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ABSTRACT FUZZY CLUSTERING ALGORITHMS 

The notion of fuzzy sets—sets with imprecise boun­
daries—is a natural cornerstone upon which to build 
algorithms based on approximate reasoning. Since 
their inception in 1965 by Zadeh,1 fuzzy sets have led 
to first steps towards quantifying data analysis in many 
fields previously immune to mathematical examination. 
A fairly exhaustive introduction to the theory and 
applications of fuzzy sets2 lists 238 papers dealing with 
a great variety of recent investigations. 

INTRODUCTION 

In this paper we discuss the applicability of the fuzzy 
I SOD AT A clustering algorithms for (1) dimension­
ality reduction of binary valued data sets, and (2) 
computerized medical diagnosis. The first question is 
often referred to as feature selection; overviews of 
many popular approaches are available in References 
3 and 4. Loosely speaking, one wants to reduce the 
number of characteristics originally measured to some 
optimal subset which retains at least as much informa­
tion about substructure in the data as the original 
ones. Computerized medical diagnosis is an extremely 
difficult and ambitious undertaking. Considering the 
risks involved, enormous improvements need to be 
made in existing methodologies before the medical 
community can be asked to rely on the diagnostic sug­
gestions of a computer. However, it is our conviction 
that the attitude of pessimism displayed in Reference 
5 towards this enterprise is largely attributable to the 
failure of conventional (that is, non-fuzzy) techniques, 
the results of which must either be accepted at face 
value or rejected out of hand: we believe that fuzzy 
sets can be used as a basis for computerized diagnostic 
advice that will provide valuable insight and direction 
for clinicians with a large data base of previous case 
histories. 

* This research supported by National Science Foundation 
Grant DCR75-05014. 

Let Rd denote real, d-dimensional Euclidean space 
(feature space), and let X= {xltx2, . . . , xn} cRd. Each 
#k= (xkl,xk2, . . . , xkd) e Rd is a feature vector (sub­
ject, patient); each xkj in R is the j a feature (charac­
teristic, attribute, symptom) of feature vector xk; and 
if every xkj e{0, 1} , we call X a binary valued data 
set. In this instance, we say «k has attribute j when 
xk j=l, and is lacking it if xkj=0. Cluster analysis with 
respect to X is the problem of finding an integer c, 
2<c<n, and c subsets (clusters) of X which partition 
it into subgroups of points revealing intrinsic substruc­
ture in the data. Algorithms to partition X abound; 
the partitions they find depend on the classification 
criterion used by the algorithm which defines similar­
ity between pairs of vectors in X. 

There are hard (i.e., conventional) and fuzzy meth­
ods, and each of these main classes can be roughly 
subdivided into graph-theoretic and objective function 
techniques. Readers interested in hard algorithms for 
clustering will find an introduction to the literature 
in Reference 3; a brief review of fuzzy clustering fol­
lows. Clustering with fuzzy sets was first proposed 
in Reference 6. References 7-10 discuss some of 
the earliest fuzzy pattern classification schemes. In 
1969 Ruspini delineated the first fuzzy clustering 
method based on objective functions, and foreshad­
owed the usefulness of information measures (entropy) 
in the fuzzy sets context. His technique was enlarged 
and illustrated in References 12-15. Dunn16 defined 
the first fuzzy extension of the classical within group 
sum of squared errors (WGSS) objective functional, 
and in Reference 17 this approach was generalized to 
yield the infinite family of algorithms discussed below. 
Methods of clustering based on fuzzy graphs are still 
in their infancy; References 18-23 are seminal works 
in this direction. 

CLUSTERING WITH FUZZY ISODATA 

A hard c-partition P of X is a collection of c non­
empty subsets of X, say P = {Y!,Y2, . . . , Yc}, whose 
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union is X and whose pairwise intersections are dis­
joint. To characterize P by a matrix, let Ui: X—>{0, 1} 
be the characteristic function of Yj: 

, . . 1 in case zk e Yj, . . . . . . ., . 
Ui(# k ) = u i k = \ n , , . ;Ki<c;Kk<n. iv k/ jOotherwi— ' — /ise 

(1) 

Denote by Vc„ the vector space of all real c x n matrices, 
let U e Vcn, and let uik be the ikth entry of U. The set 
of matrices 

M c ={ueV c n :u i k e{0 , l}Vi ,k ;2 ;u i k =lVk;2u i k >0Vi 
V i=i h—l 

(2) 

is called hard c-partition space for X because each 
partition P of X corresponds uniquely to the matrix 
in Mc whose rows are the values for the characteristic 
functions of the subsets in P as shown in Equation (1). 

Solutions for all hard clustering algorithms lie in Mc, 
and this is a fundamental drawback for two reasons: 
First, each member of the data must be assigned un­
equivocal membership in one and only one of the c 
partitioning subsets; however, the substructure in 
real data rarely—if ever—is so distinct that every 
member in X is most realistically described as a full 
member of a single subclass. A fuzzy model can over­
come this objection by allowing every individual par­
tial membership in all c subsets, as, for example, one 
would desire for hybrids when classifying them in 
parallel with their progenitors. Secondly, Mc is a finite 
but extremely large set, a complication which often 
manifests itself in analytical as well as computational 
intractabilities. 

Fuzzy sets provide a natural way to surmount the 
objections above. We call any function Ui that maps X 
into the closed interval [0,1] a fuzzy subset or fuzzy 
cluster in X. The number Ui(#k) =uIk is the grade of 
membership of subject %k in fuzzy set Ui, and fuzzy 
c-partitions of X are defined by imbedding Mc in 

Mfc = {ueV c n :u i k e[0,l]vi,k;Xuik = l V k ; 2 u i k > 0 V i l . 

(3) 

Mfc is called fuzzy c-partition space associated with X. 
The requirement that each column in U sum to one 
stipulates that every vector in X be assigned a total 
membership equal to unity in the partitioning subsets. 
If Mc is enlarged to include matrices which may have 
some zero rows, say Mco, then Mfc is the convex hull 
of Mco.17 Compactness, convexity, and continuity en­
dow Mfc with a pleasant mathematical structure; for 
example, it has been shown24 numerically that because 
M^ is continuous, algorithms defined on it have paths 
of feasible solutions around undesirable local trap 
states of algorithms confined to Mc. 

Given Mfc, how can fuzzy c-partitions of X be found ? 
One way to identify optimal fuzzy clusterings in X is 
via the family of generalized WGSS error objective 

functionals defined in Reference 17. On the Cartesian 
product of Mfc with Rcd, we define for me[l, x ) 

,(U,*)=2;2>ik)' 
k-i i=l 

« k - V i (4) 

In (4) UeMfc, v=(vuv2 vc)eRca, v{= (viltvi2, . . ., 
ViaJeR'1 for l < i < c , and | |- | | is any norm on feature 
space. Jtll is an etxension of the classical minimum 
variance objective functional J, because J m = J i V m 
whenever UeMc is hard. The c vectors {Vi} compris­
ing v are presumed to have features prototypical of 
vectors in X having a high affinity for membership in 
the respective fuzzy clusters {Ui}, and so are called 
cluster centers of their respective fuzzy clusters. These 
vectors will play an important role in the sequel. The 
measure of similarity in (4) is the norm 11 • 11; in this 
model it compares members of the data to each other 
indirectly via distances between them and the cluster 
centers. 

Optimal fuzzy c-partitionings of X are defined as 
part of solution pairs (\J,v) of the optimization 
problem 

minimize{Jm(U,'y)} over Mfc&R0'1. (5) 
Partitions arising as part of solutions for (5) are re­
lated to a well defined type of hard, compact, well 
separated (CWS) clusters for X in Reference 16. 
There are structured data sets whose clusters do not 
enjoy this property, but there is a wide class of pat­
terns for which this criterion is very basic, and we 
adopt it here as implicit in our clustering goals. 

Necessary conditions for solutions of (5) were de­
rived17 for the class of functionals in (4) whose norms 
were differentiable (e.g., inner product induced 
norms). It was shown there that for m > l and 
Zk+ViVijk. 

U i k : 

3 k -Vi K 1 

\Xt-Vi 

, l < i < c ; l < k < n , (6a) 

Vi-

2(u l k ) m z k 
fc=J 

2> l k ) m 
, l < i < c (6b) 

are necessary in order for (U,v) to be a local solution 
of (5). Full details for m = l and the singular cases 
x^^Vi for some i and k may be found in References 
16 and 17. At m = l requirement (6a) is replaced by 
a nearest neighbor assignment rule, UeMc is neces­
sarily hard, the cluster centers in (6b) are merely the 
centroids of the hard subsets in U, and the resultant 
algorithm is essentially the hard ISODATA process of 
Ball and Hall.25 For m > l equations (6) define the 

Fuzzy ISODATA algorithms 

Choose any c x n matrix U0eMfc. (7a) 

file:///Xt-Vi


Medical Diagnosis with Fuzzy Sets 1059 

Compute the weighted means {•£'-;} with U0 

and (6b). (7b) 

Update U0—»tj with equation (6a). (7c) 

Compute the maximum membership defect 

max{j(U) ik-(U0) ikj}. (7d) 
i,k 

If less than some prespecified tolerance e, stop. 
Otherwise relabel U-»U0 and return to (7b). 

implicit , in ( i ) a r e uie-ui ciuvnig IUICO a u u icSuiuLlOR OX 
singularities. These equations define an iterative 
optimization procedure for locating approximate 
minima of Jm. It is convenient to recast this loop in 
the form of the iterative matrix operator Tm :Mfc-»Mfc 

defined by , 

Since U's which are part of optimal pairs for Jm must 
lie among the fixed points of Tm, we call approximate 
minima of Jm fixed points of fuzzy ISODATA. Jm has 
the descent property on successive iterates of Tm and 
the associated set of cluster centers they determine, 
but it is not now known whether the iterate sequence 
(Tm(Uk)} is theoretically convergent. We mention this 
because the numerical example below suggests an in­
teresting conjecture about these fixed points. The pos­
sibility of using Tm to approximate a maximum likeli­
hood operator for certain problems in unsupervised 
learning is discussed in Reference 26. 

SCALAR MEASURES OF PARTITION QUALITY 

Since optimal partitionings of X are defined as part 
of solutions of (5), an obvious way to rank competing 
partitions is by their corresponding values with Jm. 
Unfortunately, Jm is not an exception to the fact that 
global minima of objective functions may suggest very 
poor interpretations of substructure in X.24-27-28 Conse­
quently, values of Jm do not necessarily rank the merits 
of different U's in Mfc as worthwhile clusterings of X. 
It is here that fuzzy ISODATA departs from conven­
tional clustering techniques, because with hard ob­
jective functions the functional values are the only 
information usually available for addressing this ques­
tion. With fuzzy partitions however, the fuzziness of 
U allows one to associate various measures of parti­
tion quality v/ith U which are independent of the 
method used to produce these partitions. Fuzzy ISO-
DATA is used to generate likely candidates for optimal 
clusterings of X; their relative quality has been as­
sessed by either of two scalar valued measures defined 
on Mfc: 

FC(U) = trace (UU*)/n, superscript t being here 
transpose, (9) 

He(U) = - ( 2 2 U i k log" Uik ) /n ' w i t h ae(l,°o). 
\k--t i=i / ( 1 0 ) 

F c : M fc-»[l/c,l] was defined in Reference 17 as the 
partition coefficient of U; Hc: Mic*[0,logac] was defined 
in Reference 27 as the average classification entropy 
of U. Although the functional forms of Fc and He are 
quite different, they are related as follows: 

FC(U) =1 «=>HC(U) =0 ^UeMc is hard. (11a) 

Fe(U) = l / c ^ H c ( U ) =logacfc»U= [1/c]. ( l ib) 

l - F c ( U ) < ( - ^ f f l - ) < i / 2 ( c - F e ( U ) ) . ( l ie) 

Equations (11) suggest that the equi-membership par­
tition TJ=[l/c] , i.e., u i k=l/cVi,k, is the fuzziest or 
worst one can do (geometrically U is the centroid of 
Mco) ; on the other hand,, the ideal situation occurs 
when the substructure in X is so distinct that a fuzzy 
algorithm recommends a hard c-partitioning of X. 
Maximizing Fc over different fixed points of fuzzy 
algorithms minimizes the total content or overlap in 
pairwise fuzzy intersections; equivalently, minimizing 
He over the same choices maximizes the "information" 
extracted from U. In either case, we presume that 
values of these measures serve as a relative indication 
of the uncertainty an algorithm experiences in trying 
to assign memberships to the vectors in X. Note 
that Fc and Hc are well defined for partitions generated 
by any fuzzy clustering method, not just ISODATA; 
moreover, these functions convey no information about 
the relative merits of hard c-partitions of X, their 
usefulness depending entirely on the idea of fuzziness. 
Numerical evidence indicates that Hc is probably more 
sensitive than Fc in ranking U's; this has been at­
tributed to the fact that the slope of the logarithmic 
curve on most of (0,1) is much steeper than that of 
the parabola (Hc is a sum of logarithmic terms, Fc a 
sum of parabolic ones). Nonetheless, both measures 
seem useful, since the lower bound in ( l ie) is a 
sharper indication than that in (11a) of how small 
He(U) is. 

In general the clustering strategy used with fuzzy 
ISODATA has been to minimize Hc over approximate 
fixed points of Tm for whatever alternatives have been 
considered, and regard the resultant c-partitioning 
of X as the most optimal one. If this partition is rela­
tively fuzzy (as measured by Hc), we do not infer that 
X has no well defined substructure; we conclude that 
none of the algorithms tried have been successful at 
finding it. 

A NUMERICAL EXAMPLE 

Table I lists 11 symptoms of 107 stomach disease 
patients who have either hiatal hernia (patients 1-57) 
or gallstones (patients 58-107). Table I constitutes 
our binary data set X. The data was collected as part 
of a larger study at the Henry Ford Hospital in Detroit 
by Rinaldo, Scheinok, and Rupe.30 Various studies 
utilizing the larger data set for computerized medical 
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T A B L E I — D a t a Set X : Class 1; H i a t a l H e r n i a 
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'i'Aa'Lhi I (Continued) 
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diagnosis have been discussed in References 31-35; 
full details on the data are available in Reference 31. 
The 11 symptoms measured (present = 1 , absent=0) 
were: 

Symptom Description or type of Abdominal Pain 
1 Male = 1; Female=0 
2 Epigastric Pain 
3 Upper right quadrant pain 
4 Back pain 
5 Discomfort episodes of 1-4 weeks 
6 Discomfort episodes of 0-1 days 
7 Relief induced by food ingestion 
8 Aggravation induced by food ingestion 
9 Aggravation induced by position 

10 Weight loss (at least 20 lbs. in 6 mos.) 
11 Persistence (at least 1 month in length) 

The calculations were made in single precision For-
trans IV using logarithms in (10) to base e=2.718. . . . 
The convergence threshold e used in (7b) was e=0.01. 
Because fuzzy ISODATA—like all hill climbing meth­
ods—is susceptible to stagnation at local minima of Jm, 
it is necessary to test the stability of fixed points of Tm 

by varying the initial guess for U« in (7a). Other 
studies report results concerning this parameter; for 
this example the only initial guess used is 

U0=aU + ,eU, where a=-VW, p=l-VW> a n d 

U= 

10 
0 1 

00 

11 
00 

(12) 

cxc 
00 . . . 0 

_ c x (n - c ) ' 
U0 is an initial guess lying midway between U and the 
hard c-partitions of X, as measured by the value of F„ 
since FC(U0) =Vfc+ (l/2c). Only one initial guess is 
used in this example to shorten the presentation of 
numerical results. 

Finding c is often the most important and difficult 
problem in clustering. The use of fuzzy ISODATA for 
this purpose is discussed elsewhere; in this investiga­
tion we fix c — 2 in the interests of brevity. The algo­
rithmic parameters varied here are the weighting ex­
ponent m and norm 11 • 11 appearing in (4). Values for 
m are 1.10, 1.33, 1.67, and 2.00. Results with other 
values are contained in Reference 29. Three norms 
induced by the weighted inner product (x,x) = xtAx on 
Rd were used. These norms were realized by different 
choices for the symmetric matrix A: 

Nl (Euclidean) induced by A= 
identity. 

:I, the dxd 
(13a) 

N2 (Diagonal) induced by A= [diag(crx
2,..., crd

2)]-1, 
the inverse of the diagonal matrix of marginal 
sample feature variances. (13b) 

N3 (Mahalonobis) induced by A= [cov(X)]-1, the 
inverse of the sample covariance matrix. (13c) 

Further discussion on these choices may be found in 
Reference 35. Having established the computing proto­
cols, we turn to the numeric results. 

Table II lists entropies H2 and their lower bounds 
1-F2 for the fixed points of Tm obtained by processing 
X with (7) under the assumptions above. These values 
are comparable only for fixed values for m, because as 
m-»l, partitions obtained by fuzzy ISODATA are 
always "less fuzzy" in the sense of Fc or Hc. Since (7) 
represents an infinite family of algorithms, there is 
the practical question of which one to use. The only 
theoretical result concerning this to date appears in 
Reference 36, where an analogy to minimum resistance 
electrical networks is used to suggest that only J2 ex­
tends the physical interpretation of Ji made there. It 
will be seen in Table II that ISODATA proceeds from 
U0 to U (quite rapidly) for every norm at m=2.00; for 
N2 and N3 at m=1.67; and for N3 at m = 1.33 (recall 
from ( l ib) that with c=2, F2=.500 if and only if 
evaluated at U). Whether or not other initial guesses 
for U0 would lead to this fixed point is a matter of 
speculation; the rather surprising conjecture suggested 
by this observation is that the size of stability domains 
of fixed points of Tm is dependent on both m and the 
norm in (4). Of course, as m-»oo, U becomes the only 
fixed point of Tm, as is evident from (6a). Table II 
shows that it may be necessary to experimentally de­
crease m towards m = l until fuzzy ISODATA success­
fully begins to avoid equi-memberships for a given set 
of data. 

The values in Table II also indicate a slight prefer­
ence for the Euclidean norm over N2, and a definite 
preference compared to N3, so we infer that this data 

TABLE II—Entropies for Data Set X 

Weighting 
Exponent 

m 

1.10 

1.33 

1.67 

2.00 

Norm 

M 
N1 

N2 

N3 

N1 

N2 

N3 

N1 

N2 

N3 

N1 

N2 

N3 

Lomer Bound 

1-F2(U) 

.051 

.057 

.086 

.253 

.274 

.500 

.420 

.500 

.500 

.500 

.500 

.500 

Entropy 

H2(U) 

.088 

.095 

.162 

.397 

.425 

.693 

.608 

.693 

.693 

.693 

.693 

.693 • 
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is most separable by Nl among the three norms con­
sidered. Accordingly, the norm in (4) for subsequent 
runs is now fixed at 11 • 11 = N1, and in view of the results 
obtained at m=1.67 and 2.00, we drop these values 
for the weighting exponent. 

In Table III are listed the membership functions cor­
responding to terminal partitions obtained with (7), 
| | - | j=Nl , and m = 1.10, 1.33. Scanning these values, 
one quickly obtains a feel for which members of the 

dic&te a strong desire to be classified into one u a u i i n 
subclass or the other. As we expect, the partition of 
X associated with the smaller value of m is very nearly 
hard, while the second partition begins to exhibit 
clearly those subjects in X apparently causing the most 
difficulty to ISODATA in assigning memberships. This 
feature of fuzziness—identification of the trouble­
some or distinguished individuals in the data—is per­
haps the most important reason for using fuzzy models. 
Information of this kind is simply not available when 
using hard classification procedures, for then all the 
entries in solution partitions are 0's and l's. 

Since any discussion of error rates presumes a com­
parison with hard labels, it is necessary to convert 
fuzzy partitions into hard ones before this is possible. 
An obvious (but not necessarily best) way to do this is 
via the maximum membership rule: assign each «keX 
to the cluster in which it holds maximum membership. 
All error rates mentioned below are computed with 
hard 2-partitions of the data obtained in this fashion. 
With this convention in mind, we have from Table III 
at m = 1.10 23 incorrect labels, and at m=1.33, 25 mis­
labelled patients. We emphasize that these are not 
classifier performance rates, because we are clustering 
here; no attempt is being made to train a classifier for 
prediction with unlabelled samples. However, we pre­
sume these figures are indicative of error rates which 
may be obtained with fuzzy classifiers now under study. 
Of more immediate interest is the way we can use fuzzy 
ISODATA to attack the feature selection problem. 

FEATURE SELECTION USING FUZZY ISODATA 

Contrary to one's intuition, adding more features 
does not always lead to better classifier performance.3 

In some instances the converse is true; deletion of 
features may remove the source of confusion pre­
venting an algorithm from, detecting substructure 
known (or presumed) to exist in the data, and in any 
event, reduction of the dimension of feature space al­
leviates the computational burden imposed by using 
many features. In medicine, this amounts to asking 
for the minimum number of symptoms needed to detect 
a particular disease, or to discriminate between closely 
related ones. The basis for a technique of fuzzy feature 
selection using algorithm (7) is contained in the simple 

Proposition Let X be any binary valued data set, X = 
{xu . . ., xn} contained in Rd; let {Vi} be 

the cluster centers given by (6b) ; and 
suppose Vij to be the j ' f t component of Vi for 
l < i < c ; l < j < d . Then 

0 < V i j < l V i , j (14a) 

^ = 0 ^ xlj = x2j= . . . =xnj = 0 (14b) 

% = 1=> Xii = X2i- . . ,Xn j = l (14c) 

Proof Rewriting equation (6a) in the form uik= 
(1/1+Cik), where cik is the sum in the denominator 
over j — ±,£i, . . ., e witu j=j=i, we observe that Cik>0 
for every i and k, hence uik e (0,1) for every i and k. 

« 
In view of this the denominator in (6b), "Y (u ik)m>0 

k=l 

for l < i < c Now consider the component form of (6b) 
for any j ; 

•«=2 
(uik)' 

5>s)' 
x k j ; l < j < d ; l < i < c . (15) 

The coefficients of xkj in (15) are all strictly positive, 
and since every xkj is greater than or equal to zero, vy 

is also. Moreover, this also shows that vy can equal 
zero if and only if all the xkj in (15) are zero. Finally, 
since every xkj in (15) is less than or equal to one, that 
sum is bounded above by 1, the number obtained upon 
replacing all of the xkj's with 1. Since the maximum 
is attained when this occurs, the proof is complete. 

We elaborate the implications of equations (14) for 
feature selection by the following series of observa­
tions : 

(i) Vjj = 0 : Since the proof is independent of i, it's easy 
to see that an even stronger statement holds: Vij=0 
e=>vkj = 0 for l < k < c with k=(=i. From (14b) it follows 
that this occurs when and only when attribute j is 
absent from all n members of the data, in which case 
it is irrelevant to substructure in X (medically, no 
patient had symptom j ) . 

(ii) vy = l : As in (i), the stronger statement vi;j = l if 
and only if all the vkj's with k=j=i are 1 holds. In this 
event, feature j is a maximal descriptor of the n indi­
viduals in X (medically, all patients had symptom j ) . 

(iii) 0<Vij<l: Again, this can .happen when and only 
when 0<v k j <l for all k=f=i. Ostensibly, feature j has a 
variable amount of influence in describing members of 
the e subgroups in X. This suggests that the relative 
magnitudes of vljf v2j, . . ., vcj may rank the efficacy 
of j as a descriptor of each subclass (medically, some 
patients in each subclass had symptom j , and others 
did not). 

(iv) Combining (i)-(iii), it is seen that one of the 
cluster centers vt is entirely binary valued if and only if 
all c of them are, and this occurs if and only if all n 
members of the data are identical. In this eventuality 
there is no possibility for mathematical (or medical) 
detection of subclasses in X. On the other hand, we 
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TABLE III—Membership Functions Obtained by Fuzzy ISODATA 

Patient 

1 
c • 

o 

4 
c 

6 
i' 

8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
IS 
19 
£0 
£1 
L L 

C-Z< 

£4 

£6 
c r' 

C O 

£9 
3 0 
31 
-»C 
•-; T; 

34 
z' -T' 

36 
•Z' i 

•-• C ; 

39 
4 0 
41 
4£ 
43 
44 
45 
46 
47 
48 
49 
5 0 
51 
5£ 
53 

m=1.10 
A 
u2 

0 01 
001 
137 
137 
137 
137 
00£ 
0 0£ 
0 0£ 
0 0 0 1. 
0 0 0 1 
0 0 0 1 
0 05 
359 
0 0£ 
0££ 
959 
09£ 
0 0 0 1 
0 0 0 1 
0 0 0 1 
C •-• Z1 

917 
-?--icr 
i O _' 

553 
999 
. 015 
. 00 0 1 
. 000 1 
. 000 1 
, 000 1 
. 000 1 
. 00 0 1 
. 00 0 1 
. 0 03 
. 0 03 
. 000 1 
. 00 0 1 
. 000 1 
. 00 0 1 
. 00 0 1 
. 00 0 1 
. 00 0 1 
. 000 1 
. 000 1 
. 000 1 
. 00 0 1 
0 0 0 1 

. 0 06 
003 

. 038 

. £36 

. 004 

A 
U1 

9 9 9 
999 
863 
86-3 
363 
863 
998 
9 9 8 
998 
0 0 0 
0 0 0 
0 0 0 
995 
611 
998 
978 
041 
9 03 
0 0 0 
0 0 0 
0 0 0 
767 
083 
£65 
44£ 
0 01 
985 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
997 
997 
0 0 0 

. 0 00 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
994 
. 997 
. 96£ 
.764 
9 9 6. 

m=1.33 
A 
U 2 

.£8 0 
£8 0 
333 
333 
333 
833 
4£0 
4£0 
4£0 
113 
048 
114 
464 
671 
•-• c •"• C.JC 

341 
3£0 
638 
137 
137 
137 
499 
685 
554 
466 
. 367 
.£3 0 
. 036 
. 0 38 
. 038 
. 049 
. 0£5 
. 0££ 
. 0££ 
. 435 
. 435 
. 15£ 
. 15£ 
. 03£ 
. 03£ 
. 013 
. 013 
. 013 
. 063 
. 079 
. 079 
. 046 
.113 
. 176 
. £39 
.34 0 
. 634 
. 153 

A 
U1 

7£ 0 
7£ 0 
167 
167 
167 
167 
58 0 
53 0 
58 0 
83£ 
95£ 
836 
536 
3£9 
748 
659 
13 0 
36£ 
3 6 3 
3 6 3 
863 
5 01 
315 
446 
534 
133 
77 0 
914 
96£ 
. 96£ 
951 
. 975 
9 T7 3 
97";-: 
. 565 
. 565 
. 848 
. 843 
. 963 
. 968 
987 
987 
. 987 
. 93£ 
. 9£1 
. 9£1 
.954 
• O O I' 

. 8£4 

.761 

. 66 0 

. 316 

. 347 
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T A J B L E III (Continued) 

Patient 

54 
55 
56 
C-7 
-.' 1 

~l'P, 

59 
6 0 
^ 1 
•_• J. 

6 c' 
63 
64 
65 
66 
6-7 
6-£; 

69 
7 0 
71 
l" d 

r -i' 

74 
• 7 C 
r _i 

76 
r i'" 

7 ft 
79 
8 0 
SI 
oc 
83 
34 
r.c-

36 
37 
33 
!-.' 'ri 

9 0 
91 
93 
93 
94 
95 
96 
97 

98 
99 
1 0 0 
1 01 
1 03 
1 03 
104 
1 05 
1 06 
1 07 

1 
1 

1 
1 
1 
1 
1 

I 
1 
1. 

m=1.10 
A 
u 2 

03 0 
5 07 
053 

m— 
0 0 0 
0 0 0 
994 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
. 0 00 1 
0 01 
137 
137 
0 0 0 1 
005 
0 05 
059 
155 
998 
0 0 0 
0 0 0 
0 0 0 
999 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
999 
999 
0 0 0 
0 0 0 
0 0 0 
0 0 0 1 
0 0 0 1 
0 0 3 
0 0 0 1 
0 05 
0 01 
0 03 
731 
997 
997 
995 
034 
953 
953 

A 
U1 

. 98 0 
493 
. 943 
. 851 
M f 1 C' 

• •_• •-• 1 _ 

. 0 00 
• 0 0 0 
0 06 

. 0 00 

. 000 
0 0 0 

. 00 0 

. 000 

. 000 

. 999 

. 863 
3 6 3 
0 0 0 
995 
995 
941 
345 
0 03 
0 0 0 
0 0 0 
0 0 0 
0 01 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 01 
0 01 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
997 
0 0 0 
995 
9 9 9 
91-'7 
869 
0 03 
0 03 
0 05 
966 
043 
043 

m=1.33 
A 
u2 
•-. C i-i 

576 
331 
334 -ML 

334 
968 
936 
796 
. 334 
. 384 
. 973 
. 973 
. 978 
. 136 
.38 0 
O'"' "'• 

3 3 3 
113 
464 
.464 
. 546 
. 576 
365 
987 
. 937 
94 0 
9 04 
993 
993 
998 
. 993 
998 
998 
967 
96 0 
9 0 9 
833 
933 
983 
383 
068 
083 
.1 --iC 
*+ O •_' 
158 
833 
191 
839 
c r - i C 
•-' C --' 

•333 
833 
336 
339 
674 
674 

A 
U1 

748 
484 
669 
676 
166 
0 3 8 
064 
8 04 
116 
116 
088 
083 
083 
374 
73 0 
167 
167 
388 
536 
536 
454 
484 
135 
013 
013 
06 0 
096 
0 08 
0 08 

003 
008 
0 08 
0 0 '3 
033 
04 0 
091 
117 
077 
077 
077 
938 
973 
c ^ c 

848 
717 
3 09 
761 
475 
118 
118 
. 164 
761 
336 
336 
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find that if and only if a single cluster center has no 
component either 0 or 1, then ail c cluster centers are 
of this type. 

In view of these remarks, it seems natural to call the 
components {vy} of cluster center i)x the feature centers 
of class i. Table IV exhibits values of these centers for 
each of the fuzzy partitions listed in Table III. The 
ranking of symptom importance for patients with 
hiatal hernia (class 1) established by values of {vu} at 
either value of m is 2 > 6 > 1 > 9 . . .>10. We infer 
from this that among the 11 symptoms measured, epi­
gastric pain (2) is most likely to occur in patients 
with this disorder, whereas they will exhibit weight 
loss (10) only occasionally. To see whether the magni­
tudes of the Vu's really do this, let py be the relative 
frequency of occurrence of symptom j in class i pa­
tients. From Table I we find that p12 = 0.982, p M 0 = 
0.035. These frequencies should be compared to the 
values of the corresponding feature centers for class 1: 
for example, with m = 1.10 we have vJ3 = 0.985, and 
Vi,io = 0.021. These comparisons seem to corroborate 
our supposition concerning the ability of the fuzzy 
feature centers to rank the significance of the features 
as descriptors of each class. 

For patients with gallstones (class 2), there is some 
shifting in ranks established by changing m from 1.10 
to 1.33; this seem to indicate that members of this class 
are somewhat less distinctive. Nonetheless, we find 
from Table IV that in both cases, the most important 
features are {3,6,8,2}; the least important are {5,7,9}. 
Of course, one may take the opposite view, and regard 
{5,7,9} as the features most important for deciding a 
patient does not have gallstones. This remark points 

TABLE IV—Cluster Centers for the Membership Functions in 
Table III 

Exponent 

m 

1.10 

1.33 

Symptom 

j 

1 
2 
3 
4 
5 
6 
7 
B 
9 
10 
11 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

Feature 

(Hernia) 
K 
V1j 

.570 

.985 

.063 

.226 

.174 

.770 

.418 

.393 

.479 

.021 

.117 

.654 

.974 

.105 

.214 

.191 

.713 

.467 

.285 

.527 

.031 

.127 

Centers 

(Galls.) 

A V2j 

.269 

.668 

.929 

.551 

.104 

.837 

.048 

.844 

.044 

.165 

.251 

.260 

.752 

.686 

.485 

.098 

.878 

.092 

.839 

.103 

.118 

.198 

Absolute 

Differences 
1 A. A 1 

h j - v 2 j | 

.302 

.317 

.865 

.324 

.070 

.068 

.370 

.451 

.435 

.144 

.134 

.394 

.222 

.581 

.271 

.093 

.164 

.375 

.553 

.423 

.087 

.071 

up the fact that the Vy's do not establish which features 
possess discriminatory power for separating class i 
from closely related classes, and at the same time, sug­
gests a way to use the feature centers for pairs of sub­
classes to select optimal discriminators. 

An obvious indication of "how separable" classes i 
and j are is their cluster center separation ||i>i—i)jj |. 
This measure, however, suppresses the information 
we want to use for reducing the number of features 
required to effect the classification. A more suitable 
measure is afforded by the vector of absolute differ­
ences of the components of vx and vs: for all i and j let 

/y = ( IVi i -Vj^ lVu-Vja l , . . . , | V M - V j d | ) . (16) 

The components of fy,k of vector fi} measure feature 
center separations between the feature centers for 
classes i and j . Equations (14) lead to the following 
results for these components: 

0<fij.k< 1 for all i,j, and k. (17a) 

fijk = 0 ^Ei the r all or none of the vectors in both 
classes i and j have feature k. (17b) 

fu,k = 1 $=>All vectors in class i and no vectors in class 
j have feature k, or vice versa. (17c) 

We presume feature k to be either useless or optimal as 
a discriminator between classes i and j according as 
(17b) or (17c) respectively occurs. (17a) shows these 
to be the extremes, intimating that the values fy,i, 
fij,2» • • .,fij,d rank by their magnitudes the relative 
utility of the d features for discrimination between 
classes i and j . 

To test this speculation, the vector /12 defined by 
(16) corresponding to the cluster centers in Table IV 
was used to identify the optimal feature subsets of di­
mensions 1,2, and 3, and the data set X was reprocessed 
with fuzzy ISODATA using only these features. The 
last column of Table IV reports the values of f 12,k: evi­
dently symptom 3—upper right quadrant pain—is 
implicated as the most powerful attribute for dis­
tinguishing between gallstones and hiatal hernia. The 
feature center values vls = 0.105 and v23 = 0.686 sug­
gest that very few hernia patients suffer from symp­
tom 3, while most gallstones patients may be expected 
to have it. Indeed, from Table I we find that the rela­
tive frequencies of symptom 3 are p13 = 0.123 and p23 = 
0.680 respectively. Continuing in this fashion, we de­
duce that either {3,8} or {3,9} would be the best 2-di-
mensional subset of features to use; that {3,8,9} is the 
best set of 3 features at either value of m; and so on. 

The results of clustering these feature subsets are 
reported in Table V as numbers of misclassifications 
stemming from the hard 2-partitions realized by maxi­
mum membership conversion of the associated fuzzy 
fixed points of Tm. Using symptom 3 alone results in 
exactly the same hard partitions as using symptoms 
3 and 9; moreover, it will be seen that the overall error 
rates achieved with either of these subsets is at least 
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TABLE V—Misciassincations * Using Reduced Feature Spaces 

Symptoms 

Used 

1-11 

3 

3,9 

3,8,9 

Deleted* 

1-11 

m=1.10 

Galls. Hernia Overall 

n1=50 n2=57 n=107 

17 6 23 

16 7 23 

16 7 23 

13 23 36 

13 23 36 

n =43 n2=41 n=84 

0 7 7 

m=1.33 

Galls. Hernia Overall 

n1=50 n2=57 n=107 

13 12 25 

16 7 23 

16 7 23 

13 23 36 

10 17 27 

n.=43 n,=41 n=84 

0 7 7 

Based or. hard (maximum membership) partitions. 

*Data X uiith patients (23-26,55-57,67-75,94-10o} deleted. 

as good as the rate attained using all 11 features. Note 
that symptoms 3 and 9 are much less effective than 
3 and 8, and the error rate using {3,8,9} is in between 
the best and worst ones shown. From these results it 
appears that the feature selection method proposed 
above successfully extracts a small number of features 
which possess essentially the same information rele­
vant to substructure in X detected by fuzzy ISODATA 
as the original ones. 

SUMMARY 

Fuzzy clustering, and in particular fuzzy ISODATA, 
has been reviewed, and is proposed here as a basis for a 
new technique applicable to the problem of feature 
selection. Specifically, equations (14) and (17) seem 
useful in ranking the effectiveness of binary valued 
features both as subclass representatives and as dis­
criminators between pairs of fuzzy subclasses in X. 
A numerical example was presented which seems suc­
cessful enough to warrant further investigations into 
the plausibility of the method. We note that this tech­
nique is applicable only for binary data sets: in fact, 
(6b) shows that the cluster centers {Vi} lie in the 
linear subspace generated by the data, so when the 
features have continuous domains, (14) and (17) are 
invalid. 

As a means of computerized medical diagnosis, the 
technique described above is incomplete in the sense 
that it is a clustering method, not a classifier. None­
theless, it seems fair to assert that our example exhibits 
the promise fuzzy sets may hold for this problem. Our 
conviction is that fuzziness is the premise needed as a 
basis for pattern recognition; more precisely, we think 
it an appropriate generalization of the conventional 
strategies criticized in Reference 5. The reason for 
this lies with the fuzzy membership values generated 
by algorithms like fuzzy ISODATA; not only do they 

indicate a patient's relative affinity for having every 
disease represented by members of the data; but per­
haps more importantly, low memberships can be used 
to identify those patients whose symptoms indicate 
further personal attention. For example, the values in 
Table III suggest that the 23 patients whose Table I 
labels are {23-26,55-57,67-75,94-100} are—by virtue of 
their relatively low memberships—the ones most af­
fecting the computer's success at separating the two 
subclasses. If these 23 individuals are deleted from X, 
and the remaining 84 patients are processed with 
ISODATA, the results reported in the last row of 
Table V indicate an increase of about 14 percent in the 
accuracy of labelling obtained on all 11 features with 
either value of m. This appears to confirm that low 
memberships signal troublesome patients. (Note that 
processing this deleted set with only feature 3 results 
in a recognition rate of 100 percent: the 23 patients 
identified above are precisely the 23 subjects having 
the "uncharacteristic" labels for members of their 
classes with respect to feature 3 alone). Of course, 
it is not the business of the medical community to 
delete troublesome patients from data sets for the 
convenience of a computer: on the contrary, these are 
the patients that doctors want most to identify, and 
we believe that fuzzy methodologies will eventually be 
useful in realizing computer assistance and counseling 
for people in this profession. 
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