
Low-cost residue number systems for computer arithmetic

by BEHROOZ PARHAMI
\ n/r~u.„ TT~A ™+,. „-e T „ ~ I , — z

Tehran,Iran

ABSTRACT

The representation of integers by their residues with
respect to a set of pairwise-prime moduli is known as
the residue number representation system and has been
shown to have several advantages over conventional
number systems for digital computers. In this paper,
residue systems are considered for which each modulus
is of the form 2b-l. Such systems result in relatively
high storage efficiency as well as simple algorithms for
addition, subtraction multiplication, conversion, and
reconversion; hence the name "low-cost." The question
of existence for low-cost residue number systems is
examined. It is shown that the additional storage re
quirement with respect to binary representation is at
most one bit per word. Guidelines are given for opti
mal selection of the set of moduli to represent a de
sired range of integers. Algorithms for various opera
tions in a low-cost residue system are described.

INTRODUCTION

When dealing with large numbers in digital computers,
the computations are slowed down because of the re
quirement for carry or borrow propagation through
many stages of logic in addition and subtraction opera
tions and for long iterative algorithms to perform mul
tiplication and division. Attempts to eliminate the
propagation of carries and borrows have resulted in
proposals for stored-carry1 and signed-digit2 number
representation systems. The residue number system3

does not totally eliminate carry propagation but limits
it to within a few stages by representing lar°"e numbers
as an ordered set of smaller numbers that can be pro
cessed independently and in parallel. This is particu
larly advantageous in multiplication which becomes
almost as simple and as fast as addition. However, the
complexity of division in residue number systems
makes them unsuitable for general-purpose use.

In this paper, residue number systems are reviewed
briefly and their properties are enumerated. A class of
residue number representation systems which results
in relatively high storage efficiency as well as simple
algorithms for addition, subtraction, multiplication,

conversion, and reconversion algorithms is introduced.
The questions of existence, selection, storage efficiency,
and algorithms for such "low-cost" residue systems are
examined. The storage requirement for each word is
shown to be within one bit of the binary representa
tion. Algorithms needed for basic operations and con
versions are discussed.

RESIDUE NUMBER SYSTEMS

A residue number system**'0 is one in which a numeri
cal value n is represented by a k-tuple whose compo
nents are the residues of n with respect to an ordered
set of k moduli

p = <Pi,p2, • . ., Pk> (1)

which are relatively prime pairwise. Hence, n is repre
sented by the k-tuple

r = <r1?r2, . . ., rk> (2)

such that

rI = p1 |n;i = l,2, . . ., k (3)

where p = ii\£ means that p is the smallest non-negative
integer satisfying i=P + pn for some integer /?. The
range of a residue system (i.e., the number of distinct
values representable) is:

N = n P i (4)
i=i

To represent a negative integer —n, we simply repre
sent the positive integer N —n since we have

p , | (N - n) = P i | (- i i) ; i = l,2, . . ., k (5)

The integer N —n is the additive inverse of n and is
denoted by n. The residue representation f of n has
the following relation with the representation r of n:

fi = Pi!(Pi-r i) ; i = l,2, . . ., k (6)

If binary representation is used for the residues, the
number of bits required for storing each value in the
residue system is

i=l i=l

951

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1499799.1499930&domain=pdf&date_stamp=1976-06-07

952 National Computer Conference, 1976

which is always greater than or equal to [~log2 N~|, the
number of bits needed for the binary representation
of N distinct values. Hence, a residue number system
is less efficient than the binary representation in terms
of storage space.

Addition and multiplication in a residue system are
done by performing the corresponding operation
(modulo Pi) on the i-th residues of the two numbers,
independently of other residues. Hence, showing the
sum and product of x= <x1,x2, . . ., xk> and y= <yx,
Yz, • • -, Yk> by s and m, respectively, we can write:

Si = p I | (x1+y1);i = l,2, . . ., k (8)

m1 = p,|(x1-y1);i = l,2, . . ., k (9)

Subtraction is performed by adding the additive in
verse, as defined by (6). Thus, the carry propagation
delay for addition and subtraction is reduced and the
construction of very fast multiplication circuits is
made possible. However, comparison of magnitudes,
and hence division, and also detection of overflow con
ditions are fairly complex in residue number systems.
Hence, such systems are not suitable for general-
purpose use.

To find the normal representation n of a residue
number r - <r! ,r2 , . . . , r k>, the following equation may
be used

n = N | 2 ((r i c i ^) (10)
i=i \ Pi /

where the coefficient Cj is selected to be the smallest in
teger satisfying

Ci = P i (l + j8iP,)/N (11)

for some integer /?;.
Another reconversion process uses the following al

gorithm which is a formalization of the procedure
given in Reference 5.

Algorithm R (12)
[1] v<-r; n<-0; w«-l; %«-l, j = 1,2,.. ., k; i<-k
[2] Find smallest integer d such that for some /3,

d=(v,+/8pi)/Ui
[3] n<—n + wd
[4] For j = l ,2 , . . . , ksetVj^-Pjl (Vj-Ujd) and

Uj<—Pj | (UjPi)
[5] w<—wpi
[6] i<—i—1
[7] if i>0 then go to Step [2] else stop

LOW-COST RESIDUE SYSTEMS

A residue number representation system is low-cost
if each modulus pt is selected such that:

p 1 =2" . - l ; b 1 >2 (13)

The name "low-cost" is justified because of the rela
tively high storage efficiency and the simplicity of addi

tion subtraction, multiplication, conversion, and recon
version algorithms as will be seen in the remainder of
this paper. In this section, we will only concentrate on
the existence of such systems and their storage effi
ciency.

The selection of Vs must be made such that the re
sulting p^s are pairwise prime. It can be proven that
Pi and pj are relatively prime if and only if the cor
responding bj and bj are relatively prime (see Theorem
1 in the Appendix). Using this result, Table I has
been constructed to show the maximal sets of pairwise-
prime bi's for b} ^ 20, since making bt larger than 20
may defeat the advantage of residue number systems in
breaking long numbers into several short components.
We define, as a measure of this advantage, the dissec
tion factor:

8 = maxi(bi)/2ibi (14)

Table II shows possible selections of bs's for a given
total number of bits, B, which satisfy the following
criteria, in the order given: (1) Minimum value of 8,
and (2) Smallest number of bi's. The second criterion
is justified by the fact that once the size of the longest
group is fixed at its minimum value, no speed advan
tage results from making the other groups shorter.
Figure 1 shows the same results graphically.

We define as a measure of storage efficiency, the ratio
of N to the range of the binary system with the same
number of bits:

n = N/2B = n (P i / 2 ^) = n (l - 2 - b ,) (1 5)

It can be proven (see Theorem 2 in the Appendix) that

TABLE I—Maximal Compatible Sets of bj's (b ;<20) for Low-
Cost Residue Number Systems

Set
No.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

bl

2
2
2
3
3
3
3
3
3
4
4
5
5
5
5
5
5
7
7
7
7
11

b2

3
5
7
4
5
5
5
7
7
5
7
6
7
7
7
7
9
8
9
9
11
13

b3

5
7
11
5
7
7
11
10
11
7
11
7
8
9
11
11
11
11
10
11
13
14

b4

7
9
13
7
8
11
13
11
13
9
13
11
9
11
12
13
13
13
11
13
15
15

b5

11
11
15
11
11
13
14
13
17
11
15
13
11
13
13
17
14
15
13
17
16
17

b6

13
13
17
13
13
16
17
17
19
13
17
17
13
16
17
18
17
17
17
19
17
19

b7

17
17
19
17
17
17
19
19
20
17
19
19
17
17
19
19
19
19
19
20
19

b8

19
19

19
19
19

19

19
19

Low-Cost Residue Number Systems 953

XAU.LI.EJ 11—Best wioices ior DSS in a L.ow-uost itesiaue rsuniDer system witn a uiven lotai JNumDer 01 Bits (ts)

B bj

5 2
7 3
8 3
9 4
10 2
11 5
12 3
13 6
14 2

3
15 3
16 4
17 2
18 5
19 3
20 5
21 5
22 5
23 3
24 7
25 4
26 7
27 7
28 7

8
29 5
30 9
31 3

4
5

32 5
33 5
34 2

3

b2

3
4
5
5
3
6
4
7
5
4
5
5
3
6
4
7
7
8
5
8
5
9
9
10
9
7
10
7
7
7
7
8
5
5

b3

5

5

7
7
7
7
5
7
5
8
9
9
7
9
7
10
11
11
11
8
11
10
9
8
9
9
7
7

b4

7

7

8

9

9

11
11
11
11
11
9
8

b5 6(%)

60.0
57.1
62.5
55.6
50.0
54 is
41.7
53.8
50.0

46,7
43.8
41.2
38.9
36.8
40.0
42.9
40.9
34.8
37.5
36.0
38.5
40.7
39.3

31.0
36.7
35.5

34.4
33.3

11 32.4
11

B

35
36
37
38
39

40
41

42

43

44

45
46
47

48

49
50
51
52
53
54
55
56

bl
7
4
7
5
7
7
5
5
7
8
2
3
4
5
5
7
9
3
4
5
5
5
2
3
5
7
4
7
7
5
5
7
11
7

b2 b3 b4 b5

8 9 11
5 7 9 11
9 10 11
9 11 13
8 11 13
9 10 13
7 8 9 11
11 12 13
10 11 13
9 11 13
7 9 11 13
7 8 11 13
5 9 11 13
6 7 11 13
7 8 9 13
11 12 13
10 11 13
7 10 11 13
7 9 11 13
7 8 11 13
7 9 11 13
8 9 11 13
5 7 9 11
5 7 8 11
7 11 12 13
8 9 11 13
5 7 9 11
9 10 11 13
13 15 16
9 11 13 14
7 8 9 11
8 11 13 15
13 15 16
9 11 13 16

b6 5(%)

31.4
30.6
29.7
34.2
33.3

27.5
31.7

31.0

30.2

29.5

28.9
28.3

13 27.7
13

27.1

13 26.6
26.0
31.4
26.9

13 24.5
27.8
29.1
28.6

B

57

58

59

60

61
62
63
64

65

bl
11
11
2
3
5
5
5
r
0

7
7
8
11
13
3
4
5
5
7
7
7
9
5
7
7
7
8
9
2
3
5
5
7

b2 b3 b4 b5 b6 6 ^

13 16 17 29.8
14 15 17
11 13 15 17 29.3
11 13 14 17
7 13 16 17
9 11 16 17
9 13 14 17
11 12 13 17
8 11 15 17
10 11 13 17
9 11 13 17
15 16 17 28.8
14 15 17
11 13 16 17 28.3
11 13 15 17
9 13 16 17
11 13 14 17
8 13 15 17
9 11 16 17
11 12 13 17
10 11 13 17
7 9 11 13 16 26.2
11 13 15 16 25.8
11 13 15 17 27.0
11 13 16 17 26.6
11 13 15 17
11 13 14 17
7 11 13 15 17 26.2
5 11 13 16 17
7 9 11 16 17
7 11 12 13 17
8 9 11 13 17

for any low-cost residue number system 0.5<r?<l from
which we can conclude

2B-1<N<2B (16)

This shows that the storage requirement for a low-cost
residue system is within one bit of the most efficient
representation. It also shows that N is an increasing
function of B.

To select a low-cost residue system, B must be de
termined first. To do this, we first note that among
all choices for the set of moduli for each value of B,
given by Table II, the one for which mini(bi) is a
maximum results in the largest possible range (see
Theorem 3 in the Appendix). If more than one set
has this maximum value for mini(bi), we look at the
second smallest bt in the sets, etc. Table III gives the

maximum range obtainable for each value of B. Since,
in a low-cost residue system, the storage requirement
is dictated by B and the processing speed by maxi(bi),
the final choice for B among the values which provide
adequate range may involve a tradeoff between these
two factors. For example if B = 51 is sufficient for
some desired range, B = 52 and B = 53 must also be
considered for the final selection, since they provide
higher processing speeds at the expense of more stor
age space.

LOW-COST ALGORITHMS

We first note that in dealing with numbers repre
sented in a residue system, the following operations in-

http://xau.Li.Ej

954 National Computer Conference, 1976

S (percent)

max.(b.)

H 1 1 1 1 i 1
0 10 20 30 40 50 60

Total Number of Bi ts (B)

Figure 1—The values of maXj(bj) and S as functions of B

volving the set of moduli p are required (numbers fol
lowing each operation show the equations where it is
used) :

1. Subtraction from Pi : (6)
2. Addition modulo Pi : (8)
3. Determination of residues with respect to ps :

(3), (6), (12)
4. Multiplication modulo Pi : (9)
5. Multiplication by Pi : (12)
6. Division by Pi : (10)

We will show that low-cost algorithms exist for per
forming all of the above operations in a low-cost resi
due number system. Here, the term "low-cost" refers
to the computer implementation of algorithms, keeping
in mind that in digital computers addition and sub
traction are the fastest and least expensive of the four
basic operations, while division is the slowest and most
expensive to implement. Most of the operations to be
described are also used in encoding, decoding and
arithmetic operations for low-cost arithmetic error
codes.6-7

Subtraction of a b rbit binary number x from pi is
quite simple since Pi = 2bi —1 is represented in binary as
bi digits of 1. Hence, the digits of Pj—x are the logical
complements of the digits of x.

Addition of two b rbit binary numbers modulo pt is
also simple. It consists of a simple b rbit binary addi
tion with end-around carry; i.e., the carry generated
by the last digit position is inserted into the first digit
position. This is true since for a sum which is greater
than pb we have to subtract Pi=2bi —1 in order to ob

tain its modulo pj residue. This is done by subtracting
2bi (discarding the outgoing carry) and adding 1 (in
serting a carry into the first digit position). The only
problem arises when the sum is equal to Pi, in which
case we either need special circuitry to detect this con
dition and insert a carry into the first digit position if
it arises, or simply leave the result as it is and have
two representations for zero. This latter approach will
cause no difficulty since in all modulo-Pi operations the
two values 0 and 2bi — 1 are entirely equivalent.

To determine the residue of a binary number x with
respect to p ,̂ we simply break x into b rbit bytes, start
ing at the right end, and add the resulting bytes modulo
Pi. This is true since the residue of 2bi with respect to
Pi is equal to 1 and the value of x is a polynomial in
2bi, with the values of the brbit bytes of x as the coeffi
cients. Hence the residue of x with respect to ps is the
same as the residue of the sum of these coefficients
with respect to pi7 which is the modulo ps addition of
these coefficients.

Multiplication in digital computers is usually per
formed through multiple additions, either sequentially
by a single adder or in parallel by using a number of
carry-save adders.8 Hence, modulo-Pi multiplication of
two numbers can be performed through a number of
modulo-Pi additions, the algorithm for which was dis
cussed previously.

Multiplication of a binary number x by Pi=2bi —1
can be done by a single subtraction x.2bi—x, since x.2b<
can be easily obtained through shifting x to the left by
bi bits (inserting bs zero to the right of x).

Finally, division by p4 (of a number which is a mul
tiple of Pi) can be done by a very interesting algorithm7

which is obtained by observing that x=x.2bi —x.pj.
Now, the first bs bits of x.2bi are known to be zero and
since we have x.pj, the first bt bits of x can be obtained
by subtraction. These bs bits of x now form the second
bi bits of x.2bi and, hence, the second bs bits of x are
obtained by another subtraction, taking into account
a borrow which may have been generated by the first
subtraction. This process is continued until all the
digits of x are computed.

CONCLUSION

In this paper, we have introduced the class of low-cost
residue number representation systems and studied
their properties. It appears that such systems allevi
ate the storage inefficiency normally associated with
residue number systems and simplify many of the
basic algorithms. The division process, however, re
mains complex. Therefore, such systems are useful
only for special applications.

One disadvantage of the low-cost residue number
system is that the moduli, and hence the residues, are
larger than those for conventional residue systems
with no restriction on Pi's. Therefore, carry propaga
tion delay is not reduced by as much. However, this

Low-Cost Residue Number Systems 955

TABLE III—Maximum Range pf Low-Cost Residue Number Systems with a Given B and with Minimum 5

B<

5
7
8
9
10

11
12
13
14
15

16
17
18
19
20

21
22
23
24
25

26
27
28
29
30

31
32
33
34
35

max N

21
105
217
465
651

•« /"\ r- *\

3255
8001
13335
27559

59055
82677
248031
413385
1003935

2011807
4039455
7027545
16548735
30177105

66389631
132844159
266734335
513010785
1070075391

2055054945
4118168929
8268764385
14385384615
33875260545

log
(max N)

1.322
2.021
2.336
2.667
2^ 814

3.291
3.513
3.903
4.125
4.440

4.771
4.917
5.395
5,616
6.002

6.304
6.606
6.847
7.219
7.480

7.822
8.123
8.426
8.710
9.029

9.313
9.615
9.917
10.158
10.530

B

36
37
38
39
40

41
42
43
44
45

46
47
48
49
50

51
52
53
54
55

56
57
58
59
60

61
62
63
64
65

max N

61772533935
135899574657
265605682657
^d^7Q7Zlfi7R?l

1050133076895

2184820937985
4202071339935
8764987527681
16832955054495
33731921697439

67729449077535
117830685381465
277472259124095
505978825461585
1113153416015487

2233832636833665
4351417898969631
8601640032846945
17792433492601215
35442210736330753

71028895618181759
142904633121912833
285803715209210623
575488792479997953
1148272730287255039

2210621488441664865
4572655407598512255
9145099114469304447
18397371556871432703
36368285000677545089

log
(max N)

10.791
11.133
11.424
11 7 ^

12.021

12.339
12.623
12.943
13.226
13.528

13.831
14.071
14.443
14.704
15.047

15.349
15.639
15.935
16.250
16.556

16.853
17.158
17.457
17.761
18.060

18.345
18.660
18.961
19.265
19.561

disadvantage is more than offset by the many advan
tages which we have enumerated in this paper.

ACKNOWLEDGMENT

The author gratefully acknowledges fruitful discus
sions with Professor Siavash Shahshahani and also
the programming help of Mr. Bijan Aaraam for the
preparation of this paper.

REFERENCES

1. Metze, G. and J. E. Robertson, "Elimination of Carry
Propagation in Digital Computers," Proc. of the Interna

tional Conf. on Information Processing, pp. 389-396, Paris,
June 1959.
Avizienis, A., "Signed-Digit Number Representations for
Fast Parallel Arithmetic," IRE Transactions on Electronic
Computers, Vol. EC-10, No. 3, pp. 389-400, September 1961.
Svobada, A., "Rational Numerical System of Residue
Classes," Storje Na Zpracovani Informaci, pp. 9-37, Sbornik
V, Nakl. CSAV, Praha, 1957.

Svoboda, A., "The Numerical System of Residual Classes in
Mathematical Machines," Proceedings of International Con
ference on Information Processing, pp. 419-422, UNESCO,
Paris, June 1959, Butterworths, London, 1960.
Garner, H. L., "The Residue Number System," IRE Trans
actions on Electronic Computers, Vol. EC-8, No. 8, pp. 140-
147, June 1959.

6. Avizienis, A., "Arithmetic Error Codes: Cost and Effective
ness Studies for Application in Digital System Design,"

4.

5.

956 National Computer Conference, 1976

IEEE Transactions on Computers, Vol. C-20, No. 11, pp.
1322-1331, November 1971.

7. Avizienis, A., "Arithmetic Algorithms for Error-Coded
Operands," IEEE Transactions on Computers, Vol. C-22,
No. 6, pp. 567-572, June 1973.

8. Wallace, C. S., "A Suggestion for a Fast Multiplier," IEEE
Transactions on Electronic Computers, Vol. EC-13, No. 1,
pp. 14-17, February 1964.

APPENDIX

THEOREMS AND THEIR PROOFS

Theorem 1: Pj = 2bi —1 and pj = 2bj —1 are relatively
prime if and only if bi and bj are relatively prime.

Proof: (Only if part)—Let bi=zx and bj=zy with
z > l . Then, since an —1 is divisible by a—1, p4 and p3

are both divisible by 2Z —1 and, hence, they are not rel
atively prime.

(If part)—Suppose there exist pairs of integers of the
form 2bi —1 and 2bj — 1 which are not relatively prime
while bi and bj are. Let 2X —1 and 2y—1 be one such
pair with x>y and x+y a minimum among all such
pairs. Let the odd prime number z divide 2X —1 and
2̂ — 1. Then, z must also divide their difference

2x-2>=2-v(2x- J-l). (17)

Since z cannot divide 2-v, it must divide 2x_y - 1 . But now
z divides 2x_y —1 and 2y —1 with x—y and y relatively
prime (since, by assumption, x and y are relatively
prime) and (x—y) +y smaller than x+y which was as
sumed to be a minimum among all such pairs; clearly
a contradiction.

Theorem 2: If bs>2 for all i and if for M=j, we have
biv^bj, t h e n

k

, 7 =]^[(l -2- b .)> l -2- (m i , V (b
1

, - 1 '> l /2 (18)
i=l

Proof: The second inequality is obvious upon noting
that mm; (bi) >2. To prove the first inequality, we first
show, by induction on k, that:

J^(l-2b .)>l- j r2-b
i (19)

i=i i=l

Clearly this is true for k = l. To show that if the in
equality holds for k it will also hold for k+1 , we mul
tiply both sides of (19) by the positive value (1 — 2_b*+i)
to get:

k+i k+i k

n(i-2-b')>i-x2"b'+b^-22~b' <2°)
i=l i=l i=i

The right-hand-side of (20) is clearly greater than the
right-hand-side of (19) with k replaced by k + 1. Next,
denoting min^K^bO by m, we write:

k oc

l _ ^ 2 - b
1 > l - 2 2 - x = l-2- (n '-11 (21)

i=l x=m

Combining (21) with (19), we get the desired result.

Theorem 3: Given bi<b2< . . . <bk and b'1<b'2

< . . . <b'k with b ^ b ' j

and

jrbi=2>'i = B ' (22)
i=l i=i

we have

f[(2b
l-l)>fj(2b'1-l). (23)

i=i i=l

Proof: Using Theorem 2 and the fact that b ' i < b , - l ,
we can write:

k k

n(2 b . - l)=2»]^[(l -2- b i) (24)
i=l i=l

>2 B (l -2- (V 1 1)
>2B(l-2-b ' i)

On the other hand:

k k

T^(2 b ' i - l)=2 B P}(l -2 - b ' i)<2 H (l -2 - b ' 1) (25)

Combining (24) and (25), we get the desired result.

