
Architecture of microcontroller system

by MICHAEL LICCARDO
Scientific Micro Systerhs
Mountain View, California

SYSTEM OVERVIEW Direct processing of external data

A microcomputer designed for control

The SMS Microcontroller is a microcomputer designed
for control. It features:

Execution speed

• 300 nanosecond instruction execution time.
• Direct address capability—up to 4096 16-bit words of

program memory.
• Eight 8-bit general purpose registers.
• Simultaneous data transfer and data edit in a single

instruction cycle time.
• n way branch or n entry table lookup in two

instruction cycle times.
• Microcontroller instructions operate with equal speed

on 1-bit, 2-bit, 3-bit, 4-bit, 5-bit, 6-bit, 7-bit, or 8-bit
data formats.

The Microcontroller instruction set features control
oriented instructions which directly access variable length
input/output and internal data fields. These instructions
provide very high performance for moving and interpret­
ing data. This makes the Microcontroller ideal in switch­
ing, controlling, and editing applications.

Interface simplicity and expandabil ity

• Direct connection to TTL (3-state) I /O (Open
Collector outputs are optional).

• I /O expandable to 224 connection points with storage
buffer at each point.

• User defined data flow direction with each group of 8
I /O points.

External device signals may be accessed with minimal
interface circuitry. The Microcontroller input /output
system provides a direct register interface to external
devices. Unlike classical minicomputer bus structures,
external devices do not require the logic for providing ad­
dresses to the input/ output system. The address of an
external device is determined programmatically within the
Microcontroller.

Data from external devices may be processed (tested,
shifted, added to, etc.) without first moving them to
internal storage. This is because its I /O system appears to
the Microcontroller as a set of internal registers. In fact,
the entire concept is to treat data at the I /O interface no
differently than internal data. This concept extends to the
software which allows variables at the input /output
system to be named and treated in the same way as data
in storage.

Separate program storage and data s torage

The storage concept of the Microcontroller is to
separate program storage from data storage. Program
storage is implemented in read-only memory in recogni­
tion of the fact that programs for control applications are
fixed and dedicated. The benefits of using read-only
memory are that great speeds may be obtained at lower
cost than if read/write memory were used, and that
program instructions reside in a non-volatile medium and
cannot be altered by system power failures. Data storage
for the Microcontroller is implemented with read/write
memory because data in control and other real time ap­
plications is dynamic and variable.

High density packaging and reliable operation

• The Microcontroller is implemented completely with
LSI circuits.

• The Microcontroller CPU consists of a single
integrated circuit.

• Single +5.0 volt power supply operation.

The Microcontroller is provided packaged on one of
four basic boards. The smallest packaging scheme is the
System 10 which is 6.875 inches by 2.675 inches. This
board can accommodate CPU, 2K words of program
storage, and 32 I/O points. The largest package, the
System 40, is 6.875 inches by 13.475 inches and accom­
modates a fully expanded system consisting of CPU, 4K
words of program storage, 224 I/O points and 256 bytes of
read/write data storage.

75

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1499949.1499966&domain=pdf&date_stamp=1975-05-19

76 National Computer Conference, 1975

INTERFACE VECTOR (IV)

• 8-BIT GENERAL PURPOSE
INPUT/OUTPUT REGISTERS (IV BYTES)

IV BYTE ADDRESS BUS

I

INTERFACE VECTOR
I/O DATA BUS

PROGRAM STORAGE

• ROM OR PROM

• MAXSTORAGE-
4096 16-BIT
WORDS

INSTRUCTION
ADDRESS BUS

16-BIT INSTRUCTION BUS

INTERPRETER (CPU)

• ARITHMETIC/LOGIC UNIT
• PROGRAM COUNTER

• EIGHT 8-BIT REGISTERS

• WORKING STORAGE
ADDRESS REGISTER (IVR)

• INTERFACE VECTOR
ADDRESS REGISTER (IVL)

USER INTERCONNECTION

TRI-STATE INPUT/OUTPUT
DATA LINES

INPUT/OUTPUT
CONTROL LINES

Figure 1—Microcontroller system diagram

Microcontroller functional components

The Microcontroller is a complete microcomputer
system consisting of:

• A central processing unit called the Interpreter.
• Read-only program storage.
• Optional read/wri te data storage called Working

Storage with variable field address of from 1 to 8 bits.
• A complete input/output system called the Interface

Vector.

The Microcontroller System is shown in Figure 1.
Figure 2 illustrates the Microcontroller architecture.

The Microcontroller CPU contains an Arithmetic Logic
Unit (ALU), Program Counter, Interface Vector Address
Register (IVL), and Working Storage Address Register
(IVR). Eight 8-bit general purpose registers are provided,
including seven working registers and an Auxiliary register
which performs as a working register and also provides an
implied operand for many instructions. The Microcon­

troller registers are shown in Figure 2 and are summarized
below:

Control Registers include:

Instruction—A 16-bit register containing the current
instruction.
Program Storage Address (AR)—A 13-bit register
containing the address of the current instruction being
accessed from Program Storage.
Program Counter (PC)—A 13-bit register containing the
address of the next instruction to be read from Program
Storage.
IV Byte Address (IVL)—An 8-bit register containing the
address of the current byte being accessed from the In­
terface Vector. IVL is under program control.
Working Storage Address (IVR)—An 8-bit register
containing the address of the current byte being ac­
cessed from Working Storage. IVR is under program
control.

Architecture of Microcontroller System 77

Data Registers Include:

Working Registers (WR)—Seven 8-bit registers for data
storage.
Overflow (OVF)—A 1-bit register that retains the most
significant bit position carry from ALU. Arithmetically
treated as 2°.
Auxiliary (AUX)—An 8-bit register. Source of implied
operand for arithmetic and logical instructions. May be
used as a working register.

A crystal external to the CPU is used to generate the
CPU system clock. The CPU provides eight instructions.

The 16-bit Microcontroller instructions are stored in
512 to 4096 words of read-only Program Storage. Program
Storage can be implemented with either mask coded
ROMs (Read-Only Memory) or PROMs (Programmable
Read-Only Memory).

The input/ output system, called the Interface Vector,
serves as the data path over which information is trans­
ferred into and out of the Microcontroller. The basic ele­
ments of the Interface Vector are:

• The general purpose 8-bit input/ output registers, or
Interface Vector (IV) Bytes, whose tri-state data path
serves as the connection points to the user system.

• The IVL register which contains the address of the IV
Byte currently being accessed.

• Variable field selection which permits 1 to 8-bit field
access of a selected IV Byte in a single instruction.

The Interface Vector eliminates the need for costly in­

terface logic and presents a simple, well-defined intercon­
nection point to the user system.

Working Storage is available as an option that provides
256 bytes of read/write memory for program data or
input/output data buffering. Working Storage consists of:

• 256 8-bit bytes of read/write memory organized as
two pages (banks), Page 0 and Page 1, of 128 bytes
each.

• The Working Storage address register, IVR which
holds the address of the byte currently accessed in
either Page 0 or Page 1, depending on the state of the
Page Select Register.

• The Page Select Register, addressed through IVR, is a
single bit register used to select Page 0 or Page 1 of
Working Storage.

• Variable Field Select which permits 1 to 8-bit field
transfers to or from an addressed Working Storage
byte in a single instruction.

MICROCONTROLLER INSTRUCTION SET

The Microcontroller has a repertoire of eight instruc­
tions which allow the user to test input status lines, set or
reset output control l ines, and perform high-speed
input/ output data transfers. All instructions are 16 bits in
length. Each instruction is executed completely in 300 na­
noseconds.

Data is represented as an 8-bit byte; bit positions are
numbered from left to right, with the least significant bit
in position 7.

0 1 2 3 4 5 6 7

• I I I I I I I

3Z Si
ADDRESS
REGISTER

(12)

READ-ONLY
PROGRAM
STORAGE

(ROM/PROM)

512 TO
4096 WORDS

INSTRUCTION
REGISTER

(16)

ALU RESULT BUS

2T

PROGRAM
COUNTER

(12)
~T7i

OVERFLOW
REGISTER

RESULT \
ARITHMETIC/
LOGIC UNIT

(ROTATE)
AUXILIARY
REGISTER

(8)

GENERAL
PURPOSE
WORKING

REGISTERS

R3 (8)

R4 (8)

RS (8)

R6 (8)

(8)

WORKING REGISTER DATA

INTERFACE VECTOR INPUT DATA

WORKING STORAGE DATA

VARIABLE FIELD ADDRESS

r

INTERFACE
VECTOR BYTE

ADDRESS

J
_ 0C<UJh-

9Efe§S

WORKING
STORAGE
DATA BUS

IE
WORKING
STORAGE
ADDRESS

CM to
HI m

t s
" > CM > -— o

> E

Hi m

t 3

WORKING STORAGE

256 BYTES
t

OF R/W MEMORY

PAGE 0 . PAGE 1
(128 ' (128

BYTES) I BYTES)

Figure 2—Microcontroller architecture

78 National Computer Conference, 1975

Within the Interpreter, all operations are performed on
8-bit bytes. The Interpreter performs 8-bit, unsigned, 2's
complement arithmetic.

Instruction formats

The general Microcontroller instruction format is:

Instruction Formats

TABLE I—Microcontroller Instruction Summary

0 1 2

Op
Code

3 4 5 6 7 8 9 10 11 12 13 14 15

Operandi!)

Table I contains a summary of the Microcontroller
instruction set and description of the operand fields.

All instructions are specified by a 3-bit Operation (Op)
Code field. The operand may consist of the following
fields: Source (S) Field, Destination (D) Field, Rotate (R)
Field, Length (L) Field, Immediate (I) Operand Field,
and (Program Storage) Address (A) Field.

The instructions are divided into five format types
based on the Op Code and the form of the operand(s).

0 1 2

Op
Code

3 4 S 6 7

S

8 9 10

R

11 12 13 14 15

D

0 1 2

Op
Code

3 4 5 6 7

S

8 9 10

L

11 12 13 14 15

D

OPERATIONS

MOVE AND

ADD XOR

OPERATIONS

MOVE ADD

AND XOR

0 1 2

Op
Code

3 4 5 6 7

S

8 9 10 11 12 13 14 15

1

XEC XMIT

N2T

0 1 2

Op
Code

3 4 5 6 7

S

8 9 10

L

11 12 13 14 15

'
XEC XMIT

NZT

OPERATIONS

0 1 2

Op
Code

3 4 5 6 7 8 9 10 11 12 13 14 15

A

OPERATION

MOVE

ADD

AND

XOR

XMIT

NZT

XEC

JMP

FORMAT

C s L D

C s •

c s

hi ' 1

RESULT

Content of data field addressed by S, L re­
places data in field specified by D, L.

Sum of AUX and data specified by S, L re­
places data in field specified by D, L.

Logical AND of AUX and data specified by
S, L replaces data in field specified by D, L.

Logical exclusive OR of AUX and data
specified by S, L replaces data in field
specified by D, L.

The literal value 1 replaces the data in the
field specified by S, L.

If the data in the field specified by S, L
equals zero, perform the next instruction in
sequence. If the data specified by S, L is
not equal to zero, execute the instruction at
address determined by using the literal 1 as
an offset to the Program Counter.

Perform the instruction at address deter­
mined by applying the sum of the literal 1
and the data specified by S, L as an offset
to the Program Counter. If that instruction
does not transfer control, the program se­
quence will continue from the XEC instruc­
tion location.

The literal value 1 replaces contents of the
Program Counter.

NOTES

If S and D both are register
addresses then L specifies a
right rotate of L places ap­
plied to the register specified
byS.

If S is IV or WS address then
1 limited to range 00-37.
Otherwise 1 limited to range
000-377.

If S specifies an IV or WS
address then 1 is limited to
the range 00 - 37.1 is limited
to the range 000 - 377 other­
wise.

The offset operation is per­
formed by reducing the value
of PC to the nearest multiple
of 32 (if 1:00-37) or 256 (ril
: 000 - 377) and adding the
offset.

1 limited to the range 00000 -
07777.

Instruction fields

Op code field—3-bit field

The Op Code field is used to specify one of eight Micro-
Controller instructions.

OP CODE
OCTAL VALUE

0
1
2
3
4

INSTRUCTION

MOVE
ADD
AND
XOR
XEC

NZT

XMIT
JMP

RESULT

(S)-D
(S) plus (AUX)^D
(S)A (AUX)^D
(S) © (AUX)^D

S,L,D
S,L,D
S,L,D,
S,L,D
I,L,S or I,S Execute instruction at

current PC offset by
I + (S)

I,L,S or I,S Jump to current PC offset
b y I i f (S) * 0

I,L,S or I,S Transmit literal I^S
A Jump to program location A

S,D fields—5-bit fields

The S and D fields specify the source and destination of
the operation defined by the Op Code Field. The Auxiliary
Register is the implied source for the instructions ADD,
AND and XOR which require two source fields. That is,
instructions of the form:

ADD X,Y

imply a third operand, say Z, located in the Auxiliary
Register so that the operation which takes place is actually
X + Z , with the result stored in Y. This powerful capability
means that three variables are referenced in 300 nano­
seconds.

Architecture of Microcontroller System 79

OCTAL VALUE

00
01
02
03
04
05
06
07

10
11
12
13
14
15
16
17

08-178 is used to specify one of seven working registers
(R1-R6, R l l) , Auxiliary Register, Overflow Register, IVL
and IVR registers.

Auxiliary Register
R l
R2
R3
R4
R5
R6
IVL Register—IV Byte address register—Used as a D field only, or S field in X M I T

instruction.
OVF-Overflow register—Used as an S (source) field only.
R l l
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
IVR Register—Working Storage address register—Used as a D field only, or S field in

X M I T instruction.

208-278 is used to specify the least significant bit of a variable length field within
the IV Byte selected by the address in the IVL register. The length of the field is

OCTAL VALUE

20
21
22
23
24
25
26
27

OCTAL VALUE

30
31
32
33
34
35
36
37

determined by L.

Field within selected IV Byte; position of LSB = 0
= 1
= 2
= 3
= 4
= 5
= 6
= 7

308-378 is used to specify the least significant bit of a variable length field within
the Working Storage Byte selected by the address in IVR Register. The length of the
field is determined by L.

Field within selected W.S. Byte; position of L S B = 0
= 1
= 2
= 3
= 4
= 5
= 6
= 7

L/R field—3-bit field

The L/R field performs one of two functions, specifying
either a field length (L) or a rotation (R). The function it
actually does specify for a given instruction depends upon
the contents of the S and D fields:

A. When both S and D specify registers, the R field is
used to specify a right rotation of the data specified by the
S field. (Rotation occurs on the bus and not in the source
register.)

B. When either or both the S and D fields specify and
IV or Working Storage Byte, the L field is used to specify
the length of the field (within the byte) accessed, as shown
below:

OCTAL VALUE
0—Field length=8 bits
1—Field length = 1 bit
2—Field length=2 bits

3—Field length = 3 bits
4—Field length = 4 bits
5—Field length = 5 bits
6—Field length=6 bits
7—Field length = 7 bits

I field—5/8-bit field

The I field is used to load a literal value (a binary value
contained in the instruction) into a register, IV or Working
Storage Byte or to specify the low order bits of the
Program Counter.

The length of the I field is based on S field:

A. When S specifies a register, the literal I is an 8-bit
field (Type III format).

B. When S specifies an IV or Working Storage Byte, the
literal I is a 5-bit field (Type IV format).

80 National Computer Conference, 1975

A field—13-bit field

The A field is a 13-bit Program Storage address field. In
current systems, however, only 12 bits are used, resulting
in storage capacity of 4096 instructions.

Register operations

MOVE S,D or

MOVE S I R) , D

OPERATION: (S) -* (D)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 IS

0 0 0 Source I L/R I Destination

DESCRIPTION: Move data. The contents of S are transferred to D; the o. ntents of S are unaffected. If both S and
D are registers, R specifies a right rotate of the source data during the move. Otherwise, L is
implicit and specifies the length of the source and destination fields. If the MOVE is between an
IV Byte and a Working Storage Byte, an 8-bit field is always moved.

EXAMPLE: Store the least significant 3 bits of register 5 (R5) i
by IVL register.

i bits 4, 5 and 6 of the IV Byte addressed

When a register is specified as the source, and an IV or
Working Storage field as the destination, the least signifi­
cant bits of the operation (MOVE, ADD, AND, XOR)
result are stored. The operation is performed on the entire
8-bit source for a MOVE, or between the 8-bit AUX and
the source register for ADD, AND, XOR operations. The
least significant bits of the result are stored in the IV or
Working Storage field specified in the instruction.

When an IV or Working Storage field of one to eight bits
is specified as the source, and a register as the destination,
the 8-bit result of the operation (MOVE, ADD, AND,
XOR) is stored in the register. The operations ADD, AND,
XOR actually use the IV or Working Storage data field (1-
8 bits) with leading zeros to obtain 8-bit source data for
use with the 8-bit AUX data during the operation.

Because IVL and IVR registers can be specified as desti­
nation fields only, (see description of S, D fields), opera­
tions involving IV1 and IVR as sources are not possible.
For example, it is not possible to increment IVR or IVL in
a single instruction, and the contents of IVL or IVR can­
not be transferred to a working register, IV Byte, or Work­
ing Storage location.

The OVF (Overflow) Register only can be used as a
source field; therefore, it cannot be set or reset in a single
instruction.

Instruction descriptions

The following instruction descriptions employ MCMAC
(the Microcontroller Machine Compiler, described in a
later section) programming notation. This notation varies
somewhat from the instruction descriptions provided
earlier. Thus, for example, explicit L field definition as
shown is not required by MCMAC for machine instruc­
tions; MCMAC creates appropriate variable field ad­
dresses from the information contained in the Data Decla­
ration statements provided by the programmer at the be­
ginning of his program.

The Microcontroller instruction set is described below
with examples illustrating instruction use.

0 1 2

l o o o

I o

MOVE R5, IV

3 4 5 6 7 8 9 10

0 0 1 0 1

0 | 6

0 1 1

3

11 12 13 14 15

1 0 1 1 0

2 j 6

Binary Representation

Octal Representation

- Defines LSB as bit 6

- Defines Interface Vector
- Defines 3-bit field
- Defines register 5

0 1 2 3 4 5 6 7

| 0 1 1 0 0 1 1 0 | R5

777,
| X X X X 1 1 0 X I Selected IV Byte - After Operation

Note: X's in the IV Byte denote bits unaffected by the MOVE operation.

ADD S, D or

ADD S I R) , D
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

| 0 0 1 | Source TT^T

OPERATION: IS) plus (AUX) -* D; set OVF if carry from most significant bit occurs.

DESCRIPTION: Unsigned two's complement addition. The contents of S are added to the contents of the

Auxiliary Register (which is the implied source). The result is stored in D; OVF is set. If both
S and D are registers, R specifies a right rotate of the source (S) field before the operation.
Otherwise L is implicit and specifies the length of the source and destination fields. S and
AUX are unaffected unless specified as the destination.

EXAMPLE: Add the contents of R1 (rotated 4 places) to AUX and store the result in R3.

ADD R1(4,[, R3»

0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 1

0 j 3

Binary Representation

Octal Representation

| 0 1 0 1 1 1 1 0 | R1

1 1 1 0 0 1 0 1 Contents of R1 rotated right 4 places

| 1 0 0 0 0 1 0 0 | AUX

| 0 1 1 0 1 0 0 l | R3 - After Operation

[~T] OVF

Architecture of Microcontroller System 81

AND S, D or

A N D S (R) , D
0 1 2 3 4 S 6 7 8 9 10 11 12 13 14 15

| 0 1 0 | Source | L/R | Destination |

OPERATION: (S) A (AUX) -> D

DESCRIPTION: Logical AND. The AND of the source field and the Auxiliary Register is stored into the

destination. If both S and D are registers, R specifies a right rotate of the source (S) field before
the AND operation. Otherwise L is implicit and specifies the length of the source and destination
fields. S and AUX are unaffected unless specified as a destination.

EXAMPLE: Store the AND of the selected Working Storage Byte and AUX in R4.
The Working Storage Byte field is called WSBCD and is 4 bits long and
located in bits 2, 3, 4 and 5.

AND WSBCD

I 0 1 011 1 1 0 1

2 | 3 j 5

' R 4 >
1 o o l o o

4 | 0 j

0 0 I

4 j

Binary Representation

Octal Representation

0 1 2 3 4 5 6 7

1 0 0 1 0 1 0 1 m"
0 0 0 0 0 1 0 1

| o o o o o o 1 i |

| 0 0 0 0 0 0 0 1 |

Selected WS Byte

Selected field right justified with leading zeros added.

0

h
0

h

1

0

1

0

2

0

2

0

3 4 5 6

Source

3 4 5 6

Source

7

7

8

8

9

9

10 11 12 13 14

I Field

10

Length

11 12 13 14

I Field

15

I
15

|
OPERATION: Execute instruction at (Address Register) offset by (SI + I.

DESCRIPTION: Execute the instruction at the address determined by replacing the low order bits of the Address
Register (AR) (which contains the current value of the Program Counter) with the low order bits
of the sum of the literal I and the contents of the source field. If S is a register, the low order 8
bits of AR are replaced; if S is an IV or Working Storage Byte, the low order 5 bits of AR are
replaced, resulting in an execute range of 256 and 32 respectively. The Program Counter is not
affected unless the instruction executed is a JMP or NZT (whose branch is taken).

EXAMPLE: Execute a JMP in a table of JMP instructions determined by the value of the selected IV Byte
field. The table follows immediately after the XEC instruction and the IV field is called INTERPT
and is a 3 bit field located in bits 4, 5 and 6.

XEC "+1 (INTERPT)

Binary Representation

Octal Representation

| 1 0 0 | l 0

0

| 0 0 0 0 1

i olo i i l l o i
6 1 3 |2 j

13

0 1 1 0 0 1 1 |

0 0 I

4 |

Add

0 1 2 3 4 5 6 7

I 0 1 0 1 0 1 1 0 I

0 0 0 0 0 0 1 1

0 0 0 1 0 1 0 0

Selected IV Byte

Selected field right justified with leading zeros added

I Field

| 0 0 0 0 1 1 0 6 V V S ' 6 V 1 * ' P l | Address Register - After Operation

INSTRUCTION

0000110110011
0000110110100

XEC '+1 (INTERPT)

JMP A1

XOR S, D or
X O R S (R) , D

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

| 0 1 1 | Source | L/R | Destination |

OPERATION: (S) © (AUX) -* D

DESCRIPTION: Exclusive OR. The exclusive OR of the source field and the Auxiliary Register is stored in the
destination. If both S and D are registers; R specifies a right rotate of the source (S) field before
the XOR operation. Otherwise L is implicit and specifies the length of the source and destination
fields. S and AUX are unaffected unless specified as a destination.

EXAMPLE: Replace the selected IV Byte field with the XOR of that field and AUX. The IV Byte field i
called STATUS and is 5 bits in length and located in bits 3, 4, 5, 6 and 7.

0000110110111

0000110111011 J M P A 7

JMP A3 is executed because IV field INTERPT = 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 IS

| 1 1 0 | Source [I Field |

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 0 Source

0 1 1 1 0 1 1 1 1 0 1 1 0 1 1 1

2 | 7

Binary Representation

Octal Representation

0 1 2 3 4 5 6 7

I 0 1 1 1 0 0 1 1 J Selected IV Byte - Before Operation

0 0 0 1 0 0 1 1 Selected field right justified with leading zeros added

XOR

| 0 0 0 0 1 0 1 0 | AUX

0 0 0 1 1 0 0 1

_LL
0 1 1 1 1 0 0 1

OPERATION: I -» S

DESCRIPTION: Transmit literal. The literal field I is stored in S. If S is a register, an 8 bit field is transferred;
if S is an IV or Working Storage Byte, up to a 5 bit field is transferred.

EXAMPLE: Store the bit pattern 110 in the selected Working Storage Byte field. The field name is VALUE

and located in bits 3, 4 and 5.

Selected IV Byte - After Operation

1 1 0 1 1 1 0 1 0 1 1 0 0 1 1 0 Binary Representation

Octal Representation

0 1 2 3 4 5 6 7

| 1 1 0 0 1 0 0 1 | Selected WS Byte - Before Operation

0 0 0 0 0 1 1 0

Z//
1 1 0 1 1 0 0 1 Selected WS Byte - After Operation

82 National Computer Conference, 1975

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

| 1 0 1 | Source | I Field J

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I Field ~] Source | Length j

OPERATION: Non Zero Transfer If (S) 4 0. PC offset by I -* PC; otherwise PC + 1 •* PC.

DESCRIPTION: If the data specified by the S field is non-zero, replace the low order bits of the Program
Counter with I. Otherwise, processing continues with the next instruction in sequence. If
S is a register, the low order 8 bits are replaced; if S is an IV or Working Storage Byte, the low
order 5 bits are replaced, resulting in an NZT range of 256 and 32 respectively.

EXAMPLE: Jump to Program address ALPHA if the selected IV Byte field is non-zero. The field name is
OVERFLO and it is a 1 bit field located in bit 3.

1 0 1 1 0 0 1 1 0 0 1 1 1 0 1 0 Binary Representation

Octal Representation

Addressing data on the interface vector

The Interface Vector is comprised of general purpose
I/O registers called Interface Vector (IV) Bytes. In the
present Microcontroller offering, the Interface Vector
may consist of up to 28 IV Bytes.

As seen from Figure 2 the IVL register serves as the ad­
dress register to the IV Bytes. In order for an instruction
access (read or write) an IV Byte, the address of that byte
must first be placed into the IVL register.

Thus, two instructions are required to operate on an In­
terface Vector byte:

XMIT ADDRESS, IVL
MACHINE INSTRUCTION

0 1 2 3 4 5 6 7

JMPA

OPERATION:

| X X X 1 X X

1

ADDRESS

•
• •

0000110110011 •
• •

0000110111010.
offset

0 1 2 3 4 5

M i l l

X

6

X

7

1

8

Selected IV B /te

INSTRUCTION

NZT OVERFLO, ALPHA

Instruction

9 10 11 12 13 14 15

Address Field 1

DESCRIPTION: The literal value A is placed in the Program Counter and processing continues at location A.
A has a range of 0 - 7777g in current systems (0 - 4095).

EXAMPLE: Jump to location ALPHA (00001011100011

Once the IV Byte is selected (addressed) it will remain
selected until the IVL register is loaded with another ad­
dress. From the user's standpoint, however, all IV Byte
outputs can be read by an external device regardless of
whether they are selected or not.

Although the address range of IVL is 0-3778, only 28 IV
Bytes are available on current system offerings. The ad­
dressing for the 28 IV Bytes is 018 to 348.

Electrical characteristics of the interface vector

Each IV Byte consists of 8 storage latches which hold
data transferred between the Interpreter and the User
System, 8 t r i -s ta te i n p u t / o u t p u t l ines and two
input/output control lines, called Byte Input Control
(BIC) and Byte Output Control (BOC) (Figure 3). The
control lines functions are summarized in Table II.

0 0 0 0 1 0 1 1 1 0 0 0 1 Binary Representation

Octal Representation

INSTRUCTION

READ/WRITE MEMORY

In Microcontroller applications, data may be stored in
a read/write memory system called Working Storage.

0000000011011

ALPHA 0000101110001

| 0 | 0 | 0 | 0 | 0 | o | o | o | l | l | o | l | l | Program Counter Before Operation

| 0 | 0 | 0 | 0 | l | o | l | l | l | o | o | o | l | Program Counter After Operation

INPUT/ OUTPUT SYSTEM

As seen from previous sections, the Interface Vector is
the Microcontroller's input/output system. It provides a
simple interconnection to the user status, control and data
lines.

TABLE II—Functions of the BIC and BOC Lines

CONTROL LINES FUNCTION

BOC (low true) BIC (low true)

H

X

H 8 I/O lines in high impedance
state—disable

H 8 I/O lines in output mode—8 bit
storage latch data available in the
output lines.

L 8 1/0 lines in input mode—data
can be read by Interpreter.

Table III contains a summary of the electrical characteristics of the IV
Byte.

Architecture of Microcontroller System 83

TABLE III—IV BYTE Terminal Electrical Characteristics

Characteristic

Limits

Symbol Min Typ Max

100
- 8 0 0

5.5
0 .8

- 1

0 .5
- 2 0 0

12

Units

uA
uA
Volts
Volts
Volts
Volts
Volts
ma

Pf

Conditions

Vi i n = 0 . 5 V
V« ; i l = 0.50 V

I«in= — oma
Iiout = l m a
I*out= — 16ma
V«0ut = OV

v«in=ov

" 1 " Inpu t Current*
" 0 " Inpu t Current*
" i " I npu t Voltage
" 0 " Inpu t Voltage
Inpu t Clamp Voltage
High Output Voltage
Low Output Voltage
Output Short Circuit Current
D a t a Inpu t Capacitance

I l in

l^in

V i t a

v« in
Vein

Viout

V^out

Iso

cin

2
- 1

2 .4

- 2 0

Input current is always present regardless of the state of BIC and BOC.

Working Storage is accessed in much the same manner
as IV Bytes. Figure 2 shows that IVR register is the Work­
ing Storage address register. It should also be noted from
Figure 2 that a Page Select Register determines the page
currently addressed by the IVR register. In order to access
the Page Select Register, IVR must be set to 1778, which is
the address of the Page Select Register. Either a 1 or 0 can
be transferred into bit 7 to select page 1 and page 0 respec­
tively. Once the proper page is selected, IVR can be loaded
with the address of the Working Storage Byte requiring ac­
cess.

Because the two 128 byte pages of Working Storage are
selected by the Page Select Register, the address loaded
into IVR to access a byte in either page is identical 2008-
3778. In effect, IVR holds the low order address bits and
Page Select holds the high order address bit.

Operating on data in Working Storage requires two
steps:

a. Selecting the 128 byte page which contains the data.
b. Accessing and operating on the actual data byte(s).

Page selection requires two instructions:

IV Byte Select Bus

/ -A
/ Interface Vector \
\ I/O Data Bus J

\ V
BIC BOC

1

7
6
5
4
3
2
1
0

2 : ' J 2 : J

I
\
! \
"

Tri-state Input/Output
Lines

Input/Output Control Lines

XMIT

XMIT

177H, IVR

PAGE, PSR

Enables Page Select
Register
Selects Page

Thereafter all references to bytes within the selected
page require two instructions:

Figure 3.1
IV BYTE PROVIDING DYNAMICALLY DEFINED DATA FLOW

Figure 3.2
IV BYTE WIRED FOR USER OUTPUT ONLY

l i

User
System

I

Figure 3—IV byte wired for input only

XMIT ADDRESS, IVR Selects byte
MACHINE INSTRUCTION

When using instructions that involve the transfer of
fields of less than 8 bits between an IV Byte and Working
Storage, the following results should be noted.

EXAMPLE: A MOVE instruction that specifies an IV Byte and Working Storage wil l have the following r

Specified Source Field

2 3 4 5 6 7

TOT

MOVE

0 1 2

| o | o | o

I 0

s

3 4 5 6 7

110 11|o 11

2 j 5

L

8 9 10

o | i | i

3

D

11 12 13 14 15

1 J 1 | 0 | l | l 1

3 | 3 |

H

A
I o|o|i"| i | i | i (o Selected WS Byte

Specified Destination Field

The specified IV Byte source field is transferred into the specified Working Storage Byte field.

The remainder of the destination byte is filled by the contents of the corresponding bit positions

in the source bytes.

84 National Computer Conference, 1975

EXAMPLE: An ADD, XOR or AND instruction that specifies an IV Byte and Working Storage will have the

following result:

ADD
AND
XOR

| O | o | o | o | o | o | l | 1 | Auxiliary Register

0 0 0 0 1 1 1 0

0 1 2

I'M*
| l ,2or3

S

3 4 S 6 7

1 | 1 | , | , | 0

3 | 6

L

8 9 10

i | o | o

4

D

11 12 13 14 15

i | o | i | o | o 1

2 J 4 J Specified Source Field

0 1 2 3 4 5 617

l °h | i | i |o | i | i | ° l

\ \ \

Selected WS Byte

Specified Destination Field
Corresponding bits of Source Field

The specified source field (right justified with leading zero's inserted) is added/anded/exclusive
or'ed with the Auxiliary Register and the result placed in the destination field. The remainder of
the destination byte is filled with the corresponding bit positions of the source byte.

0 0 0 0 1 0 1 1

