systems
programmer, and a single run-time environment
constructed for use throughout an installation
(in the worst case, one implementation per pro­
gramming language per machine might be re­
quired) . This module could then be placed in a
library and, as depicted in Figure 2, link loaded
with (or otherwise made available to) each new
applications program, thereby greatly simpli­
fying its use of remote resources.

Furthermore, since enhancements to it would
pay dividends to every applications program
employing its services, the run-time environ­
ment would gradually be augmented to provide
additional new services to the programmer.

The thesis of the present paper is that one of the
keys to facilitating network resource sharing lies in
(1) isolating as a separate protocol the command/re­
sponse discipline common to a large class of applica­
tions protocols; (2) making this new, application-
independent protocol flexible and efficient; and (3)
constructing at each installation a RTE that employs
it to give the applications programmer easy and high-
level access to remote resources.

Specifications for the command/response protocol

Having argued the value of a command/response
protocol (hereafter termed the Protocol) as the foun­
dation for a large class of applications protocols, there
remains the task of suggesting the form that the Pro­
tocol might take. There are eight requirements. First,
it must reproduce the capabilities of the discipline it
replaces:

COMPUTER 1 COMPUTER 2

IPC CHANNEL

Figure 2- -Interfacing distant applications programs via their
run-time environments

(1) Permit invocation of arbitrary, named com­
mands (or functions) implemented by the re­
mote process.

(2) Permit command outcomes to be reported in a
way that aids both the program invoking the
command and the user under whose control it
may be executing.

Second, the Protocol should remove the known defi­
ciencies of its predecessor, that is:

(3) Allow an arbitrary number of parameters to
be supplied as arguments to a single command.

(4) Provide representations for a variety of pa­
rameter types, including but not limited to char­
acter strings.

(5) Permit commands to return parameters as re­
sults as well as accept them as arguments.

And, finally, the Protocol should provide whatever ad­
ditional capabilities are required by the more complex
distributed systems whose creation the Protocol seeks
to encourage. Although others may later be identified,
the three capabilities below are recognized now to be
important:

(6) Permit the server process to invoke commands
in the user process, that is, eliminate entirely
the often inappropriate user/server distinction,
and allow each process to invoke commands in
the other.

In the workshop environment alluded to ear­
lier, for example, the user process is the com­
mand language interpreter and the server proc­
ess is any of the software tools available to
the user. While most commands are issued by
the interpreter and addressed to the tool, occa­
sionally the tool must invoke commands in the
interpreter or in another tool. A graphical text
editor, for example, must invoke commands
within the interpreter to update the user's dis­
play screen after an editing operation.

(7) Permit a process to accept two or more com­
mands for concurrent execution.

The text editor may wish to permit the user
to initiate a long formatting operation with one
command and yet continue to issue additional,
shorter commands before there is a response to
the first.

(8) Allow the process issuing a command to sup­
press the response the command would other­
wise elicit.

This feature would permit network traffic to
be reduced in those cases in which the process
invoking the command deems a response un­
necessary. Commands that always succeed but
never return results are obvious candidates for
this kind of treatment.

Network-Based Resource Sharing 565

A formulation of the protocol that meets these
specifications

The eight requirements listed above are met by a
protocol in which the following two messages are de­
fined:

message-type = COMMAND [tid] command-name
arguments

message-type = RESPONSE tid outcome
results

Here and in subsequent protocol descriptions, elements
enclosed in square brackets are optional.

The first message invokes the command whose
NAME is specified using the ARGUMENTS provided.
The second is issued in eventual response to the first
and returns the OUTCOME and RESULTS of the com­
pleted command. Whenever OUTCOME indicates that
a command has failed, the command's RESULTS are
required to be an error number and diagnostic message,
the former to help the invoking program determine
what to do next, the latter for possible presentation to
the user. The protocol thus provides a framework for
reporting errors, while leaving to the applications pro­
gram the tasks of assigning error numbers and com­
posing the text of error messages.

There are several elements of the Protocol that are
absent from the existing command/response discipline:

(1) RESULTS, in fulfillment of Requirement 5.
(2) A MESSAGE TYPE that distinguishes com­

mands from responses, arising from Require­
ment 6.

In the existing discipline, this distinction is
implicit, since user and server processes receive
only responses and commands, respectively.

(3) An optional transaction identifier TID by which
a command and its response are associated,
arising from Requirements 7 and 8.

The presence of a transaction identifier in a
command implies the necessity of a response
echoing the identifier; and no two concurrently
outstanding commands may bear the same iden­
tifier.

Requirements 3 and 4—the ability to transmit an
arbitrary number of parameters of various types with
each command or response—are most economically and
effectively met by defining a small set of primitive
"data types" (for example, booleans, integers, char­
acter strings) from which concrete parameters can be
modeled, and a "transmission format" in which such
parameters can be encoded. Appendix A suggests a
set of data types suitable for a large class of applica­
tions; Appendix B defines some possible transmission
formats.

The protocol description given above is, of course,
purely symbolic. Appendix C explores one possible
encoding of the Protocol in detail.

Summarizing the arguments advanced so far

The author trusts that little of what has been pre­
sented thus far will be considered controversial by the
reader. The following principal arguments have been
made:

(1) The more effective forms of resource sharing
depend upon remote resources being usefully
accessible to other programs, not just to human
users,

(2) Application-dependent protocols providing such
access using the current approach leave to the
applications programmer the task of construct­
ing the additional layer of software (above the
IPC facility provided by the system) required
to make remote resources accessible at the func­
tional level, thus discouraging their use.

(3) A single, resource-independent protocol provid­
ing flexible and efficient access at the functional
level to arbitrary remote resources can be de­
vised.

(4) This protocol would make possible the construc­
tion at each installation of an application-inde­
pendent, network run-time environment making
remote resources accessible at the functional
level and thus encouraging their use by the
applications programmer.

A protocol as simple as that suggested here has great
potential for stimulating the sharing of resources
within a computer network. First, it would reduce the
cost of adapting existing resources for network use
by eliminating the need for the design, documentation,
and implementation of specialized delivery protocols.
Second, it would encourage the use of remote resources
by eliminating the need for application-specific inter­
face software. And finally, it would encourage the con­
struction of new resources built expressly for remote
access, because of the ease with which they could be
offered and used within the network software market­
place.

A HIGH-LEVEL MODEL OF THE NETWORK
ENVIRONMENT

The importance of the model imposed by the protocol

The Protocol proposed above imposes upon the appli­
cations programmer a particular model of the network
environment. In a heterogeneous computer network,
nearly every protocol intended for general implementa­
tion has this effect, since it idealizes a class of opera­
tions that have concrete but slightly different equiva­
lents in each system. Thus the ARPANET'S TELNET
Protocol alluded to earlier, for example, specifies a Net­
work Virtual Terminal that attempts to provide a best
fit to the many real terminals in use around the Net­
work.

566 National Computer Conference, 1976

As now formulated, the Protocol models a remote
resource as an interactive program with a simple,
rigidly specified command language. This model fol­
lows naturally from the fact that the function-oriented
protocols from which the Protocol was extracted were
necessitated by the complexity and diversity of user-
oriented command languages. The Protocol may thus
legitimately be viewed as a vehicle for providing, as an
adjunct to the sophisticated command languages al­
ready available to users, a family of simple command
languages that can readily be employed by programs.

While the command/response model is a natural one,
others are possible. A remote resource might also be
modeled as a process that services and replies to re­
quests it receives from other computer processes. This
request/reply model would emphasize the fact that the
Protocol is a vehicle for inter-process communication
and that no human user is directly involved.

Substituting the request/reply model for the com­
mand/response model requires only cosmetic changes
to the Protocol:

message-type = REQUEST [tid] op-code
arguments

message-type = RE PLY tid outcome
results

In the formulation above, the terms "REQUEST",
"REPLY", and "op-code" have simply been substituted
for "COMMAND", "RESPONSE", and "command-
name", respectively.

The choice of model need affect neither the content
of the Protocol nor the behavior of the processes whose
dialog it governs. Use of the word "command" in the
command/response model, for example, is not meant
to imply that the remote process can be coerced into
action. Whatever model is adopted, a process has com­
plete freedom to reject an incoming remote request
that it is incapable of or unwilling to fulfill.

But even though it has no substantive effect upon
the Protocol, the selection of a model—command/
response, request/reply, and so on—is an important
task because it determines the way in which both
applications and systems programmers perceive the
network environment. If the network environment is
made to appear foreign to him, the applications pro­
grammer may be discouraged from using it. The choice
of model also constrains the kind and range of protocol
extensions that are likely to occur to the systems pro­
grammer; one model may suggest a rich set of useful
extensions, another lead nowhere (or worse still, in the
wrong direction).

In this final section of the paper, the author suggests
a network model (hereafter termed the Model) that he
believes will both encourage the use of remote resources
by the applications programmer and suggest to the
systems programmer a wide variety of useful Protocol
extensions. Unlike the substance of the Protocol, how­

ever, the Model has already proven quite controversial
within the ARPANET community.

Modeling resources as collections of procedures

Ideally, the goal of both the Protocol and its accom­
panying RTE is to make remote resources as easy to
use as local ones. Since local resources usually take
the form of resident and/or library subroutines, the
possibility of modeling remote commands as "proce­
dures" immediately suggests itself. The Model is fur­
ther confirmed by the similarity that exists between
local procedures and the remote commands to which
the Protocol provides access. Both carry out arbitrarily
complex, named operations on behalf of the requesting
program (the caller) ; are governed by arguments sup­
plied by the caller; and return to it results that re­
flect the outcome of the operation. The procedure call
model thus acknowledges that, in a network environ­
ment, programs must sometimes call subroutines in
machines other than their own.

Like the request/reply model already described, the
procedure call model requires only cosmetic changes to
the Protocol:

message-type = CALL [tid] procedure-name
arguments

message-type = RETURN tid outcome
results

In this third formulation, the terms "CALL", "RE­
TURN", and "procedure-name" have been substituted
for "COMMAND", "RESPONSE", and "command-
name", respectively. And in this form, the Protocol
might aptly be designated a "procedure call protocol
(PCP)".

"The procedure call model would elevate the task of
creating applications protocols to that of defining pro­
cedures and their calling sequences. It would also pro­
vide the foundation for a true distributed programming
system (DPS) that encourages and facilitates the work
of the applications programmer by gracefully extend­
ing the local programming environment, via the RTE,
to embrace modules on other machines." This integra­
tion of local and network programming environments
can even be carried as far as modifying compilers to
provide minor variants of their normal procedure-
calling constructs for addressing remote procedures
(for which calls to the appropriate RTE primitives
would be dropped out).

Finally, the Model is one that can be naturally ex­
tended in a variety of ways (for example, coroutine
linkages and signals) to further enhance the distrib­
uted programming environment.

Clarifying the procedure call model

Although in many ways it accurately portrays the
class of network interactions with which this paper

Network-Based Resource Sharing 567

deals, the Model suggested above may in other respects
tend to mislead the applications programmer. The
Model must therefore be clarified:

(1) Local procedure calls are cheap; remote proce­
dure calls are not.

Local procedure calls are often effected by
means of a single machine instruction and are
therefore relatively inexpensive. Remote pro­
cedure calls, on the other hand, would be effected
by means of" a primitive provided by the local
RTE and require an exchange of messages via
IPC.

Because of this cost differential, the applica­
tions programmer must exercise discretion in
his use of remote resources, even though the
mechanics of their use will have been oreatlv
simplified by the RTE. Like virtual memory,
the procedure call model offers great conve­
nience, and therefore power, in exchange for
reasonable alertness to the possibilities of abuse.

(2) Conventional programs usually have a single
locus of control; distributed programs need not.

Conventional programs are usually imple­
mented as a single process with exactly one locus
of control. A procedure call, therefore, tradition­
ally implies a transfer of control from caller to
callee. Distributed systems, on the other hand,
are implemented as two or more processes, each
of which is capable of independent execution.
In this new environment, a remote procedure
call need not suspend the caller, which is capable
of continuing execution in parallel with the
called procedure.

The RTE can therefore be expected to pro­
vide, for convenience, two modes of remote pro­
cedure invocation: a blocking mode that sus­
pends the caller until the procedure returns; and
a non-blocking mode that releases the caller as
soon as the CALL message has been sent or
queued. Most conventional operating systems
already provide such a mode choice for I/O
operations. For non-blocking calls, the RTE
must also, of course, either arrange to asyn­
chronously notify the program when the call is
complete, or provide an additional primitive by
which the applications program can periodically
test for that condition.

Finally, the applications programmer must recognize
that by no means all useful forms of network com­
munication are effectively modeled as procedure calls.
The lower level IPC facility that remains directly ac­
cessible to him must therefore be employed in those
applications for which the procedure call model is in­
appropriate and RTE-provided primitives simply will
not do.

SOME EXPECTATIONS

Both the Procedure Call Protocol and its associated
Run-Time Environment have great potential for facili­
tating the work of the network programmer; only a
small percentage of that potential has been discussed
in the present paper. Upon the foundation provided
by PCP can be erected higher level application-inde­
pendent protocol layers that further enhance the dis­
tributed ^rocrammin0" environment b v Tovidin0* even
more powerful capabilities (see Appendix D).

As the importance of the RTE becomes fully evident,
additional tasks will gradually be assigned to it, in­
cluding perhaps those of:

(1) Converting parameters between the format em-
r»lr»vorl i n f o v n i i l l v Tvtr fVio o n n l i V o t i r m a r»vnnrvnm

and that imposed by the Protocol.
(2) Automatically selecting the most appropriate

inter-process transmission format on the basis
of the two machines' word sizes.

(3) Automatically substituting for network IPC a
more efficient form of communication when both
processes reside on the same machine.

The RTE will eventually offer the programmer a wide
variety of application-independent, network-program­
ming conveniences, and so, by means of the Protocol,
become an increasingly powerful distributed-system-
building tool.

ACKNOWLEDGMENTS

Many individuals within both SRI's Augmentation
Research Center (ARC) and the larger ARPANET
community have contributed their time and ideas to
the development of the Protocol and Model described
in this paper. The contributions of the following in­
dividuals are expressly acknowledged: Dick Watson,
Jon Postel, Charles Irby, Ken Victor, Dave Maynard,
and Larry Garlick of ARC; and Bob Thomas and Rick
Schantz of Bolt, Beranek and Newman, Inc.

ARC has been working toward a high-level frame­
work for network-based distributed systems for a num­
ber of years now.14 The particular Protocol and Model
described here result from research begun by ARC in
July of 1974. This research included developing the
Model; designing and documenting the Protocol re­
quired to support it;15 and designing, documenting, and
implementing a prototype run-time environment for a
particular machine,1617 specifically a PDP-10 running
the Tenex operating system developed by Bolt, Beranek
and Newman, Inc.ls Three design iterations were car­
ried out during a 12-month period, and the resulting
specification implemented for Tenex. The Tenex RTE
provides a superset of the capabilities presented in the
body of this paper and Appendices A through C as well
as those alluded to in Appendix D.

568 National Computer Conference. 1976

REFERENCES
1. Kahn, R. E., "Resource-Sharing Computer Communications

Networks," Proceedings of the IEEE, Vol. 60, No. 11, pp.
1397-1407, November 1972.

2. Crocker S. D. J. F. Heafner R. M. Metcalfe and J. B.
Postel, "Function-oriented Protocols for the ARPA Com­
puter Network," AFIPS Proceedings, Spring Joint Com­
puter Conference, Vol. 40, pp. 271-279,1972.

3. Carr, C. S., S. D. Crocker and V. G. Cerf, "Host-Host Com­
munication Protocol in the ARPA Network," AFIPS Pro­
ceedings, Spring Joint Computer Conference, Vol. 36, pp.
589-597, 1970.

4. McKenzie, A. A., Host/Host Protocol for the ARPA Net­
work, Bolt Beranek and Newman Inc., Cambridge, Massa­
chusetts, January 1972, SRI-ARC Catalog Item 8246.

5. Walden, D. C, "A System for Interprocess Communication
in a Resource Sharing Computer Network," Communica­
tions of the ACM, Vol. 15, No. 4, pp. 221-230, April 1972.

6. Cerf, V. G. and R. E. Kahn, "A Protocol for Packet Net­
work Intercommunication," IEEE Transactions on Com­
munications, Vol. Com-22, No. 5, pp. 637-648, May 1974.

7. Thomas, R. H., "A Resource-Sharing Executive for the
ARPANET," AFIPS Proceedings, National Computer Con­
ference, Vol. 42, pp. 155-163, 1973.

8. TELNET Protocol Specification, Stanford Research In­
stitute, Menlo Park, California, August 1973, SRI-ARC
Catalog Item 18639.

9. Engelbart, D. C, R. W. Watson and J. C. Norton, "The
Augmented Knowledge Workshop," AFIPS Proceedings,
National Computer Conference, Vol. 42, pp. 9-21, 1973.

10. Engelbart, D.C. and W. K. English, "A Research Center
for Augmenting Human Intellect," AFIPS Proceedings,
Fall Joint Computer Conference, Vol. 33, pp. 395-410, 1968.

11. Irby, C. H., C. F. Dornbush, K. E. Victor and D. C. Wallace,
A Command Meta Language for NLS, Final Report, Con­
tract RADC-TR-75-304, SRI Project 1868, Stanford Re­
search Institute, Menlo Park, California, December, 1975.

12. Neigus, N. J., File Transfer Protocol, ARPA Network
Working Group Request for Comments 542, Bolt Beranek
and Newman Inc., Cambridge, Massachusetts, July 1973,
SRI-ARC Catalog Item 17759.

13. Bressler, R. D., R. Guida and A. A. McKenzie, Remote Job
Entry Protocol, ARPA Network Working Group Request
for Comments 360, Dynamic Modeling Group, Massachusetts
Institute of Technology, Cambridge, Massachusetts, un­
dated, SRI-ARC Catalog Item 12112.

14. Watson, R. W., Some Thoughts on System Design to Facili­
tate Resource Sharing, ARPA Network Working Group
Request for Comments 592, Augmentation Research Center,
Stanford Research Institute, Menlo Park, California, No­
vember 20,1973, SRI-ARC Catalog Item 20391.

15. White, J. E., DPS-10 Version 2.5 Implementer's Guide,
Augmentation Research Center. Stanford Research Insti­
tute, Menlo Park, California, August 15, 1975, SRI-ARC
Catalog Item 26282.

16. White, J. E., DPS-10 Version 2.5 Programmer's Guide,
Augmentation Research Center, Stanford Research Insti­
tute, Menlo Park, California, August 13, 1975, SRI-ARC
Catalog Item 26271.

17. White, J. E., DPS-10 Version 2.5 Source Code, Augmenta­
tion Research Center, Stanford Research Institute, Menlo
Park, California, August 13, 1975, SRI-ARC Catalog Item
26267.

18. Bobrow, D. G., J. D. Burchfiel, D. L. Murphy and R. S.
Tomlinson, "TENEX, a Paged Time Sharing System for the
PDP-10," Communications of the ACM, Vol. 15, No. 3, pp.
135-143, March 1972.

19. White, J. E., "Elements of a Distributed Programming
System," Submitted for publication in the Journal of Com­
puter Languages, 1976.

APPENDIX A—SUGGESTED DATA TYPES

The Protocol requires that every parameter or "data
object" be represented by one of several primitive data
types defined by the Model. The set of data types below
is sufficient to conveniently model a large class of data
objects, but since the need for additional data types
(for example, floating-point numbers) will surely
arise, the set must remain open-ended. Throughout the
descriptions below, N is confined to the range [0,
2**15-1]:

LIST: A list is an ordered sequence of N data
objects called "elements". A LIST may contain other
LISTs as elements, and can therefore be employed
to construct arbitrarily complex composite data
objects.

CHARSTR: A character string is an ordered
sequence of N ASCII characters, and conveniently
models a variety of textual entities, from short user
names to whole paragraphs of text.

BITSTR: A bit string is an ordered sequence of
N bits and, therefore, provides a means for repre­
senting arbitrary binary data (for example, the con­
tents of a word of memory).

INTEGER: An integer is a fixed-point number
in the range [-2**31, 2**31-1], and conveniently
models various kinds of numerical data, including
time intervals, distances, and so on.

INDEX: An index is an integer in the range [1,
2**15-1]. As its name and value range suggest, an
INDEX can be used to address a particular bit or
character within a string, or element within a list.
INDEXes have other uses as well, including the
modeling of handles or identifiers for open files,
created processes, and the like. Also, because of their
restricted range, INDEXes are more compact in
transmission than INTEGERS (see Appendix B).

BOOLEAN: A boolean represents a single bit of
information, and has either the value true or false.

EMPTY: An empty is a valueless place holder
within a LIST or parameter list.

APPENDIX B—SUGGESTED TRANSMISSION
FORMATS

Parameters must be encoded in a standard transmis­
sion format before they can be sent from one process
to another via the Protocol. An effective strategy is to
define several formats and select the most appropriate
one at run-time, adding to the Protocol a mechanism
for format negotiation. Format negotiation would be
another responsibility of the RTE and could thus be
made completely invisible to the applications program.

Suggested below are two transmission formats. The
first is a 36-bit binary format for use between 36-bit

Network-Based Resource Sharing 569

machines, the second an 8-bit binary, "universal" for­
mat for use between dissimilar machines. Data objects
are fully typed in each format to enable the RTE to
automatically decode and internalize incoming param­
eters should it be desired to provide this service to
the applications program.

PCPB36, For Use Between 36-Bit Machines

Bits 0-13 Unused (zero)
Bits 14-17 Data type

EMPTY - 1 INTEGER =4 LIST = 7
BOOLEAN = 2 BITSTR =5
INDEX =3 CHARSTR =6

Bits 18-20 Unused (zero)
Bits 21-35 Value or length N

EMPTY unused (zero)
BOOLEAN 14 zero-bits + 1-bit value (TRUE =

1/FALSE = 0)
INDEX unsigned value
INTEGER unused (zero)
BITSTR unsigned bit count N
CHARSTR unsigned character count N
LIST unsigned element count N

Bits 36- Value

EMPTY unused (nonexistent^
BOOLEAN unused (nonexistent)
INDEX unused (nonexistent)
INTEGER two's complement full-word value
BITSTR bit string + zero padding to word

r\r\i-iTI /I Q I«TT

CHARSTR ASCII string + zero padding to word
boundary

LIST element data objects

PCPB8, For Use Between Dissimilar Machines

Byte 0 Data type

EMPTY =1 INTEGER =4 LIST=7
BOOLEAN =2 BITSTR =5
INDEX =3 CHARSTR =6

Bytes 1- Value

EMPTY
BOOLEAN

INDEX
INTEGER
BITSTR

CHARSTR

LIST

unused (nonexistent)
7 zero-bits + 1-bit value (TRUE =

1/FALSE = 0)
2-byte unsigned value
4-byte two's complement value
2-byte unsigned bit count N + bit

string + zero padding to byte
boundary

2-byte unsigned character count N +
ASCII string

2-byte element count N + element
data objects

APPENDIX C—A DETAILED ENCODING OF
THE PROCEDURE CALL PROTOCOL

Although the data types and transmission formats
detailed in the previous appendixes serve primarily as
vehicles for representing the arguments and results of
remote procedures, they can just as readily and effec­
tively be employed to represent the commands and
responses by which those parameters are transmitted.

Taking this approach^ one might model each of the
two Protocol messages as a PCP data object, specifi­
cally a LIST whose first element is an INDEX mes­
sage type. The following concise statement of the
Protocol then results:

LIST (CALL, tid, procedure, arguments)
INDEX = 1 INDEX/

EMPTY CHARSTR LIST

LIST (RETURN, tid, outcome, results)
INDEX = 2 INDEX BOOLEAN LIST

The RESULTS of an unsuccessful procedure would be
represented as follows:

LIST (error, diagnostic)
INDEX CHARSTR

APPENDIX D—A LOOK AT SOME POSSIBLE
EXTENSIONS TO THE MODEL

The result of the distributed-system-building strategy
proposed in the body of this paper and the preceding
appendices is depicted in Figure 3. At the core of
each process is the inter-process communication facil­
ity provided by the operating system, which effects
the transmission of arbitrary binary data between
distant processes. Surrounding this core are conven­
tions regarding first the format in which a few, primi­
tive types of data objects are encoded in binary for
IPC, and then the formats of several composite data
objects (that is, messages) whose transmission either
invokes or acknowledges the previous invocation of a
remote procedure. Immediately above lies an open-
ended protocol layer in which an arbitrary number of
enhancements to the distributed programming envi­
ronment can be implemented. Encapsulating these
various protocol layers is the installation-provided run­
time environment, which delivers DPS services to the
applications program according to machine- and pos­
sibly programming-language-dependent conventions.

The Protocol proposed in the present paper recog­
nizes only the most fundamental aspects of remote
procedure calling. It permits the caller to identify the
procedure to be called, supply the necessary arguments,
determine the outcome of the procedure, and recover
its results. In a second paper,19 the author proposes
some extensions to this simple procedure call model,
and attempts to identify other common forms of
inter-process interaction whose standardization would

570 National Computer Conference, 1976

RUN-TIME
ENVIRONMENT

TRANSMISSION
FORMATS

MESSAGES

ADDITIONAL
PROTOCOL

TO OTHER
PROCESS

PROCEDURE CALL
PROTOCOL

INTERNAL INTERFACE

APPLICATIONS PROGRAM

Figure 3—Software and protocol layers comprising a process
within the distributed programming system

enhance the distributed programming environment.
Included among the topics discussed are:

(1) Coroutine linkages and other forms of commu-
H X V U t l U l i

i-Vsî r»£ll1fvi*
i c;tai u i c ^,C*IL^I. cm. it i/cuxc;^*

(2)

(3)

(4)

(5)

Propagation of notices and requests up the
thread of control that results from nested pro­
cedure calls.
Standard mechanisms for remotely reading or
writing system-global data objects within an­
other program.
Access controls for collections of related pro­
cedures.
A standard means for creating and initializing
processes, that is, for establishing contact with
and logging into a remote machine, identifying
the program to be executed, and so forth. This
facility would permit arbitrarily complex proc­
ess hierarchies to be created.
A mechanism for introducing processes to one
another, that is, for superimposing more gen­
eral communication paths upon the process
hierarchy.

These and other extensions can all find a place in the
open-ended protocol layer of Figure 3. The particular
extensions explored in Reference 19 are offered not as
dogma but rather as a means of suggesting the possi­
bilities and stimulating further research.

(6)

