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ABSTRACT 

The representation of integers by their residues with 
respect to a set of pairwise-prime moduli is known as 
the residue number representation system and has been 
shown to have several advantages over conventional 
number systems for digital computers. In this paper, 
residue systems are considered for which each modulus 
is of the form 2b-l. Such systems result in relatively 
high storage efficiency as well as simple algorithms for 
addition, subtraction multiplication, conversion, and 
reconversion; hence the name "low-cost." The question 
of existence for low-cost residue number systems is 
examined. It is shown that the additional storage re
quirement with respect to binary representation is at 
most one bit per word. Guidelines are given for opti
mal selection of the set of moduli to represent a de
sired range of integers. Algorithms for various opera
tions in a low-cost residue system are described. 

INTRODUCTION 

When dealing with large numbers in digital computers, 
the computations are slowed down because of the re
quirement for carry or borrow propagation through 
many stages of logic in addition and subtraction opera
tions and for long iterative algorithms to perform mul
tiplication and division. Attempts to eliminate the 
propagation of carries and borrows have resulted in 
proposals for stored-carry1 and signed-digit2 number 
representation systems. The residue number system3 

does not totally eliminate carry propagation but limits 
it to within a few stages by representing lar°"e numbers 
as an ordered set of smaller numbers that can be pro
cessed independently and in parallel. This is particu
larly advantageous in multiplication which becomes 
almost as simple and as fast as addition. However, the 
complexity of division in residue number systems 
makes them unsuitable for general-purpose use. 

In this paper, residue number systems are reviewed 
briefly and their properties are enumerated. A class of 
residue number representation systems which results 
in relatively high storage efficiency as well as simple 
algorithms for addition, subtraction, multiplication, 

conversion, and reconversion algorithms is introduced. 
The questions of existence, selection, storage efficiency, 
and algorithms for such "low-cost" residue systems are 
examined. The storage requirement for each word is 
shown to be within one bit of the binary representa
tion. Algorithms needed for basic operations and con
versions are discussed. 

RESIDUE NUMBER SYSTEMS 

A residue number system**'0 is one in which a numeri
cal value n is represented by a k-tuple whose compo
nents are the residues of n with respect to an ordered 
set of k moduli 

p = <Pi,p2, • . ., Pk> (1) 

which are relatively prime pairwise. Hence, n is repre
sented by the k-tuple 

r = <r1?r2, . . ., rk> (2) 

such that 

rI = p1 |n;i = l,2, . . ., k (3) 

where p = ii\£ means that p is the smallest non-negative 
integer satisfying i=P + pn for some integer /?. The 
range of a residue system (i.e., the number of distinct 
values representable) is: 

N = n P i (4) 
i=i 

To represent a negative integer —n, we simply repre
sent the positive integer N —n since we have 

p , | ( N - n ) = P i | ( - i i ) ; i = l,2, . . ., k (5) 

The integer N —n is the additive inverse of n and is 
denoted by n. The residue representation f of n has 
the following relation with the representation r of n: 

fi = Pi!(Pi-r i) ; i = l,2, . . ., k (6) 

If binary representation is used for the residues, the 
number of bits required for storing each value in the 
residue system is 

i=l i=l 

951 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1499799.1499930&domain=pdf&date_stamp=1976-06-07


952 National Computer Conference, 1976 

which is always greater than or equal to [~log2 N~|, the 
number of bits needed for the binary representation 
of N distinct values. Hence, a residue number system 
is less efficient than the binary representation in terms 
of storage space. 

Addition and multiplication in a residue system are 
done by performing the corresponding operation 
(modulo Pi) on the i-th residues of the two numbers, 
independently of other residues. Hence, showing the 
sum and product of x= <x1,x2, . . ., xk> and y= <yx, 
Yz, • • -, Yk> by s and m, respectively, we can write: 

Si = p I | (x1+y1);i = l,2, . . ., k (8) 

m1 = p,|(x1-y1);i = l,2, . . ., k (9) 

Subtraction is performed by adding the additive in
verse, as defined by (6). Thus, the carry propagation 
delay for addition and subtraction is reduced and the 
construction of very fast multiplication circuits is 
made possible. However, comparison of magnitudes, 
and hence division, and also detection of overflow con
ditions are fairly complex in residue number systems. 
Hence, such systems are not suitable for general-
purpose use. 

To find the normal representation n of a residue 
number r - <r! ,r2 , . . . , r k>, the following equation may 
be used 

n = N | 2 ( ( r i c i ^ ) (10) 
i=i \ Pi / 

where the coefficient Cj is selected to be the smallest in
teger satisfying 

Ci = P i ( l + j8iP,)/N (11) 

for some integer /?;. 
Another reconversion process uses the following al

gorithm which is a formalization of the procedure 
given in Reference 5. 

Algorithm R (12) 
[ 1] v<-r; n<-0; w«-l; %«-l, j = 1,2,.. ., k; i<-k 
[2] Find smallest integer d such that for some /3, 

d=(v,+/8pi)/Ui 
[3] n<—n + wd 
[4] For j = l ,2 , . . . , ksetVj^-Pjl (Vj-Ujd) and 

Uj<—Pj | (UjPi) 
[5] w<—wpi 
[6] i<—i—1 
[7] if i>0 then go to Step [2] else stop 

LOW-COST RESIDUE SYSTEMS 

A residue number representation system is low-cost 
if each modulus pt is selected such that: 

p 1 =2" . - l ; b 1 >2 (13) 

The name "low-cost" is justified because of the rela
tively high storage efficiency and the simplicity of addi

tion subtraction, multiplication, conversion, and recon
version algorithms as will be seen in the remainder of 
this paper. In this section, we will only concentrate on 
the existence of such systems and their storage effi
ciency. 

The selection of Vs must be made such that the re
sulting p^s are pairwise prime. It can be proven that 
Pi and pj are relatively prime if and only if the cor
responding bj and bj are relatively prime (see Theorem 
1 in the Appendix). Using this result, Table I has 
been constructed to show the maximal sets of pairwise-
prime bi's for b} ^ 20, since making bt larger than 20 
may defeat the advantage of residue number systems in 
breaking long numbers into several short components. 
We define, as a measure of this advantage, the dissec
tion factor: 

8 = maxi(bi)/2ibi (14) 

Table II shows possible selections of bs's for a given 
total number of bits, B, which satisfy the following 
criteria, in the order given: (1) Minimum value of 8, 
and (2) Smallest number of bi's. The second criterion 
is justified by the fact that once the size of the longest 
group is fixed at its minimum value, no speed advan
tage results from making the other groups shorter. 
Figure 1 shows the same results graphically. 

We define as a measure of storage efficiency, the ratio 
of N to the range of the binary system with the same 
number of bits: 

n = N/2B = n ( P i / 2 ^ ) = n ( l - 2 - b , ) ( 1 5 ) 

It can be proven (see Theorem 2 in the Appendix) that 

TABLE I—Maximal Compatible Sets of bj's (b ;<20) for Low-
Cost Residue Number Systems 

Set 
No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

bl 

2 
2 
2 
3 
3 
3 
3 
3 
3 
4 
4 
5 
5 
5 
5 
5 
5 
7 
7 
7 
7 
11 

b2 

3 
5 
7 
4 
5 
5 
5 
7 
7 
5 
7 
6 
7 
7 
7 
7 
9 
8 
9 
9 
11 
13 

b3 

5 
7 
11 
5 
7 
7 
11 
10 
11 
7 
11 
7 
8 
9 
11 
11 
11 
11 
10 
11 
13 
14 

b4 

7 
9 
13 
7 
8 
11 
13 
11 
13 
9 
13 
11 
9 
11 
12 
13 
13 
13 
11 
13 
15 
15 

b5 

11 
11 
15 
11 
11 
13 
14 
13 
17 
11 
15 
13 
11 
13 
13 
17 
14 
15 
13 
17 
16 
17 

b6 

13 
13 
17 
13 
13 
16 
17 
17 
19 
13 
17 
17 
13 
16 
17 
18 
17 
17 
17 
19 
17 
19 

b7 

17 
17 
19 
17 
17 
17 
19 
19 
20 
17 
19 
19 
17 
17 
19 
19 
19 
19 
19 
20 
19 

b8 

19 
19 

19 
19 
19 

19 

19 
19 
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XAU.LI.EJ 11—Best wioices ior DSS in a L.ow-uost itesiaue rsuniDer system witn a uiven lotai JNumDer 01 Bits (ts) 

B bj 

5 2 
7 3 
8 3 
9 4 
10 2 
11 5 
12 3 
13 6 
14 2 

3 
15 3 
16 4 
17 2 
18 5 
19 3 
20 5 
21 5 
22 5 
23 3 
24 7 
25 4 
26 7 
27 7 
28 7 

8 
29 5 
30 9 
31 3 

4 
5 

32 5 
33 5 
34 2 

3 

b2 

3 
4 
5 
5 
3 
6 
4 
7 
5 
4 
5 
5 
3 
6 
4 
7 
7 
8 
5 
8 
5 
9 
9 
10 
9 
7 
10 
7 
7 
7 
7 
8 
5 
5 

b3 

5 

5 

7 
7 
7 
7 
5 
7 
5 
8 
9 
9 
7 
9 
7 
10 
11 
11 
11 
8 
11 
10 
9 
8 
9 
9 
7 
7 

b4 

7 

7 

8 

9 

9 

11 
11 
11 
11 
11 
9 
8 

b5 6(%) 

60.0 
57.1 
62.5 
55.6 
50.0 
54 is 
41.7 
53.8 
50.0 

46,7 
43.8 
41.2 
38.9 
36.8 
40.0 
42.9 
40.9 
34.8 
37.5 
36.0 
38.5 
40.7 
39.3 

31.0 
36.7 
35.5 

34.4 
33.3 

11 32.4 
11 

B 

35 
36 
37 
38 
39 

40 
41 

42 

43 

44 

45 
46 
47 

48 

49 
50 
51 
52 
53 
54 
55 
56 

bl 
7 
4 
7 
5 
7 
7 
5 
5 
7 
8 
2 
3 
4 
5 
5 
7 
9 
3 
4 
5 
5 
5 
2 
3 
5 
7 
4 
7 
7 
5 
5 
7 
11 
7 

b2 b3 b4 b5 

8 9 11 
5 7 9 11 
9 10 11 
9 11 13 
8 11 13 
9 10 13 
7 8 9 11 
11 12 13 
10 11 13 
9 11 13 
7 9 11 13 
7 8 11 13 
5 9 11 13 
6 7 11 13 
7 8 9 13 
11 12 13 
10 11 13 
7 10 11 13 
7 9 11 13 
7 8 11 13 
7 9 11 13 
8 9 11 13 
5 7 9 11 
5 7 8 11 
7 11 12 13 
8 9 11 13 
5 7 9 11 
9 10 11 13 
13 15 16 
9 11 13 14 
7 8 9 11 
8 11 13 15 
13 15 16 
9 11 13 16 

b6 5(%) 

31.4 
30.6 
29.7 
34.2 
33.3 

27.5 
31.7 

31.0 

30.2 

29.5 

28.9 
28.3 

13 27.7 
13 

27.1 

13 26.6 
26.0 
31.4 
26.9 

13 24.5 
27.8 
29.1 
28.6 

B 

57 

58 

59 

60 

61 
62 
63 
64 

65 

bl 
11 
11 
2 
3 
5 
5 
5 
r 
0 

7 
7 
8 
11 
13 
3 
4 
5 
5 
7 
7 
7 
9 
5 
7 
7 
7 
8 
9 
2 
3 
5 
5 
7 

b2 b3 b4 b5 b6 6 ^ 

13 16 17 29.8 
14 15 17 
11 13 15 17 29.3 
11 13 14 17 
7 13 16 17 
9 11 16 17 
9 13 14 17 
11 12 13 17 
8 11 15 17 
10 11 13 17 
9 11 13 17 
15 16 17 28.8 
14 15 17 
11 13 16 17 28.3 
11 13 15 17 
9 13 16 17 
11 13 14 17 
8 13 15 17 
9 11 16 17 
11 12 13 17 
10 11 13 17 
7 9 11 13 16 26.2 
11 13 15 16 25.8 
11 13 15 17 27.0 
11 13 16 17 26.6 
11 13 15 17 
11 13 14 17 
7 11 13 15 17 26.2 
5 11 13 16 17 
7 9 11 16 17 
7 11 12 13 17 
8 9 11 13 17 

for any low-cost residue number system 0.5<r?<l from 
which we can conclude 

2B-1<N<2B (16) 

This shows that the storage requirement for a low-cost 
residue system is within one bit of the most efficient 
representation. It also shows that N is an increasing 
function of B. 

To select a low-cost residue system, B must be de
termined first. To do this, we first note that among 
all choices for the set of moduli for each value of B, 
given by Table II, the one for which mini(bi) is a 
maximum results in the largest possible range (see 
Theorem 3 in the Appendix). If more than one set 
has this maximum value for mini(bi), we look at the 
second smallest bt in the sets, etc. Table III gives the 

maximum range obtainable for each value of B. Since, 
in a low-cost residue system, the storage requirement 
is dictated by B and the processing speed by maxi(bi), 
the final choice for B among the values which provide 
adequate range may involve a tradeoff between these 
two factors. For example if B = 51 is sufficient for 
some desired range, B = 52 and B = 53 must also be 
considered for the final selection, since they provide 
higher processing speeds at the expense of more stor
age space. 

LOW-COST ALGORITHMS 

We first note that in dealing with numbers repre
sented in a residue system, the following operations in-
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S (percent) 

max.(b.) 

H 1 1 1 1 i 1 
0 10 20 30 40 50 60 

Total Number of Bi ts (B) 

Figure 1—The values of maXj(bj) and S as functions of B 

volving the set of moduli p are required (numbers fol
lowing each operation show the equations where it is 
used) : 

1. Subtraction from Pi : (6) 
2. Addition modulo Pi : (8) 
3. Determination of residues with respect to ps : 

(3), (6), (12) 
4. Multiplication modulo Pi : (9) 
5. Multiplication by Pi : (12) 
6. Division by Pi : (10) 

We will show that low-cost algorithms exist for per
forming all of the above operations in a low-cost resi
due number system. Here, the term "low-cost" refers 
to the computer implementation of algorithms, keeping 
in mind that in digital computers addition and sub
traction are the fastest and least expensive of the four 
basic operations, while division is the slowest and most 
expensive to implement. Most of the operations to be 
described are also used in encoding, decoding and 
arithmetic operations for low-cost arithmetic error 
codes.6-7 

Subtraction of a b rbit binary number x from pi is 
quite simple since Pi = 2bi —1 is represented in binary as 
bi digits of 1. Hence, the digits of Pj—x are the logical 
complements of the digits of x. 

Addition of two b rbit binary numbers modulo pt is 
also simple. It consists of a simple b rbit binary addi
tion with end-around carry; i.e., the carry generated 
by the last digit position is inserted into the first digit 
position. This is true since for a sum which is greater 
than pb we have to subtract Pi=2bi —1 in order to ob

tain its modulo pj residue. This is done by subtracting 
2bi (discarding the outgoing carry) and adding 1 (in
serting a carry into the first digit position). The only 
problem arises when the sum is equal to Pi, in which 
case we either need special circuitry to detect this con
dition and insert a carry into the first digit position if 
it arises, or simply leave the result as it is and have 
two representations for zero. This latter approach will 
cause no difficulty since in all modulo-Pi operations the 
two values 0 and 2bi — 1 are entirely equivalent. 

To determine the residue of a binary number x with 
respect to p ,̂ we simply break x into b rbit bytes, start
ing at the right end, and add the resulting bytes modulo 
Pi. This is true since the residue of 2bi with respect to 
Pi is equal to 1 and the value of x is a polynomial in 
2bi, with the values of the brbit bytes of x as the coeffi
cients. Hence the residue of x with respect to ps is the 
same as the residue of the sum of these coefficients 
with respect to pi7 which is the modulo ps addition of 
these coefficients. 

Multiplication in digital computers is usually per
formed through multiple additions, either sequentially 
by a single adder or in parallel by using a number of 
carry-save adders.8 Hence, modulo-Pi multiplication of 
two numbers can be performed through a number of 
modulo-Pi additions, the algorithm for which was dis
cussed previously. 

Multiplication of a binary number x by Pi=2bi —1 
can be done by a single subtraction x.2bi—x, since x.2b< 
can be easily obtained through shifting x to the left by 
bi bits (inserting bs zero to the right of x). 

Finally, division by p4 (of a number which is a mul
tiple of Pi) can be done by a very interesting algorithm7 

which is obtained by observing that x=x.2bi —x.pj. 
Now, the first bs bits of x.2bi are known to be zero and 
since we have x.pj, the first bt bits of x can be obtained 
by subtraction. These bs bits of x now form the second 
bi bits of x.2bi and, hence, the second bs bits of x are 
obtained by another subtraction, taking into account 
a borrow which may have been generated by the first 
subtraction. This process is continued until all the 
digits of x are computed. 

CONCLUSION 

In this paper, we have introduced the class of low-cost 
residue number representation systems and studied 
their properties. It appears that such systems allevi
ate the storage inefficiency normally associated with 
residue number systems and simplify many of the 
basic algorithms. The division process, however, re
mains complex. Therefore, such systems are useful 
only for special applications. 

One disadvantage of the low-cost residue number 
system is that the moduli, and hence the residues, are 
larger than those for conventional residue systems 
with no restriction on Pi's. Therefore, carry propaga
tion delay is not reduced by as much. However, this 
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TABLE III—Maximum Range pf Low-Cost Residue Number Systems with a Given B and with Minimum 5 

B< 

5 
7 
8 
9 
10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

31 
32 
33 
34 
35 

max N 

21 
105 
217 
465 
651 

•« /"\ r- *\ 

3255 
8001 
13335 
27559 

59055 
82677 
248031 
413385 
1003935 

2011807 
4039455 
7027545 
16548735 
30177105 

66389631 
132844159 
266734335 
513010785 
1070075391 

2055054945 
4118168929 
8268764385 
14385384615 
33875260545 

log 
(max N) 

1.322 
2.021 
2.336 
2.667 
2^ 814 

3.291 
3.513 
3.903 
4.125 
4.440 

4.771 
4.917 
5.395 
5,616 
6.002 

6.304 
6.606 
6.847 
7.219 
7.480 

7.822 
8.123 
8.426 
8.710 
9.029 

9.313 
9.615 
9.917 
10.158 
10.530 

B 

36 
37 
38 
39 
40 

41 
42 
43 
44 
45 

46 
47 
48 
49 
50 

51 
52 
53 
54 
55 

56 
57 
58 
59 
60 

61 
62 
63 
64 
65 

max N 

61772533935 
135899574657 
265605682657 
^d^7Q7Zlfi7R?l 

1050133076895 

2184820937985 
4202071339935 
8764987527681 
16832955054495 
33731921697439 

67729449077535 
117830685381465 
277472259124095 
505978825461585 
1113153416015487 

2233832636833665 
4351417898969631 
8601640032846945 
17792433492601215 
35442210736330753 

71028895618181759 
142904633121912833 
285803715209210623 
575488792479997953 
1148272730287255039 

2210621488441664865 
4572655407598512255 
9145099114469304447 
18397371556871432703 
36368285000677545089 

log 
(max N) 

10.791 
11.133 
11.424 
11 7 ^ 

12.021 

12.339 
12.623 
12.943 
13.226 
13.528 

13.831 
14.071 
14.443 
14.704 
15.047 

15.349 
15.639 
15.935 
16.250 
16.556 

16.853 
17.158 
17.457 
17.761 
18.060 

18.345 
18.660 
18.961 
19.265 
19.561 

disadvantage is more than offset by the many advan
tages which we have enumerated in this paper. 
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APPENDIX 

THEOREMS AND THEIR PROOFS 

Theorem 1: Pj = 2bi —1 and pj = 2bj —1 are relatively 
prime if and only if bi and bj are relatively prime. 

Proof: (Only if part)—Let bi=zx and bj=zy with 
z > l . Then, since an —1 is divisible by a—1, p4 and p3 

are both divisible by 2Z —1 and, hence, they are not rel
atively prime. 

(If part)—Suppose there exist pairs of integers of the 
form 2bi —1 and 2bj — 1 which are not relatively prime 
while bi and bj are. Let 2X —1 and 2y—1 be one such 
pair with x>y and x+y a minimum among all such 
pairs. Let the odd prime number z divide 2X —1 and 
2̂  — 1. Then, z must also divide their difference 

2x-2>=2-v(2x- J-l). (17) 

Since z cannot divide 2-v, it must divide 2x_y - 1 . But now 
z divides 2x_y —1 and 2y —1 with x—y and y relatively 
prime (since, by assumption, x and y are relatively 
prime) and (x—y) +y smaller than x+y which was as
sumed to be a minimum among all such pairs; clearly 
a contradiction. 

Theorem 2: If bs>2 for all i and if for M=j, we have 
biv^bj, t h e n 

k 

, 7 =]^[ ( l -2- b . )> l -2- ( m i , V ( b
1

, - 1 '> l /2 (18) 
i=l 

Proof: The second inequality is obvious upon noting 
that mm; (bi) >2. To prove the first inequality, we first 
show, by induction on k, that: 

J^(l-2b . )>l- j r2-b
i (19) 

i=i i=l 

Clearly this is true for k = l. To show that if the in
equality holds for k it will also hold for k+1 , we mul
tiply both sides of (19) by the positive value (1 — 2_b*+i) 
to get: 

k+i k+i k 

n(i-2-b')>i-x2"b'+b^-22~b' <2°) 
i=l i=l i=i 

The right-hand-side of (20) is clearly greater than the 
right-hand-side of (19) with k replaced by k + 1. Next, 
denoting min^K^bO by m, we write: 

k oc 

l _ ^ 2 - b
1 > l - 2 2 - x = l-2- (n '-11 (21) 

i=l x=m 

Combining (21) with (19), we get the desired result. 

Theorem 3: Given bi<b2< . . . <bk and b'1<b'2 

< . . . <b'k with b ^ b ' j 

and 

jrbi=2>'i = B ' (22) 
i=l i=i 

we have 

f[(2b
l-l)>fj(2b'1-l). (23) 

i=i i=l 

Proof: Using Theorem 2 and the fact that b ' i < b , - l , 
we can write: 

k k 

n(2 b . - l )=2»]^[( l -2- b i ) (24) 
i=l i=l 

>2 B ( l -2- ( V 1 1 ) 
>2B(l-2-b ' i ) 

On the other hand: 

k k 

T^(2 b ' i - l )=2 B P}( l -2 - b ' i )<2 H ( l -2 - b ' 1 ) (25) 

Combining (24) and (25), we get the desired result. 




