
A Dynamic (FORTRAN) programming system

by JULIUS A. ARCHIBALD, JR.

Plattsburgh, New York

ABSTRACT

In recent years, new insights into the nature of pro­
gramming languages have been obtained from the
comparative study of natural and programming lan­
guages. These studies reveal that programming
languages are deficient in their ability to adapt both to
new requirements and new means for communicating
thoughts. A means of alleviating these difficulties,
through a dynamic, structured expansion of an estab­
lished programming language (FORTRAN) is pro­
vided.

INTRODUCTION

During recent years, there have been some rather
significant advancements in man's understanding of
programming languages. Some ten or so years ago,
and continuing into the present, we find a continuing
growth of interest in the concepts of structured pro­
gramming.1-2 More recently, there has been the sug­
gestion that the nature of programming languages
can be better understood by the study of natural
languages and the drawing of analogies between these
two different types of languages.3 One particularly
useful analogy has been suggested, that between
English, a poor, but useful natural language, and FOR­
TRAN, a poor, but useful, programming language.4

In doing this, we note that one of the major differences
between these media of thought is their adaptability to
changing requirements. Specifically, we note, both
through a study of literature, and a review of our own
usage of the language, that English has readily adapted
both to the needs of expressing new thoughts, and to
the needs of better ways of expressing and com­
municating old thoughts. English has thus evolved in
a timely manner. Indeed, the development of English
has been concurrent with, rather than lagging behind,
the development of human knowledge. We also note,
regretfully, that programming languages in general,
and FORTRAN in particular do not share this char­
acteristic. Programming languages as we now know
them, are incapable of dynamic development or evolve-
ment. Programming methods have changed, and lan­
guages have failed to keep pace.

The static nature of programming languages is a
problem of particular concern today. The earliest

™ ™ ; , , , * . 1„ ,»„ , ,„ ,»„ , • , n,-.^U «r, TTr^TJT"D A "NT „ m i . n
p i u g i a m n i i n g l e u i g u a g c o , D U U I <xa r v / i v i i v n i i i , w c i c ,

of necessity, created before our present day under­
standings of the nature and structure of algorithmic
processes and programming languages were attained.
(Versions of FORTRAN were in use some ten years
before the notion of structure was developed.) The
time has come for us to benefit from the new under­
standings of the structure of algorithmic processes
and programming languages developed in the last ten
years within the framework of FORTRAN. The ideal
solution would be to extend FORTRAN so as to in­
clude the new structures.

There are two problems. First of all, FORTRAN
has been standardized.56 On the positive side, this was
good for purposes of definition. We now have a precise
understanding as to exactly what is FORTRAN and
what is not FORTRAN. Even more important, this
understanding is the same in Boston, Atlanta, Los
Angeles, and Seattle. The definition is not subject to
local dialects. On the negative side, however, along
with standardization came stagnation. The existence
of a standard has successfully stifled the initiative
needed to make the language flexible, and adaptive.
To further complicate matters, those who were not
content with the status quo mandated by the standard
have ventured off into their own private extensions in
such a manner as to produce a set of mutually incom­
patible super-languages of the original common lan­
guage. The overall effect has not been beneficial to the
development of programming languages.

The second problem is, in reality, not a problem of
the programming languages themselves, but rather a
problem resulting from differences in the use of natural
and programming languages. The constructs of En­
glish become meaningful as a result of interpretation
by thought processes resident in the human brain. The
constructs of FORTRAN become meaningful as a result
of interpretation by compilers (or interpreters) resi­
dent in a computer's memory. Thus, the increased
flexibility (or adaptability) of natural languages over
programming languages is not a question of the rela­
tive merits of the languages themselves, but rather

917

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1499799.1499924&domain=pdf&date_stamp=1976-06-07

918 National Computer Conference, 1976

a matter of the superior ability of the human brain,
as compared to a compiler, to program itself (or be
programmed) to interpret new constructs. Thus, in
order to attain for a programming language the flexi­
bility and adaptability of a natural language, we must
consider not only the language itself, but also the
compiler (at least in general terms), as they are known
to exist for the language. We thus must act upon
Wirth's conclusion that "Language design is compiler
construction."7

We refer here to a programming system on a given
machine as being made up of a specific language and
the compiler or interpreter used to interpret that
language on the machine of concern. We will also refer
to FORTRAN programming systems on a machine
independent basis in the same manner that FORTRAN
as a language is regarded on a machine independent
basis. In the remainder of this paper, we will be work­
ing on obtaining flexibility and adaptability not merely
for the language itself, but rather for the overall pro­
gramming system. The objective is a dynamic, flexible
extension of FORTRAN, as previously defined.5 It will
be accomplished through modification of the FOR­
TRAN programming system.

It is noted in passing that the present use of static
structured extensions of FORTRAN, which must be
converted to standard FORTRAN, through the use of
preprocessors, falls short of the above stated objective.
They provide structure without flexibility. The need
for a dynamic language has already been noted in
the literature.8 Conventional pre-processors simply
are not dynamic. A second problem is that the pre­
processors are not always machine independent. The
various extensions themselves are not all consistent.

The approach of limiting oneself to a subset of the
existing, standard FORTRAN from which things re­
sembling structures can be formed is also inappro­
priate. This approach involves the further limitation
of an already inadequate medium, rather than an
extension of the medium to meet new challenges. Said
in other words, this approach also fails to provide
flexibility.

There is one more remaining question: "Why FOR­
TRAN?" Again, the analogy with English. Users of
English (both native and adopted) love to sit around
and complain about how poor a language it is, how bad
the grammar is, and how impossible spelling is. No
one, however, has taken any serious steps to eliminate
English. The best effort, to date, was the invention of
a contrived artificial language, Esperanto,3 a language
with lots of merit and no potential. The problem is
that too many people have already done, and are
continuing to be doing, too many things with English
to make a change feasible. Consider, for a moment,
the problems that some of us are already experiencing
from the change of just one small part of the language,
namely the system of measures, to metric units. The
same is true of FORTRAN, too many people have

already done, and are continuing to do, too many things
in FORTRAN to make a change feasible. FORTRAN
is where the action is. The language, PL/I, intended to
be a partial remedy, has no more potential than
Esperanto. We £11*6 j cLS £1 matter of fact, suffering from
addiction to FORTRAN. In the present situation, the
pain of continued use is less than the pain of with­
drawal. We thus support previous conclusions of
others3 as well as ourselves.9

IMPLEMENTATION

It has been shown that all programs, regardless of
the language in which they are written, can be com­
posed of three fundamental structures.1 These struc­
tures consist of a sequential or composite structure,
some variant of a predicate structure, and some variant
of a repetitive structure. Regardless of the choice of
variant, the result, that these structures are sufficient,
remains valid.10 (We do include, in our implementation,
a fourth structure, the case structure, fully realizing
that its use is not essential.) Thus, as will be seen,
we will limit ourselves to D, D', and BJn structures.11

The point is that each structure is made up of certain,
fixed parts, which, because they are independent of
the language concerned, are referred to by psycho­
linguists as being "linguistic universals." 12

The method of implementation that we use is to di­
vide each program into two divisions. The first division
consists of a definition of the form to be used for each
part of each of the fundamental structures (or variants
of the structures) to be used within the program.
(We note that there may be several different definitions
for each of the fundamental structures within the
programs.) These structure definitions are followed
by the second division, consisting of the source pro­
gram itself, written in standard FORTRAN augmented
by the just defined structures. Each programmer is
free to define the fundamental structure in any manner
that suits his (or her) convenience, thereby providing
flexibility. Division one of the compilation will be the
conversion of the user defined structures within the
source program into standard FORTRAN statements,
and the insertion of the resulting statements into ap­
propriate places of the original source. In most situa­
tions, we "very strongly convert" in the sense of
Ledgard and Marcotty, the various D, D', and BJn
structures to standard FORTRAN structures.11 This
conversion is followed by a routine FORTRAN com­
pilation of the entire converted program. Any con­
struct not part of standard FORTRAN must have been
defined and converted. A program without structure
definitions is assumed to be in standard FORTRAN,
and, as such, does not require a division one of the
compilation.

This differs from pre-processing, as it already exists
today, in that each programmer, on a dynamic basis,
creates his own form or forms for the fundamental
structures. We reiterate that several different forms

A Dynamic (Fortran) Programming System 919

of each structure niay ue useu in each program, xnere
are no pre-established forms for the structures them­
selves, only the parts of the structures remain in­
variant. This is the feature that provides the flexibility
absent in the more conventional pre-processing.

All terminology used in describing structures will be
compatible with FORTRAN usage. Thus, if in denning
a predicate structure, the condition itself is referred
to as being a logical expression, then the condition
will require no further definition. Rather, it shall be
, „] 4-1, , . + „11 ~-P 4 -1 ,^ o-H-*.;V>ii<f/M* o « / l / > 1 i a v n n f a K i V K / < o / v f
<A>0£) U111CVA l / l i a t a i l VSJ- unc; C I U U . L I J I ' U . U ^ O cvuvi u u u i civ i^/ i l a u i \ /o vr-i-

FORTRAN logical expressions will apply.
This compatibility with FORTRAN will also apply

to the structure definition statements, e.g., such state­
ments will begin in Column 7, etc.

As a specific of the implementation, the actual con­
version of the user defined structures into FORTRAN
must itself be done in FORTRAN, and the resulting
conversion must result in standard FORTRAN state­
ments.3 (This in itself is difficult because of the in­
complete manner in which strings are defined in FOR­
TRAN.) The conversion of user defined structures will
require the insertion of new statements labels, and
may, as well, require new variable names. In those
cases where the existing FORTRAN can readily be
adapted to accept variable names and statement labels
beginning with previously illegal characters, such as $,
or #> the conversion will be simplified. In some other
cases, the implementation may permit the programmer
to designate and reserve specific sets of labels and
names for the conversion process. Neither of these,
however, can be a limitation, and, in the general case,
the source program must be completely pre-scanned so
that blocks of legal, unused statement labels and
variable names may be identified for use in the struc­
ture conversion.

As a part of the structure conversion phase, the
original structure statements will be converted into
comments, so that they can be retained for documen­
tary purposes.

STRUCTURE DEFINITION

It is emphasized that, on a program by program
basis, the programmer is free to define any number
of structures (including none at all) that suits his (or
her) convenience in the writing of the program. The
programmer will be free to define his own structures,
so long as he (or she) retains all of the essential parts
for each structure. Thus, in what follows, the method
of definition will be presented. Examples will be in­
cluded for illustrative purposes only.

While no attempt is made to either prescribe or limit
the forms of specific structures, certainly, all of the
control structures occurring in the more common lan­
guages (e.g., ALGOL), expressed in any natural lan­
guage using the Latin alphabet, should be definable
for use in the dynamic FORTRAN programming sys-

b C m . x lx u u i yjLjf xxCiixxxi, bjr&uoxxxy u v i u b i i A c bx y a i o i b y

and "autre" could easily be used in place of "if",
"then", and "else".

As indicated previously, the actual form of the struc­
ture definition depends upon the structure itself. The
structures to be used are defined in a "structure divi­
sion", placed in front of the main program. The first
statement of each definition (beginning in Column 7)
will be one of the following depending upon the
structure:

STRUCTURE SEQUENTIAL
STRUCTURE PREDICATE
STRUCTURE REPETITIVE
STRUCTURE CASE

Each of these structures has its own, unique parts,
which must be defined. Starting in Column 7, the com­
ponent of the structure is indicated. That is followed
by the statement to be used in the program to define
the structure.

As an overall program organization, each program
consists of a large sequential structure (which need
not be explicitly defined). Within this structure, predi­
cate, repetitive, and case structures, if needed, must be
programmed in a form defined either in the structure
section, or in standard FORTRAN. Structures may
be nested within other structures. Indication of se­
quential structures is optional, except that they must
be indicated explicitly when they are made up of more
than one statement and are contained within predicate,
case, or repetitive structures. At the other extreme,
each statement is, by default, a sequential structure
of one statement. There is no need to ever explicitly
define a sequential structure of only one statement,
even when it is inside of a predicate, repetitive, or case
structure.

DEFINITION OF SEQUENTIAL STRUCTURES

The sequential structure is extremely trivial. To de­
fine a sequential structure or a sequential block, it is
merely necessary to indicate its opening and its closing
form. For example, a programmer might define the
structure as follows:

STRUCTURE SEQUENTIAL
OPENING BEGIN
CLOSING END

This will cause the programming system to recognize
groups of statements and/or structures between the
defined OPENING and CLOSING statement brackets
as a sequential structure. Each individual statement
will be treated as a sequential structure without being
so defined, and without having statement brackets. In
the general case the defined OPENING statement will
be converted into a comment, and otherwise ignored.
The defined CLOSING statement will be converted into

920 National Computer Conference, 1976

a comment, and a CONTINUE with a legal label will
be inserted just ahead of the converted END. The
following special cases are recognized:

1. If the entire program is included as a sequential
block, the defined CLOSING statement is con­
verted into a conventional FORTRAN END
statement. (It is anticipated, however, that non­
executable statements, such as DIMENSION and
FORMAT, will be placed outside of such blocks.)

2. If the structure is the THEN or ELSE part of a
predicate structure, a PROCEDURE part of a
replicative structure, or an ALTERNATIVE
part of a case structure, a CONTINUE with a
legal label is inserted just after the converted
OPENING statement.

3. If the defined OPENING statement is labeled, a
CONTINUE statement with this label is inserted
just after the defined OPENING statement.

4. If the defined CLOSING statement is labeled, this
label will be used on the CONTINUE inserted
just before it.

DEFINITION OF PREDICATE STRUCTURES

The predicate structure consists of from two to four
parts: a condition, an affirmative or condition—true
alternative, an optional negative or condition—false
alternative, and an optional closing. The condition
itself functions as the opening of the structure. The
two alternatives will be identified as sequential struc­
tures (possibly containing other structures). A closing
may optionally be defined for the structure. If, how­
ever, no such closing is defined, the structure will be
assumed to terminate at the end of the negative alterna­
tive, if any, or at the end of the positive alternative if
there is no negative alternative.

As an example, consider:

STRUCTURE PREDICATE
OPENING IF (logical expression)
AFFIRMATIVE THEN (structure)
NEGATIVE ELSE (structure)
CLOSING END IF

(The use of parentheses is for generic purposes, i.e.,
any logical expression legal within FORTRAN, or any
structure defined for the current program, may be
used.)

The opening statement will be converted to a com­
ment. A standard logical IF for the negative of the
logical expression in the opening statement will be
created to transfer to the negative alternative (or the
closing if there is no negative alternative). This state­
ment will carry the same label as the original opening
in the structured form, if any. The positive alternative
(a structure) will follow, in line, terminating with a
converter generated GO TO the closing of the predicate
structure. The negative alternative will then follow

in line. A labeled CONTINUE will be inserted as the
final statement (or closing) of the predicate structure.
The user supplied indicators of the alternatives and the
closing will be converted into comments.

It is noted that the requirement for a condition and
an affirmative alternative structure precludes the in­
terpretation of a standard FORTRAN logical IF as a
defined structure. Use of the standard logical IF,
followed by a single statement "then procedure" (other
than the GO TO) is encouraged in the dynamic FOR­
TRAN programming system. Such logical IF's possess
all of the virtues of structure. Moreover, as part of
standard FORTRAN, they require no further defini­
tion.

DEFINITION OF REPETITIVE STRUCTURES

The repetitive structure is, perhaps, the most difficult
to define. This is a natural result of the fact that the
repetitive structure permits a large number of varia­
tions. A controlled loop, whether or not it is arranged
as a definite structure, has certain recognizable parts.
These always include a body or procedure that is re­
peated many times, and a test that is performed many
times, to determine whether or not to leave the loop. In
some cases, the loop is controlled by a counter or index
that must be initialized once and incremented many
times. In some cases, there are data values to be
initialized once. The testing may be done before each
performance of the procedure, after each performance
of the procedure or at a specific point within the pro­
cedure. In the latter case, there are, in effect, two
procedures separated by a test, and organized in such
a manner that there will be many performances of the
two procedures, in order. (In what follows, we will not
be limited as to the number of possible procedures to be
repeated. We have implemented the full Omega-K
structure of Bohm and Jacopini.1) We note, further,
that there are two possible tests for leaving a loop:
the loop may be continued UNTIL a certain condition
becomes true, or it may be continued WHILE a certain
condition remains true. (These are reverses of each
other. In the former case, repeat on condition false,
in the second repeat on condition true. Negating the
condition permits switching of the test.)

Thus, in describing a repetitive structure, there is a
mandatory opening section, an optional initialization,
one or more procedures to be repeated, one or more
tests for continuation or completion of the loop either
before the first procedure, after the last procedure,
or between any two procedures and finally a structure
closing.

As an example consider:

STRUCTURE REPETITIVE
OPENING PERFORM
INITIAL ESTABLISH (structure) *

* The INITIAL part is optional.

A Dynamic (Fortran) Programming System 921

CONTINUE or
COMPLETE
PROCEDURE (structure)**

CONTINUE or
COMPLETE

PROCEDURE (structure)**

CONTINUE or
COMPLETE

TEST (logical expression) %

TEST (logicalexpression):

TEST (logical expression):

CLOSING END PERFORM

During the structure conversion phase of the pro­
gram, the opening statement will be converted to a
comment, and the initialization part expanded as previ­
ously described. A labeled CONTINUE statement will
be inserted either immediately after the initialization,
if any, or after the opening. Each continue part or
complete part will be preceded and followed by labeled
CONTINUE statements, to be inserted if not provided
by the programmer. (Two of these parts coming to­
gether, however, will not have a CONTINUE inserted
between them.) The continue and complete parts, as
logical expressions, will be incorporated into logical
IF statements, as follows:

CONTINUE part
IF (.NOT. expression) GO TO closing

COMPLETE part
IF (expression) GO TO closing

The various procedure parts will be converted as previ­
ously described. Immediately before the closing com­
ponent, a GO TO the beginning of the first procedure
will be inserted by the converter. The closing itself
will be converted into a labeled CONTINUE. As in
the case of all structures, all statements requiring
conversion will be converted into comments.

DEFINITION OF CASE STRUCTURES

The case structure involves the identification of an
(integer-valued) arithmetic expression which func­
tions as an index and a set of alternatives or choices
to be executed depending upon the value of the index,
i.e., if the index is 1, choice 1 only will be executed, etc.
For purposes of implementation, the arithmetic ex­
pression functions as the opening of the structure. A
closing part is mandatory.

As an example, consider:

STRUCTURE CASE

OPENING EXAMINE (arithmetic expression)

** One PROCEDURE part required, the remainder are optional.
JOne CONTINUE or COMPLETE part is required, the re­
mainder are optional. A repetitive structure may be denned with
both a continue and a complete part.

ALTERNATIVE n CASEn (structure) *

CLOSING END CASE

The opening statement itself is converted to a com­
ment. If the arithmetic expression is not an integer
variable name, an arithmetic assignment statement
will be generated, setting the expression to an integer
w o r i o W o T V l Q T T T T Y f n n n K n - n i T r i l l Tnn i n o a w f o ^ i-P •K>i->r>rl/-i/l
T M.A I U U I V / I i l l \ / -I. -I. JL^A. X U l l U b l V l l TV 1 1 1 KJS^ l l l O U l ^ U 1J- l l ^ C U C U *

A computed GO TO statement will then be created, to
send control to an appropriate alternative. The arith­
metic assignment statement, if any, or the computed
GO TO if no assignment statement is needed, will carry
the same label as the original opening in the structured
form if anTr. Each of thQ °lternatives w*̂ l si""' wif" a
GO TO the closing statement, which, itself, will be con­
verted to a CONTINUE with a system generated
label.

GENERAL PROVISIONS

During the process of interpreting the user supplied
structure definition, the definition statements will be
converted into comments. A blank comment statement
will be inserted following every closing component.

All comments included in the original program will
be retained during structure conversion.

It is generally recommended that structures be in­
dented to facilitate their recognition. In using this
dynamic programming system, no indentation rules are
imposed upon the user. Indentation supplied by the user
(if any) will be retained by the converter.

SAMPLES

In what follows, learning exercises will be shown
written in a form for the FORTRAN programming
system, and then converted into standard FORTRAN.
They are intended purely as a demonstration of the
concepts previously described.

Sample 1.—Table of roots of integer valued real
numbers.

A. Source in Dynamic FORTRAN

STRUCTURE SEQUENTIAL
OPENING START
CLOSING FINISH
STRUCTURE REPETITIVE
OPENING REPEAT
INITIAL SET
PROCEDURE

* Normally, there will be three or more of these components. The
lower case n is used to indicate an integer number: 1,2, . . .
maximum value.

922 National Computer Conference, 1976

Sample 1 continued
A. Source in Dynamic FORTRAN continued

COMPLETE TEST
CLOSING END REPEAT
STRUCTURE REPETITIVE
OPENING ITERATE
INITIAL SET
PROCEDURE
COMPLETE CONVERGE
CLOSING END ITERATE
DIMENSION Y (10)
START
WRITE (6,1001) (N,N = 1,10)
REPEAT

SET
1 = 1
START
X = FLOAT (I)
Y(1)=X
REPEAT

SET
J = 2
START
ITERATE

SET
START
V = FLOAT (J)
Z3 = l.
FINISH
START
Z = Z3
Z1=(V-1.)*Z
Z2 = X/Z**(J-1)
Z3=(Z1 + Z2)/V
FINISH
CONVERGE
ABS(Z-Z3) .LT. X*l .E-6
END ITERATE

Y(J)=Z3
J = J + 1
FINISH
TEST
J .GT. 10
END REPEAT

WRITE (6,1002) Y
1 = 1 + 1
FINISH
TEST
I .GT. 50
END REPEAT

STOP
FINISH

1001 FORMAT (1H1,10(3X,5HROOT,I2))
1002 FORMAT (1H,10F10.6)

END

B. Converted Standard FORTRAN
C STRUCTURE SEQUENTIAL
C OPENING START

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c

c
c
90001

c

c
c
90002

c
c
c
c

90003
C
90004
C

90005
C
C

90006
C

90007
C

CLOSING FINISH

STRUCTURE REPETITIVE
OPENING REPEAT
INITIAL SET
PROCEDURE
COMPLETE TEST
CLOSING END REPEAT

STRUCTURE REPETITIVE
OPENING ITERATE
INITIAL SET
PROCEDURE
COMPLETE CONVERGE
CLOSING END ITERATE

DIMENSION Y(10)
START
WRITE (6,1001) (N,N = 1,10)
REPEAT

SET
1 = 1
CONTINUE
START
X = FLOAT (I)
Y(1)=X
REPEAT

SET
J = 2
CONTINUE
START
ITERATE

SET
START
V=FLOAT (J)
Z3=l .
CONTINUE
FINISH
CONTINUE
START
Z = Z3
Z1=(V-1.)*Z
Z2 = X/Z**(J-1)
Z3=(Z1+Z2)/V
CONTINUE

FINISH
CONVERGE
IF (ABS(Z-Z3) .LT. X*1.E

TO 90006
GO TO 90004
CONTINUE
END ITERATE

Y(J)=Z3
J = J + 1
CONTINUE
FINISH

6) GO

A Dynamic (Fortran) Programming System 923

Sample 1 continued

B. Converted Standard FORTRAN continued

c

90008
C

90009
C

c

90010
C

90011
C

TEST
IF (J.GT. 10) GO TO 90008
GO TO 90002
CONTINUE
END REPEAT

WRITE (6,1002) Y
1 = 1 + 1
CONTINUE
FINISH
TEST
IF (I.GT.50) GO TO 90010
GO TO 90001
CONTINUE
END REPEAT

STOP
CONTINUE
FINISH

1001 FORMAT (1H1,10 (3X,5HROOT ,12))
1002 FORMAT (1H ,10F10.6)

END

Sample 2.—Replacement sort of forty random numbers

A. Source in Dynamic FORTRAN

STRUCTURE SEQUENTIAL
OPENING BEGIN
CLOSING END
STRUCTURE PREDICATE
OPENING TEST
AFFIRMATIVE THEN
CLOSING END TEST
STRUCTURE REPETITIVE
OPENING LOOP
INITIAL SET
PROCEDURE
CONTINUE WHILE
CLOSING END LOOP
DIMENSION D (40)
BEGIN
WRITE (6,91)
LOOP

SET
1 = 1
BEGIN
CALLBGHT(D(I))
WRITE (6,92) D(I)
1 = 1 + 1
END
WHILE
I .LE. 40
END LOOP

WRITE (6,93)

SET
1 = 1
BEGIN

LOOP
SET
BEGIN
IMIN = I
J = I + 1
END
BEGIN
TEST

D(J) .LT.D(IMIN)
THEN
IMIN=J
TTlATT-k mTTlCtm
SUViU A.CJOX

J = J + 1
END
WHILE
J .LE. 40
END LOOP

T = D(I)
D(I)=D(IMIN)
D(IMIN)=T
1 = 1 + 1
END
WHILE
I .LE. 39
END LOOP

LOOP
SET
1 = 1
BEGIN
WRITE (6,92) D(I)
1 = 1 + 1
END
WHILE
I .LE. 40
END LOOP

STOP
END

91 FORMAT (1H1, 38HSORT OF FORTY RANDOM
NUMBERS, UNSORTED, / /)

92 FORMAT (1H.E15.8)
93 FORMAT (1H1, 36HSORT OF FORTY RANDOM

NUMBERS, SORTED, / /)
END

B. Converted Standard FORTRAN

STRUCTURE SEQUENTIAL
OPENING BEGIN
CLOSING END

STRUCTURE PREDICATE

924 National Computer Conference, 1976

Sample 2 continued

B. Converted Standard FORTRAN continued

90001
C

90002
C
C

90003
C

C
C

90004
C
C
c
c

90005
C
90006
C
C

90007
C

90008
C

OPENING TEST
AFFIRMATIVE THEN
CLOSING END TEST

STRUCTURE REPETITIVE
OPENING LOOP
PROCEDURE
CONTINUE WHILE
CLOSING END LOOP

DIMENSION D (40)
BEGIN

WRITE (6,91)
LOOP

SET
1 = 1
CONTINUE
BEGIN

CALLBGHT(D(I))
WRITE (6,92) D(I)
1 = 1 + 1
CONTINUE
END

WHILE
IF (.NOT. (I .LE. 40)) GO TO 90003
GO TO 90001
CONTINUE
END LOOP

WRITE (6,93)
LOOP

SET
1 = 1

CONTINUE
BEGIN

LOOP
SET
BEGIN
IMIN = I
J = I + 1
CONTINUE
END

CONTINUE
BEGIN

TEST
IF (.NOT. (D(J) .LT. D (IMIN)))

GO TO 90007
THEN
IMIN=J
CONTINUE
END TEST

J = J + 1
CONTINUE
END

C WHILE
IF (.NOT. (J .LE. 40)) GO TO 90009
GO TO 90006

90009 CONTINUE
C END LOOP

T=D(I)
D(I)=D(IMIN)
D(IMIN)=T
1 = 1 + 1

90010 CONTINUE
C END
C WHILE

IF (.NOT. (I .LE. 39)) GO TO 90011
GO TO 90004

90011 CONTINUE
END LOOP

C LOOP
C SET

1 = 1
90012 CONTINUE
C BEGIN

WRITE (6,92) D(I)
1 = 1 + 1

90013 CONTINUE
C END
C WHILE

IF (.NOT. (I .LE. 40)) GO TO 90014
GO TO 90012

90014 CONTINUE
C END LOOP

STOP
90015 CONTINUE
C END
91 FORMAT (1H1, "SORT OF FORTY RAN­

DOM NUMBERS, UNSORTED" / /)
92 FORMAT (1H,F15.8)
93 FORMAT (1H1, "SORT OF FORTY RAN­

DOM NUMBERS, SORTED" / /)
END

CONCLUSIONS

The foregoing discussion and samples demonstrate a
method for moving the practice of programming into
the nineteen seventies without abandoning FORTRAN.
The following observations are made:

1. The user defined structures so dominate the pro­
gram that, in its unconverted form, it is difficult
to recognize it as FORTRAN at all.

2. The original source is free of GO TO statements,
thus re-enforcing Dijkstra on the subject of that
statement.11

REFERENCES

1. Bohm, C. and G. Jacopini, "Flow Diagrams, Turing Ma­
chines, and Languages with only Two Formation Rules,"
Communications of the ACM, Volume 9, No. 5, May 1966.

A Dynamic (Fortran) Programming System 925

2. Dijkstra, E. W., "Notes on Structured Programming," in
Dahl, Dijkstra, and Hoare, Structured Programming, Aca­
demic Press, 1972.

3. Naur, P., "Programming Languages, Natural Languages,
and Mathematics," Communications of the ACM, Volume
18, No. 12, December 1975.

4. Ralston, A., Private Communication with this author, June
16,1975.

5. X3.9.1966 American Standard FORTRAN, American Stan­
dards Association, Washington, 1966.

6. X3.10.1966 American Standard Basic FORTRAN, American
Standards Association, Washington, 1966.

7. Wirth, N., "On the Design of Programming Languages,"
Proceedings of the IFIP Congress 197U, North Holland, 1974.

8. Johe, J. M., "Comments on the Topic 'Programming, and Its
Implications on Programming Languages," ACM '75 Pro­
ceedings of the Annual Conference.

9. Archibald, J. A., Jr. and M. Katzper, "On the Preparation
of Computer Science Professionals in Academic Institu­
tions," AFIPS Conference Proceedings, Volume 43, 1974.

10. Dijkstra, E. W., "Go To Statement Considered Harmful,"
Communications of the ACM, Volume 11, No. 3, March 1968.

11. Ledgard, H. F . and M. Marcotty, "A Genealogy of Control
Structures," Communications of the ACM, Volume 18, No.
11 November 1975.

12. Fodor, J. A., T. G. Bever and M. F. Garrett, The Psychology
of Language, McGraw-Hill Book Co., 1974.

